Tridip Ray ISI, Delhi

Second Midterm Exam (28 October 2023)

- Answer all the questions. You have 3 hours to write this exam.
- 1. [10 marks]

In Homework 6 you have proved the following version of the intermediate value theorem:

Let f be a real-valued continuous function defined on an interval containing the real numbers a and b, with say f(a) < f(b). Then, given any $y \in \mathbb{R}$ such that f(a) < y < f(b), there exists $x \in (a, b)$ such that f(x) = y.

Question: Prove the following version of the intermediate value theorem:

Suppose A is a convex subset of \mathbb{R}^n , and $f: A \to \mathbb{R}$ is a continuous function on A. Suppose x^1 and x^2 are in A, and $f(x^1) > f(x^2)$. Then, given any $c \in \mathbb{R}$ such that $f(x^1) > c > f(x^2)$, there exists $0 < \theta < 1$ such that $f(\theta x^1 + (1 - \theta) x^2) = c$.

2. [20 marks]

Prove the following theorem:

Let $f: I \to \mathbb{R}$ be a C^3 function defined on an open interval I in \mathbb{R} . For any two points a and a + h in I, there exists a point c between a and a + h, i.e., a < c < a + h, such that

$$f(a+h) = f(a) + f'(a)h + \frac{1}{2!}f''(a)h^{2} + \frac{1}{3!}f'''(c)h^{3}.$$

[Hints:

Consider the following theorem (Mean Value Theorem): Let $f : I \to \mathbb{R}$ be a C^1 function defined on an open interval I in \mathbb{R} . For any two points a and a + h in I, there exists a point c between a and a + h, i.e., a < c < a + h, such that

$$f(a+h) = f(a) + f'(c)h.$$

Recall that to prove this theorem we considered the function

$$g_0(x) = f(x) - f(a) - M_0(x - a)$$

and chose M_0 appropriately to our advantage.

Now consider the following theorem: Let $f : I \to \mathbb{R}$ be a C^2 function defined on an open interval I in \mathbb{R} . For any two points a and a + h in I, there exists a point c between a and a + h, i.e., a < c < a + h, such that

$$f(a+h) = f(a) + f'(a)h + \frac{1}{2!}f''(c)h^2.$$

Recall that to prove this theorem we considered the function

$$g_1(x) = f(x) - f(a) - f'(a)(x-a) - M_1(x-a)^2$$

and chose M_1 appropriately to our advantage.]

3. [20 marks]

Contractive Sequence: A sequence of real numbers $\{x_n\}$ is a contractive sequence if there exists a constant c, 0 < c < 1, such that $|x_{n+2} - x_{n+1}| \le c \cdot |x_{n+1} - x_n|$ for all $n \in \mathbb{N}$.

Prove that every contractive sequence of real numbers is a convergent sequence.

4. [20 marks]

Limit Point: Let $A \subset \mathbb{R}$. A point $c \in \mathbb{R}$ is a limit point of A if for every $\delta > 0$ there exists at least one point $x \in A$, $x \neq c$, such that $|x - c| < \delta$.

- (a) Prove that a point $c \in \mathbb{R}$ is a limit point of A if and only if there exists a sequence $\{x_n\}$ in A such that $\{x_n\} \to c$ and $x_n \neq c$ for all $n \in \mathbb{N}$.
- (b) Prove that a subset of \mathbb{R} is closed if and only if it contains all of its limit points.

5. [30 marks]

Let $A \subset \mathbb{R}$ and $f : A \to \mathbb{R}$.

Continuity: f is continuous at every point $y \in A$ if given any $\epsilon > 0$ and any $y \in A$, there is a $\delta(\epsilon, y) > 0$ such that for all x if $x \in A$ and $|x - y| < \delta(\epsilon, y)$, then $|f(x) - f(y)| < \epsilon$. By writing δ as a function of ϵ and y, $\delta(\epsilon, y)$, it is emphasized that, in general, δ depends on both $\epsilon > 0$ and $y \in A$.

Now it often happens that the function f is such that the number δ can be chosen to be independent of the point $y \in A$ and to depend only on ϵ . For example, if f(x) = 2xfor all $x \in \mathbb{R}$, then

$$|f(x) - f(y)| = 2|x - y|,$$

and so we can choose $\delta(\epsilon, y) = \frac{\epsilon}{2}$ for all $\epsilon > 0$ and all $y \in \mathbb{R}$.

Uniform Continuity: We say that f is uniformly continuous on A if given any $\epsilon > 0$ there is a $\delta(\epsilon) > 0$ such that if $x, y \in A$ are any numbers satisfying $|x - y| < \delta(\epsilon)$, then $|f(x) - f(y)| < \epsilon$.

- (a) Argue that if f is not uniformly continuous on A, then there exists an $\epsilon_0 > 0$ such that for every $\delta > 0$ there are points x_{δ} and y_{δ} in A such that $|x_{\delta} y_{\delta}| < \delta$ and $|f(x_{\delta}) f(y_{\delta})| \ge \epsilon_0$.
- (b) Argue that if f is not uniformly continuous on A, then there exists an $\epsilon_0 > 0$ and two sequences $\{x_n\}$ and $\{y_n\}$ in A such that $|x_n y_n| < \frac{1}{n}$ and $|f(x_n) f(y_n)| \ge \epsilon_0$ for all $n \in \mathbb{N}$.
- (c) Prove the following theorem:

Let I be a closed and bounded interval and let $f: I \to \mathbb{R}$ be continuous on I. Then f is uniformly continuous on I.