Second Midterm Exam (06 November 2022)

- Answer all the questions. You have 3 hours to write this exam.

1. [15 marks]

Let $f^{1}, f^{2}, \ldots, f^{m}: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be C^{1} functions. Consider the system of equations

$$
\begin{aligned}
f^{1}\left(x_{1}, \ldots, x_{n}\right)= & c_{1} \\
f^{2}\left(x_{1}, \ldots, x_{n}\right)= & c_{2} \\
& \vdots \\
f^{m}\left(x_{1}, \ldots, x_{n}\right)= & c_{m}
\end{aligned}
$$

where $n>m$ and c_{j} is a scalar, $j=1,2, \ldots, m$. Suppose that $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is a solution to the system of equations and the rank of the $m \times n$ matrix

$$
\left(\begin{array}{ccc}
\frac{\partial f^{1}}{\partial x_{1}} & \cdots & \frac{\partial f^{1}}{\partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial f^{m}}{\partial x_{1}} & \cdots & \frac{\partial f^{m}}{\partial x_{n}}
\end{array}\right)
$$

evaluated at $\left(x_{1}^{*}, \ldots, x_{n}^{*}\right)$ is m.
Prove that there exists an open interval $(-\epsilon, \epsilon)$ and C^{1} functions $x_{1}(t), \ldots, x_{n}(t)$ defined for $t \in(-\epsilon, \epsilon)$ such that $x_{i}(0)=x_{i}^{*}, i=1,2, \ldots, n$, and

$$
f^{j}\left(x_{1}(t), \ldots, x_{n}(t)\right)=c_{j}+t, j=1,2, \ldots, m
$$

for all $t \in(-\epsilon, \epsilon)$.
2. [22 marks: $12+10]$
(a) Let $A \subset \mathbb{R}^{n}$ and $g: A \rightarrow \mathbb{R}$.
(i) Define $V\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\max _{\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}}\left\{a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}: g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \leq 0\right\}$, where a_{i} is a scalar, $i=1,2, \ldots, n$. Prove carefully whether $V(\cdot)$ concave or convex in $a_{1}, a_{2}, \ldots, a_{n}$.
(ii) Define $w\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\min _{\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}}\left\{a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}: g\left(x_{1}, x_{2}, \ldots, x_{n}\right) \geq 0\right\}$, where a_{i} is a scalar, $i=1,2, \ldots, n$. Prove carefully whether $w(\cdot)$ concave or convex in $a_{1}, a_{2}, \ldots, a_{n}$.
(iii) For parts (i) and (ii), how does your answer depend on the nature of the function $g\left(x_{1}, x_{2}, \ldots, x_{n}\right)$?
(b) For $\left(p_{1}, p_{2}, \ldots, p_{n}, M\right) \gg 0$, define
$v\left(p_{1}, p_{2}, \ldots, p_{n}, M\right)=\max _{\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}}\left\{u\left(x_{1}, x_{2}, \ldots, x_{n}\right): p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{n} x_{n} \leq M\right\}$,
where $u: \mathbb{R}_{+}^{n} \rightarrow \mathbb{R}$ is a continuous utility function. Prove that $v\left(p_{1}, p_{2}, \ldots, p_{n}, M\right)$ is quasiconvex in $p_{1}, p_{2}, \ldots, p_{n}, M$.
3. [22 marks: $16+6]$

Continuum Property: Every non-empty set of real numbers which is bounded above has a smallest upper bound. Every non-empty set of real numbers which is bounded below has a largest lower bound. The smallest upper bound is called the supremum of the set. The largest lower bound is called the infimum of the set.
(a) In this part we will prove the following theorem:

Let f be a real-valued and continuous function on a compact interval $[\alpha, \beta]$ in \mathbb{R}, and suppose that $f(\alpha)$ and $f(\beta)$ have opposite signs. Then there is at least one point γ in the open interval (α, β) such that $f(\gamma)=0$.
(i) For definiteness, assume $f(\alpha)>0$ and $f(\beta)<0$. Define the set

$$
A=\{x: x \in[\alpha, \beta] \text { and } f(x) \geq 0\} .
$$

Argue clearly that the supremum of A exists.
(ii) Let $\delta=$ supremum of A. Prove the theorem by showing that $f(\delta)=0$.
(b) Prove the following version of the intermediate value theorem:

Let f be a real-valued continuous function defined on an interval containing the real numbers a and b, with say $f(a)<f(b)$. Then, given any $\psi \in \mathbb{R}$ such that $f(a)<\psi<f(b)$, there exists $c \in(a, b)$ such that $f(c)=\psi$.
4. [41 marks: $5+10+13+13$]

Recall that a symmetric $n \times n$ matrix A is positive definite if $x^{T} A x>0$ for all x in \mathbb{R}^{n}, $x \neq 0$.
(a) Prove that A is positive definite if and only if it satisfies $y^{T} A y>0$ for all y in the unit sphere $U=\left\{u \in \mathbb{R}^{n}:\|u\|=1\right\}$.
(b) Let A be a positive definite $n \times n$ matrix. Prove that there exists $z \in U$ (the unit sphere) such that

$$
z^{T} A z \leq x^{T} A x, \text { for all } x \in U
$$

Argue that there exists $\epsilon>0$ such that $x^{T} A x \geq \epsilon>0$, for all $x \in U$.
(c) Define $\beta=\frac{\epsilon}{2 n^{2}}>0$. Let B be any symmetric $n \times n$ matrix such that $\left|b_{i j}-a_{i j}\right|<$ β, for all $i, j=1,2, \ldots, n$, where $a_{i j}$ and $b_{i j}$ are the elements corresponding to the i th row and j th column of matrices A and B, respectively.

Prove that

$$
\left|x^{T}(B-A) x\right|<\frac{\epsilon}{2}, \text { for all } x \in U
$$

Argue that B is also a positive definite matrix.
(d) Suppose D is an open subset of \mathbb{R}^{n}, and $f: D \rightarrow \mathbb{R}$ is twice continuously differentiable on D such that at some point $x^{*} \in D$, the Hessian matrix of f evaluated at $x^{*}, H_{f}\left(x^{*}\right)$, is positive definite.

Prove that there exists an open ball $B_{\delta}\left(x^{*}\right)$ such that for all $x \in B_{\delta}\left(x^{*}\right), H_{f}(x)$ is also a positive definite matrix.

