Tridip Ray ISI, Delhi

Second Midterm Exam: Question 1 (26 December 2021)

- Maximum marks: 25
- Time allotted (including uploading on Moodle): 50 minutes
- Let $A \subset \mathbb{R}^n$, $f: A \to \mathbb{R}^m$, and $x_0 \in A$. Prove that the following two definitions of *continuity* are equivalent to each other.
 - **Definition 1:** The function f is *continuous* at x_0 if whenever $\{x_n\}$ is sequence in A which converges to x_0 , then the sequence $\{f(x_n)\}$ in \mathbb{R}^m converges to $f(x_0)$.
 - Definition 2: The function f is *continuous* at x_0 if given any $\epsilon > 0$, there is a number $\delta > 0$, such that if $x \in A$, and $0 < ||x x_0|| < \delta$, then $||f(x) f(x_0)|| < \epsilon$.

Tridip Ray ISI, Delhi

Second Midterm Exam: Question 2 (26 December 2021)

- Maximum marks: 25
- Time allotted (including uploading on Moodle): 50 minutes
- (a) [12 marks] Let $A \subset \mathbb{R}^n$ be a convex set and $f: A \to \mathbb{R}$. Prove that if f is quasiconcave, then it cannot have a strict interior minimum in A.
- (b) [13 marks] Consider the following constrained maximization problem:

$$\begin{array}{c}
\text{Maximize } x^{\frac{1}{4}}y^{\frac{1}{4}} \\
\text{\{x \ge 0, y \ge 0\}} \\
\text{subject to } x + y \le 2.
\end{array}$$
(P)

Without applying any theorem of optimization prove that $(x^*, y^*) = (1, 1)$ solves problem (P).

Second Midterm Exam: Question 3 (26 December 2021)

- Maximum marks: 20
- Time allotted (including uploading on Moodle): 45 minutes
- Suppose that u : X → ℝ is a continuous utility function representing a locally nonsatiated preference relation ≿ (an "at-least-as-good-as" relation) defined on the consumption set X = ℝⁿ₊. The consumer's problem of choosing her most preferred consumption bundle given prices p ≫ 0 and income M > 0 can be stated as the following utility maximization problem (UMP):

$$\max_{x \ge 0} u(x)$$

subject to, $p \cdot x \le M$

If $p \gg 0$ and $u(\cdot)$ is continuous, then the UMP has a solution. The rule that assigns the set of optimal consumption vectors in the UMP to each price-income situation $(p, M) \gg 0$ is denoted by $x(p, M) \in \mathbb{R}^n_+$ and is known as the Walrasian demand correspondence. When x(p, M) is single-valued for all (p, M), we refer to it as the Walrasian demand function.

Assume that $u(\cdot)$ is twice continuously differentiable and that $\nabla u(x) \neq 0$ for all x. Consider that x(p, M) >> 0 is single-valued, that is, x(p, M) >> 0 is, for some $\lambda > 0$, the unique solution to the first-order conditions:

$$M - p \cdot x = 0,$$
$$\nabla u(x) - \lambda p = 0.$$

- Question: Consider the following statement: "If u is quasiconcave on X, then x(p, M) is a continuously differentiable function of (p, M)."
 - If you agree with the statement, prove it.
 - If you do not agree with the statement, provide an alternative statement about the condition on u (for x(p, M) to be a continuously differentiable function of (p, M)) with a rigorous proof.

Second Midterm Exam: Question 4 (26 December 2021)

- Maximum marks: **30**
- Time allotted (including uploading on Moodle): 65 minutes
- A noncooperative normal-form game has three components. There is a set $N = \{1, 2, ..., n\}$ of players. Each player $i \in N$ has a nonempty set of strategies, $S_i \subset \mathbb{R}^n$, available to him. We use S to denote the Cartesian product $S_1 \times S_2 \times ... \times S_n$. Each player i has a pay-off function $\pi_i : S \to \mathbb{R}$. We denote $(\pi_1, \pi_2, ..., \pi_n)$ by π . A game is simply an ordered triple (N, S, π) .

Given a game $G = (N, S, \pi)$, and given $s \in S$ and $t_i \in S_i$, we use (s/t_i) to denote the following strategy combination: $(s_1, ..., s_{i-1}, t_i, s_{i+1}, ..., s_n)$.

In the game G, the strategy combination s^* is a Nash equilibrium if and only if,

$$\pi_i(s^*) \ge \pi_i(s^*/s_i)$$
, for all $i \in N$, and for all $s_i \in S_i$.

Assume that, for all $i \in N$, S_i is *compact* and *convex*, π_i is *continuous*, and $\pi_i(s/t_i)$ is *strictly quasi-concave* with respect to $t_i \in S_i$, for all $s \in S$. Since S_i is compact and convex for all i, it follows that S is compact and convex.

Brouwer's Fixed Point Theorem: Let $B \subset \mathbb{R}^m$ and $f : B \to B$. If B is compact and convex and f is continuous, then there exists $x^* \in B$ such that $f(x^*) = x^*$.

(a) [20 marks: 7+13]

For each player $i \in N$, define the best response function for $i, r_i : S \to S_i$, as follows: for all $s \in S$, $r_i(s) = \operatorname{argmax} \pi_i(s/t_i)$.

[Let $f(x_1, ..., x_m)$ be a real-valued function on \mathbb{R}^m . The argmax $f(x_1, ..., x_m)$ is the set of values of the *i*-th argument at which $f(x_1, ..., x_m)$ attains its maximum given that $(x_1, ..., x_{i-1}, x_{i+1}, ..., x_m)$ is fixed.]

- (i) Prove that, for any $s \in S$, $r_i(s)$ exists and is unique.
- (ii) Prove that, for all i, r_i is a continuous function.
- (b) [10 marks]

Prove that the game $G = (N, S, \pi)$ has a Nash equilibrium.