Tridip Ray ISI, Delhi

First Midterm Exam: Question 1 (08 November 2021)

- Maximum marks: 20
- Time allotted (including uploading on Moodle): 45 minutes
- Let x¹, x², ..., xⁿ be a set of linearly independent vectors in ℝⁿ. Let y¹, y², ..., yⁿ be a set of vectors defined by

$$y^1 = x^1 + x^2, \ y^2 = x^2 + x^3, \dots, y^{n-1} = x^{n-1} + x^n, \ y^n = x^n + x^1.$$

Is the set of vectors $\{y^1,y^2,...,y^n\}$ linearly independent? Explain clearly.

Tridip Ray ISI, Delhi

First Midterm Exam: Question 2 (08 November 2021)

- Maximum marks: 25
- Time allotted (including uploading on Moodle): 55 minutes
- Let A be a symmetric $n \times n$ matrix. It can be shown that there exists a solution to the following minimization problem:

$$\begin{aligned} \underset{\{v \in \mathbb{R}^n\}}{\text{Minimize }} v^T A v \\ \text{subject to} \quad \|v\| = 1. \end{aligned}$$

(a) Prove that for any vector $v \in \mathbb{R}^n$ with ||v|| = 1, there exists a scalar r such that

$$v^T \left(A + rI_n \right) v > 0,$$

where I_n is the $n \times n$ identity matrix.

(b) Prove that there exists a scalar s such that the $n \times n$ matrix $A + sI_n$ is positive definite.

Tridip Ray ISI, Delhi

First Midterm Exam: Question 3 (08 November 2021)

- Maximum marks: 20
- Time allotted (including uploading on Moodle): 45 minutes
- Let A be an n × n matrix, and let A¹, A², ..., Aⁿ denote the n column vectors of A.
 Define an n × n matrix B as follows:

$$b_{ij} = A^i A^j$$
 $i = 1, ..., n; \ j = 1, ..., n$

where b_{ij} is the element corresponding to the *i*th row and *j*th column of matrix *B*, and $A^i A^j$ denotes the inner product of the vectors A^i and A^j . Suppose *A* is non-singular. Does it follow that *B* is non-singular? Explain clearly.

Math 271: Mathematical Methods Semester I, 2021-22 Tridip Ray ISI, Delhi

First Midterm Exam: Question 4 (08 November 2021)

- Maximum marks: **35**
- Time allotted (including uploading on Moodle): 80 minutes
- Let A be an $m \times n$ matrix, and let c be a vector in \mathbb{R}^m . Prove that exactly one of the following two alternatives holds.

Either the system of equations Ax = c has a solution,

or, the system of equations yA = 0 and yc = 1 has a solution.