## Second Midterm Exam: Question 1 (28 February 2021)

- Maximum marks: 20
- Time allotted (including uploading on Moodle): 45 minutes
- In this question we will prove the following version of the Bolzano-Weierstrass Theorem:

Any sequence contained in a compact interval of $\mathbb{R},[a, b]$, has a convergent subsequence whose limit lies in $[a, b]$.

- Let $\left\{x_{n}\right\}_{n=1}^{\infty}$ be a sequence contained in $[a, b]$. Divide $[a, b]$ into two equal halves: $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$.
(a) [3 marks]

Argue that infinitely many elements of the sequence $\left\{x_{n}\right\}_{n=1}^{\infty}$ must lie in one (or both) of these halves.

- Let $I_{1}$ denote a half which contains infinitely many members of the sequence. Now divide subinterval $I_{1}$ into two equal halves. Call the half which contains infinitely many elements of the sequence $I_{2}$. Continue dividing the interval into halves; each time choose a half which contains infinitely many elements of the sequence. The result of continuing this process indefinitely is a sequence of intervals $\left\{I_{k}\right\}_{k=1}^{\infty}$, with $I_{k+1} \subset I_{k}$. Construct a subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ of $\left\{x_{n}\right\}_{n=1}^{\infty}$ by choosing $x_{n_{k}} \in I_{k}$. Since each $I_{k}$ contains infinitely many $x_{n}$ 's, we can ensure that $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ really is an (infinite) subsequence of $\left\{x_{n}\right\}_{n=1}^{\infty}$.
(b) [14 marks]

Prove that the subsequence $\left\{x_{n_{k}}\right\}_{k=1}^{\infty}$ has a limit.
(c) [3 marks]

Prove that this limit lies in $[a, b]$.

## Second Midterm Exam: Question 2 (28 February 2021)

- Maximum marks: $\mathbf{3 0}$
- Time allotted (including uploading on Moodle): 70 minutes
(a) [10 marks]

Let $A \subset \mathbb{R}^{n}$ be open and $f: A \rightarrow \mathbb{R}$ be twice continuously differentiable. Consider the problem of maximizing $f(x ; a)$ with respect to $x$, where $a \in \mathbb{R}$ is a parameter for the maximization problem.

Given any $a \in \mathbb{R}$, suppose $x^{*}(a)$ is a solution to the maximization problem. Provide (with a clear explanation) a sufficient condition on $f$ for $x^{*}$ to be a continuously differentiable function of $a$.
(b) [20 marks]

Recall the following characterization of twice differentiable quasi-concave functions.
Let $A \subset \mathbb{R}^{n}$ be an open convex set, and $f: A \rightarrow \mathbb{R}$ be twice continuously differentiable on $A$. The bordered Hessian matrix of $f$ at $x \in A$ is denoted by $G_{f}(x)$ and is defined by the following $(n+1) \times(n+1)$ matrix:

$$
G_{f}(x)=\left(\begin{array}{cc}
0 & \nabla f(x) \\
\nabla f(x) & H_{f}(x)
\end{array}\right) .
$$

We denote the $(k+1)$ th leading principal minor of $G_{f}(x)$ by $\left|G_{f}(x ; k)\right|$, where $k=$ $1,2, \ldots, n$.

Theorem: Suppose $A \subset \mathbb{R}^{n}$ is an open convex set, and $f: A \rightarrow \mathbb{R}$ is twice continuously differentiable on $A$.
(i) If $f$ is quasi-concave on $A$, then $(-1)^{k}\left|G_{f}(x ; k)\right| \geq 0$ for $x \in A$, and $k=$ $1,2, \ldots, n$.
(ii) If $(-1)^{k}\left|G_{f}(x ; k)\right|>0$ for $x \in A$, and $k=1,2, \ldots, n$, then $f$ is quasi-concave on $A$.

- Question: Let $f: \mathbb{R}_{+}^{2} \rightarrow \mathbb{R}$ be given by

$$
f(x, y)=(x-1)^{2}(y-1)^{2}, \quad(x, y) \in \mathbb{R}_{+}^{2}
$$

In light of this example explain whether the 'strict inequalities' (' $>0$ ') in condition (ii) of the theorem can be replaced with 'weak inequalities' (' $\geq 0$ ').

## Second Midterm Exam: Question 3 (28 February 2021)

- Maximum marks: $\mathbf{2 0}$
- Time allotted (including uploading on Moodle): 45 minutes
- Limits from the left: Suppose that $f$ is defined on an interval $(a, b)$. We say that $f(x)$ tends to a limit $l$ as $x$ tends to $b$ from the left and write $f(x) \rightarrow l$ as $x \rightarrow b-$, or, alternatively, $\lim _{x \rightarrow b-} f(x)=l$ if the following criterion is satisfied.
- Given any $\epsilon>0$, we can find a $\delta>0$ such that $|f(x)-l|<\epsilon$ provided that $b-\delta<x<b$.
- Limits from the right: Suppose that $f$ is defined on an interval $(a, b)$. We say that $f(x)$ tends to a limit $l$ as $x$ tends to $a$ from the right and write $f(x) \rightarrow l$ as $x \rightarrow a+$, or, alternatively, $\lim _{x \rightarrow a+} f(x)=l$ if the following criterion is satisfied.
- Given any $\epsilon>0$, we can find a $\delta>0$ such that $|f(x)-l|<\epsilon$ provided that $a<x<a+\delta$.
- $f(x) \rightarrow l$ as $x \rightarrow \xi$ : Suppose that $f$ is defined on an interval $(a, b)$ and $\xi \in(a, b)$. We say that $f(x)$ tends to a limit $l$ as $x$ tends to $\xi$ and write $f(x) \rightarrow l$ as $x \rightarrow \xi$, or, alternatively, $\lim _{x \rightarrow \xi} f(x)=l$ if the following criterion is satisfied.
- Given any $\epsilon>0$, we can find a $\delta>0$ such that $|f(x)-l|<\epsilon$ provided that $0<|x-\xi|<\delta$.
- Proposition: Let $f$ be defined on an interval $(a, b)$ and $\xi \in(a, b)$. Then $f(x) \rightarrow l$ as $x \rightarrow \xi$ if and only if $f(x) \rightarrow l$ as $x \rightarrow \xi-$ and $f(x) \rightarrow l$ as $x \rightarrow \xi+$.
- Let $f: A \rightarrow \mathbb{R}$, where $A \subset \mathbb{R}$. We say that $f$ is increasing on $A$ if and only if, for each $x \in A$ and $y \in A$ with $x<y$, it is true that $f(x) \leq f(y)$. Similar definition holds for a decreasing function.
- Question: Prove the following theorem.
(i) Let $f:(a, b) \rightarrow \mathbb{R}$ be increasing and bounded above with the smallest upper bound $L$. Then $f(x) \rightarrow L$ as $x \rightarrow b-$.
(ii) Let $f:(a, b) \rightarrow \mathbb{R}$ be increasing and bounded below with the largest lower bound $l$. Then $f(x) \rightarrow l$ as $x \rightarrow a+$.


## Second Midterm Exam: Question 4 (28 February 2021)

- Maximum marks: $\mathbf{3 0}$
- Time allotted (including uploading on Moodle): 75 minutes
- Limits from the left: Suppose that $f$ is defined on an interval $(a, b)$. We say that $f(x)$ tends to a limit $l$ as $x$ tends to $b$ from the left and write $f(x) \rightarrow l$ as $x \rightarrow b-$, or, alternatively, $\lim _{x \rightarrow b-} f(x)=l$ if the following criterion is satisfied.
- Given any $\epsilon>0$, we can find a $\delta>0$ such that $|f(x)-l|<\epsilon$ provided that $b-\delta<x<b$.
- Limits from the right: Suppose that $f$ is defined on an interval $(a, b)$. We say that $f(x)$ tends to a limit $l$ as $x$ tends to $a$ from the right and write $f(x) \rightarrow l$ as $x \rightarrow a+$, or, alternatively, $\lim _{x \rightarrow a+} f(x)=l$ if the following criterion is satisfied.
- Given any $\epsilon>0$, we can find a $\delta>0$ such that $|f(x)-l|<\epsilon$ provided that $a<x<a+\delta$.
- $f(x) \rightarrow l$ as $x \rightarrow \xi$ : Suppose that $f$ is defined on an interval $(a, b)$ and $\xi \in(a, b)$. We say that $f(x)$ tends to a limit $l$ as $x$ tends to $\xi$ and write $f(x) \rightarrow l$ as $x \rightarrow \xi$, or, alternatively, $\lim _{x \rightarrow \xi} f(x)=l$ if the following criterion is satisfied.
- Given any $\epsilon>0$, we can find a $\delta>0$ such that $|f(x)-l|<\epsilon$ provided that $0<|x-\xi|<\delta$.
- Proposition: Let $f$ be defined on an interval $(a, b)$ and $\xi \in(a, b)$. Then $f(x) \rightarrow l$ as $x \rightarrow \xi$ if and only if $f(x) \rightarrow l$ as $x \rightarrow \xi-$ and $f(x) \rightarrow l$ as $x \rightarrow \xi+$.
- Let $f: A \rightarrow \mathbb{R}$, where $A \subset \mathbb{R}$. We say that $f$ is increasing on $A$ if and only if, for each $x \in A$ and $y \in A$ with $x<y$, it is true that $f(x) \leq f(y)$. Similar definition holds for a decreasing function.


## - Theorem:

(i) Let $f:(a, b) \rightarrow \mathbb{R}$ be increasing and bounded above with the smallest upper bound $L$. Then $f(x) \rightarrow L$ as $x \rightarrow b-$.
(ii) Let $f:(a, b) \rightarrow \mathbb{R}$ be increasing and bounded below with the largest lower bound $l$. Then $f(x) \rightarrow l$ as $x \rightarrow a+$.

- In a homework problem you have established that if $f$ is a convex function on the interval $I$ and $x_{1}, x_{2}$ and $x_{3}$ are points of $I$ which satisfy $x_{1}<x_{2}<x_{3}$, then

$$
\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}} \leq \frac{f\left(x_{3}\right)-f\left(x_{1}\right)}{x_{3}-x_{1}}
$$

(a) [6 marks]

Suppose $f$ is a convex function on the open interval $I$ and $x \in I$. Argue that the function

$$
F(h)=\frac{f(x+h)-f(x)}{h}
$$

is increasing in some interval $(0, \delta)$.
(b) [14 marks]

Suppose $f$ is a convex function on the open interval $I$. Prove that the limits

$$
\lim _{h \rightarrow 0+} \frac{f(x+h)-f(x)}{h}, \quad \lim _{h \rightarrow 0-} \frac{f(x+h)-f(x)}{h}
$$

both exist for each $x \in I$.
(c) [10 marks]

Suppose $f$ is a convex function on the open interval $I$. Prove that $f$ is continuous on $I$.

- Hints: Note that, for $h \neq 0$,

$$
f(x+h)-f(x)=\left[\frac{f(x+h)-f(x)}{h}\right] \cdot h .
$$

