Second Midterm Exam (27 October 2024)

• Answer all the questions. You have 3 hours to write this exam.

1. [25 marks]

Consider an arbitrary set $A \subset \mathbb{R}^n$ and an arbitrary point $x \in \mathbb{R}^n$. Then one of the following three possibilities must hold.

- (1) There is an open ball $B_{\epsilon}(x)$ such that $B_{\epsilon}(x) \subset A$. These points $x \in \mathbb{R}^n$ constitute the **interior** of A, denoted by Int A.
- (2) There is an open ball $B_{\epsilon}(x)$ such that $B_{\epsilon}(x) \subset A^{c}$. These points $x \in \mathbb{R}^{n}$ constitute the **exterior** of A, denoted by Ext A.
- (3) For every $\epsilon > 0$, $B_{\epsilon}(x)$ contains points of both A and A^{c} . These points $x \in \mathbb{R}^{n}$ constitute the **boundary** of A, denoted by $Bnd\ A$.

Question: For an arbitrary set $A \subset \mathbb{R}^n$, prove whether each of these sets – Int A, Ext A, and Bnd A – is open, closed, or neither open nor closed in \mathbb{R}^n .

2. [25 marks]

Nearest Point Theorem: Let A be a non-empty, closed subset of \mathbb{R}^n , and let x be a point in \mathbb{R}^n which does not belong to A. Then there exists a point y in A such that

$$||z - x|| \ge ||y - x||$$
, for all z in A.

Question: Prove the Nearest Point Theorem showing your steps clearly.

3. [25 marks]

Let $f: \mathbb{R}_+ \to \mathbb{R}_+$ be a strictly concave function. Let a, b, c, d be arbitrary positive real numbers, satisfying

(i)
$$a < b < c < d$$
, and

(ii)
$$a + d = b + c$$
.

Prove that f(a) + f(d) < f(b) + f(c).

4. [25 marks: 10 + 15]

Suppose $f: \mathbb{R}^2_{++} \to \mathbb{R}$ is twice continuously differentiable and homogeneous of degree one on its domain.

- (a) Show that, for every $x \in \mathbb{R}^2_{++}$, the Hessian matrix of f evaluated at x is non-invertible.
- (b) Suppose further that f is quasi-concave on \mathbb{R}^2_{++} with $D_1 f(x_1, x_2) > 0$ and $D_2 f(x_1, x_2) > 0$ for all (x_1, x_2) in \mathbb{R}^2_{++} . Prove that then f is also concave on \mathbb{R}^2_{++} .