Tridip Ray ISI, Delhi

Second Midterm Exam: Question 1 (28 February 2021)

- Maximum marks: 20
- Time allotted (including uploading on Moodle): 45 minutes
- In this question we will prove the following version of the Bolzano-Weierstrass Theorem:
 Any sequence contained in a compact interval of R, [a, b], has a convergent subsequence whose limit lies in [a, b].
- Let $\{x_n\}_{n=1}^{\infty}$ be a sequence contained in [a, b]. Divide [a, b] into two equal halves: $\left[a, \frac{a+b}{2}\right]$ and $\left[\frac{a+b}{2}, b\right]$.
- (a) [3 marks]

Argue that infinitely many elements of the sequence $\{x_n\}_{n=1}^{\infty}$ must lie in one (or both) of these halves.

- Let I_1 denote a half which contains infinitely many members of the sequence. Now divide subinterval I_1 into two equal halves. Call the half which contains infinitely many elements of the sequence I_2 . Continue dividing the interval into halves; each time choose a half which contains infinitely many elements of the sequence. The result of continuing this process indefinitely is a sequence of intervals $\{I_k\}_{k=1}^{\infty}$, with $I_{k+1} \subset I_k$. Construct a subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ of $\{x_n\}_{n=1}^{\infty}$ by choosing $x_{n_k} \in I_k$. Since each I_k contains infinitely many x_n 's, we can ensure that $\{x_{n_k}\}_{k=1}^{\infty}$ really is an (infinite) subsequence of $\{x_n\}_{n=1}^{\infty}$.
- (b) [14 marks]

Prove that the subsequence $\{x_{n_k}\}_{k=1}^{\infty}$ has a limit.

(c) [3 marks]

Prove that this limit lies in [a, b].

Tridip Ray ISI, Delhi

Second Midterm Exam: Question 2 (28 February 2021)

- Maximum marks: **30**
- Time allotted (including uploading on Moodle): 70 minutes
- (a) [10 marks]

Let $A \subset \mathbb{R}^n$ be open and $f : A \to \mathbb{R}$ be twice continuously differentiable. Consider the problem of maximizing f(x; a) with respect to x, where $a \in \mathbb{R}$ is a *parameter* for the maximization problem.

Given any $a \in \mathbb{R}$, suppose $x^*(a)$ is a solution to the maximization problem. Provide (with a clear explanation) a *sufficient* condition on f for x^* to be a *continuously differentiable* function of a.

(b) [20 marks]

Recall the following characterization of twice differentiable quasi-concave functions.

Let $A \subset \mathbb{R}^n$ be an open convex set, and $f : A \to \mathbb{R}$ be twice continuously differentiable on A. The *bordered Hessian matrix* of f at $x \in A$ is denoted by $G_f(x)$ and is defined by the following $(n + 1) \times (n + 1)$ matrix:

$$G_{f}(x) = \begin{pmatrix} 0 & \nabla f(x) \\ & & \\ \nabla f(x) & H_{f}(x) \end{pmatrix}.$$

We denote the (k + 1)th leading principal minor of $G_f(x)$ by $|G_f(x;k)|$, where k = 1, 2, ..., n.

Theorem: Suppose $A \subset \mathbb{R}^n$ is an open convex set, and $f : A \to \mathbb{R}$ is twice continuously differentiable on A.

(i) If f is quasi-concave on A, then $(-1)^k |G_f(x;k)| \ge 0$ for $x \in A$, and k = 1, 2, ..., n.

- (ii) If $(-1)^{k} |G_{f}(x;k)| > 0$ for $x \in A$, and k = 1, 2, ..., n, then f is quasi-concave on A.
- Question: Let $f : \mathbb{R}^2_+ \to \mathbb{R}$ be given by

$$f(x,y) = (x-1)^2 (y-1)^2, \ (x,y) \in \mathbb{R}^2_+.$$

In light of this example explain whether the 'strict inequalities' ('> 0') in condition (ii) of the theorem can be replaced with 'weak inequalities' (' ≥ 0 ').

Second Midterm Exam: Question 3 (28 February 2021)

- Maximum marks: 20
- Time allotted (including uploading on Moodle): 45 minutes
- Limits from the left: Suppose that f is defined on an interval (a, b). We say that f(x) tends to a limit l as x tends to b from the left and write $f(x) \to l$ as $x \to b^{-}$, or, alternatively, $\lim_{x\to b^{-}} f(x) = l$ if the following criterion is satisfied.
 - Given any $\epsilon > 0$, we can find a $\delta > 0$ such that $|f(x) l| < \epsilon$ provided that $b \delta < x < b$.
- Limits from the right: Suppose that f is defined on an interval (a, b). We say that f(x) tends to a limit l as x tends to a from the right and write $f(x) \to l$ as $x \to a+$, or, alternatively, $\lim_{x \to a+} f(x) = l$ if the following criterion is satisfied.
 - Given any $\epsilon > 0$, we can find a $\delta > 0$ such that $|f(x) l| < \epsilon$ provided that $a < x < a + \delta$.
- $f(x) \to l$ as $x \to \xi$: Suppose that f is defined on an interval (a, b) and $\xi \in (a, b)$. We say that f(x) tends to a limit l as x tends to ξ and write $f(x) \to l$ as $x \to \xi$, or, alternatively, $\lim_{x\to\xi} f(x) = l$ if the following criterion is satisfied.
 - Given any $\epsilon > 0$, we can find a $\delta > 0$ such that $|f(x) l| < \epsilon$ provided that $0 < |x \xi| < \delta$.
- **Proposition:** Let f be defined on an interval (a, b) and $\xi \in (a, b)$. Then $f(x) \to l$ as $x \to \xi$ if and only if $f(x) \to l$ as $x \to \xi - and f(x) \to l$ as $x \to \xi + .$
- Let $f : A \to \mathbb{R}$, where $A \subset \mathbb{R}$. We say that f is *increasing* on A if and only if, for each $x \in A$ and $y \in A$ with x < y, it is true that $f(x) \leq f(y)$. Similar definition holds for a *decreasing* function.

- Question: Prove the following theorem.
 - (i) Let $f : (a, b) \to \mathbb{R}$ be increasing and bounded above with the smallest upper bound L. Then $f(x) \to L$ as $x \to b - .$
 - (ii) Let $f:(a,b) \to \mathbb{R}$ be increasing and bounded below with the largest lower bound l. Then $f(x) \to l$ as $x \to a + .$

Second Midterm Exam: Question 4 (28 February 2021)

- Maximum marks: **30**
- Time allotted (including uploading on Moodle): 75 minutes
- Limits from the left: Suppose that f is defined on an interval (a, b). We say that f(x) tends to a limit l as x tends to b from the left and write $f(x) \to l$ as $x \to b^{-}$, or, alternatively, $\lim_{x\to b^{-}} f(x) = l$ if the following criterion is satisfied.
 - Given any $\epsilon > 0$, we can find a $\delta > 0$ such that $|f(x) l| < \epsilon$ provided that $b \delta < x < b$.
- Limits from the right: Suppose that f is defined on an interval (a, b). We say that f(x) tends to a limit l as x tends to a from the right and write $f(x) \to l$ as $x \to a+$, or, alternatively, $\lim_{x \to a+} f(x) = l$ if the following criterion is satisfied.
 - Given any $\epsilon > 0$, we can find a $\delta > 0$ such that $|f(x) l| < \epsilon$ provided that $a < x < a + \delta$.
- $f(x) \to l$ as $x \to \xi$: Suppose that f is defined on an interval (a, b) and $\xi \in (a, b)$. We say that f(x) tends to a limit l as x tends to ξ and write $f(x) \to l$ as $x \to \xi$, or, alternatively, $\lim_{x\to\xi} f(x) = l$ if the following criterion is satisfied.
 - Given any $\epsilon > 0$, we can find a $\delta > 0$ such that $|f(x) l| < \epsilon$ provided that $0 < |x \xi| < \delta$.
- **Proposition:** Let f be defined on an interval (a, b) and $\xi \in (a, b)$. Then $f(x) \to l$ as $x \to \xi$ if and only if $f(x) \to l$ as $x \to \xi - and f(x) \to l$ as $x \to \xi + .$
- Let $f : A \to \mathbb{R}$, where $A \subset \mathbb{R}$. We say that f is *increasing* on A if and only if, for each $x \in A$ and $y \in A$ with x < y, it is true that $f(x) \leq f(y)$. Similar definition holds for a *decreasing* function.

• Theorem:

- (i) Let $f : (a, b) \to \mathbb{R}$ be increasing and bounded above with the smallest upper bound L. Then $f(x) \to L$ as $x \to b - .$
- (ii) Let $f: (a, b) \to \mathbb{R}$ be increasing and bounded below with the largest lower bound l. Then $f(x) \to l$ as $x \to a + .$
- In a homework problem you have established that if f is a *convex* function on the interval I and x_1 , x_2 and x_3 are points of I which satisfy $x_1 < x_2 < x_3$, then

$$\frac{f(x_2) - f(x_1)}{x_2 - x_1} \le \frac{f(x_3) - f(x_1)}{x_3 - x_1}$$

(a) [6 marks]

Suppose f is a *convex* function on the open interval I and $x \in I$. Argue that the function

$$F(h) = \frac{f(x+h) - f(x)}{h}$$

is *increasing* in some interval $(0, \delta)$.

(b) [14 marks]

Suppose f is a *convex* function on the open interval I. Prove that the limits

$$\lim_{h \to 0^+} \frac{f(x+h) - f(x)}{h}, \qquad \lim_{h \to 0^-} \frac{f(x+h) - f(x)}{h}$$

both exist for each $x \in I$.

(c) [10 marks]

Suppose f is a *convex* function on the open interval I. Prove that f is *continuous* on I.

- Hints: Note that, for $h \neq 0$,

$$f(x+h) - f(x) = \left[\frac{f(x+h) - f(x)}{h}\right] \cdot h.$$