First Midterm Exam: Question 1 (08 November 2021)

- Maximum marks: 20
- Time allotted (including uploading on Moodle): 45 minutes
- Let $x^{1}, x^{2}, \ldots, x^{n}$ be a set of linearly independent vectors in \mathbb{R}^{n}. Let $y^{1}, y^{2}, \ldots, y^{n}$ be a set of vectors defined by

$$
y^{1}=x^{1}+x^{2}, y^{2}=x^{2}+x^{3}, \ldots, y^{n-1}=x^{n-1}+x^{n}, y^{n}=x^{n}+x^{1}
$$

Is the set of vectors $\left\{y^{1}, y^{2}, \ldots, y^{n}\right\}$ linearly independent? Explain clearly.

First Midterm Exam: Question 2 (08 November 2021)

- Maximum marks: 25
- Time allotted (including uploading on Moodle): 55 minutes
- Let A be a symmetric $n \times n$ matrix. It can be shown that there exists a solution to the following minimization problem:

$$
\begin{aligned}
& \underset{\left\{v \in \mathbb{R}^{n}\right\}}{\operatorname{Minimes}} v^{T} A v \\
& \text { subject to } \quad\|v\|=1
\end{aligned}
$$

(a) Prove that for any vector $v \in \mathbb{R}^{n}$ with $\|v\|=1$, there exists a scalar r such that

$$
v^{T}\left(A+r I_{n}\right) v>0,
$$

where I_{n} is the $n \times n$ identity matrix.
(b) Prove that there exists a scalar s such that the $n \times n$ matrix $A+s I_{n}$ is positive definite.

First Midterm Exam: Question 3 (08 November 2021)

- Maximum marks: 20
- Time allotted (including uploading on Moodle): 45 minutes
- Let A be an $n \times n$ matrix, and let $A^{1}, A^{2}, \ldots, A^{n}$ denote the n column vectors of A.

Define an $n \times n$ matrix B as follows:

$$
b_{i j}=A^{i} A^{j} \quad i=1, \ldots, n ; j=1, \ldots, n
$$

where $b_{i j}$ is the element corresponding to the i th row and j th column of matrix B, and $A^{i} A^{j}$ denotes the inner product of the vectors A^{i} and A^{j}. Suppose A is non-singular. Does it follow that B is non-singular? Explain clearly.

First Midterm Exam: Question 4 (08 November 2021)

- Maximum marks: $\mathbf{3 5}$
- Time allotted (including uploading on Moodle): $\mathbf{8 0}$ minutes
- Let A be an $m \times n$ matrix, and let c be a vector in \mathbb{R}^{m}. Prove that exactly one of the following two alternatives holds.

Either the system of equations $A x=c$ has a solution, or, the system of equations $y A=0$ and $y c=1$ has a solution.

