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Welcome to WAOMC15

On behalf of the organizers of WAOMC15, | welcomeuyin the workshop on Applied
Optimization Models and Computation during January 28-30, 2015 at Indian Statistical Instjtute
Delhi Centre. This workshop aims to promote redeard applications in the area of Optimization
and related topics. Leading scientists, experiemeséarchers and practitioners, as well as younger
researchers will come together to exchange knowleatyl to build scientific contacts. In this
event, faculties and research scholars from acadestitutes and other organizations will present
their respective research topics/problems. In aditve also plan for tutorial session on relevant
topics to be organized by the domain experts. Wil be an event under the project on
Optimization & Reliability Modeling and it will take place at Indian Statistical Itgte Delhi
Centre. This event will provide an excellent opportunity ttisseminate the latest major
achievements and to explore new directions andppetives, and is expected to have a broad
international appeal, dealing with topics of funegmal importance in applied optimization and
other related sciences (Economics, Physics, Engimgge In this workshop we mainly focus on
classical and modern optimization theory, algorghihocal and global aspects), as well as related
topics in applied mathematics, including game theoilhis workshop also seeks for applied
contributions on modeling and large scale optinirain the fields of engineering, finance and
Economics, managememanufacturing, supply-chain and other branchesiehse where robust

and/or stochastic models are used to provide aecgipport.

The workshop topics include (but not limited to):

Linear and Nonlinear Programming

Multi-Objective Optimization

Nonsmooth Optimization

Complementarity problem & Variational inequalities

Combinatorial Optimization



New developments in Classical Combinatorial Optimization Problems (Knapsack,

Vehicle Routing & Aircraft Scheduling, Traveling salesman problem)
Optimization techniques for game problems
Application of Optimization Models to finance and Economics

® Optimization software (Matlab, Mathematica and Maple)

Information about social events will be availaldeyou at the time of registration.

S. K, Neogy
Organizing Committee Chair



Committees

Organizing Committee

S. K. Neogy (Organizing Committee Chair), Anup DajwaAmitava Bandyopadhyay, Debasis
Sengupta, Dipak K. Manna, Biswabrata Pradhan, jAlghupta, Arup K. Das (Convener)

Programme Co-ordinating Committee
R. Chakraborty, Dipti Dubey and Simmi Marwah

Facilities Committee
R. C. Satija, Simmi Marwah



Workshop on
Applied Optimization Models and Computation

Program Overview

Inaugural Session Details

January 28, 2015 Time: 10:00 -10:30 Venua&uditorium

Welcome address, Opening Remarks, About Workshop

Tea Break: 10:30-11:00

Sessions Details

January 28, 2015 Time: 11:00 -13:00 Venueuditorium

Invited Session |

Chairman : S. K. Neogy, Indian Statistical Institute Delhi Cetre

1.

Lina Mallozzi (University of Naples Federico Il via Claudio 0125 Naples, Italy
A Bilevel Location-Allocation Problem in the Plan@egion

Sandeep JunejgTata Institute of Fundamental Research, Mumbadlireal
Optimization in Simulation and Pure Exploration kk#Airmed Bandit Methods

T. E. S. Raghavan(University of Illinois at Chicago, USA) Legal [ustes Resolved
Via Game Theoretic Methods

Lunch: Guest House Lawn Time 13:00 — 1400



January 28, 2015 Time: 14:00 -15:15 Venueuditorium

Invited Session Il
Chairman : David Bartl, University of Ostrava, Czech Republic.

1.| S. K. Mishra (Banaras Hindu University, Varanasi, Ind@y Minty Variational Principle for
Nonsmooth Vector Optimization Problems with Approate Convexity

2. | B.K.Mohanty (Indian Institute of Management, Lucknow), Multighribute
Decision Making in e-Business- A Fuzzy Approach

Tea Break: 15:15-15:45
January 28,2015 Time: 15:45-18:00 VenuAuditorium

Parallel session-I
Chairman : T parthasarathy, Chennai Mathematical I nstitute
and Indian Statistical Institute Chennai

Dipti Dubey (Indian Statistical Institute Delhi Centre) On &ar Complementarity Problem
with a Hidden-Z Matrix

C.S. Lalitha andMansi Dhingra (University of Delhi)Approximate Lagrangian duality for
set-valued optimization problem

Syeda Darakhshan Jabeelfindian Institute of Technology Kanpur) Designwehicle
parameters using Split and discard decision madtiragegy

Deepmala,Indian Statistical Institute, Kolkata, Solving Qptkzation Problems using Mathematica

J.K. Verma and C.P. Katti (Jawaharlal Nehru University/SchafoComputer & Systems
Sciences, New Delhi, 110067, India), Optimized Res® Utilization Techniques for Clou
Computing Environment

|®X

January 28,2015 Time: 15:45 -18:15 Venu€opnference Room

Parallel session-II
Chairman : B. K. Mohanty Indian Institute of Management, Lucknow

Mahima Gupta (Great Lakes Institute of Management, Chennaian@pinion mining using
Internet Reviews: A Fuzzy MADM approach

Anjali Singh, Anjana Gupta, Aparna Mehra An AHP-PROMETHEE |l MmdHor 2-tuple
Linguistic Multi-criteriaGroup Decision MakingDelhi Technological University, Delhi 110042,
India

Mamata Sahu,Anjana Gupta, Aparna Mehhaterval Valued Intuitionistic Fuzzy Multiple Critie
Decision Making Problem, Delhi Technological Unisity, Delhi 110042, India

Pankaj Kumar (Shiv Nadar University, India) Convex Optimizatifor Big Data in Finance

Shreya Khosla(Shiv Nadar University, India) Task Scheduling ilo@ Computing Environments|
using Large Scale Linear Programming

Ashish Bhayana(Shiv Nadar University, India) Classification oRUs based on malign/benign: An
optimization approach

Akhilesh Kumar, Anjana Gupta, Aparna Mehra (Delhi Technologicalvérsity, Delhi, India)
Multiobjective Vendor’'s Decision Problem on Contmg Demand Satisfaction

Shivi Agarwal (BITS, Pilani) Fuzzy BCC Data Envelopment Analysisdél: A Credibility Approach
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Cultural Programme: Classical Music

Dinner : Guest House Lawn Time 20:30 — 230

January 29, 2015 Time: 10:00 -11:20 Venueuditorium
Invited Session I

Chairman : R. B. Bapat, Indian Statistical Institute Delhi

1. | N. Hemachandra(Indian Institute of Technology Bombay) When awr® Queues
(Not) in Equilibrium?
2. | David Bartl, University of Ostrava, Czech Republic, Farkas Lenand Linear optimization

in abstract spaces: the infinite case

Tea Break: 11:20-11:45

January 29, 2015 Time: 11:45-13:00 Venueuditorium

Invited Session IV

Chairman :Lina Mallozzi, University of Naples Federico Il via Claudio 2D125 Naples, Italy

1. | Reshma Khemchandani{South Asian University, New Delhi) Support Veckdachines

and its Extension.

2. | Reshma Khemchandani(South Asian University, New Delhi) Solving Optation
Models Using MATLAB

Lunch: Guest House Lawn Time 13:00 — 1400




January 29, 2015 Time: 14:00 -15:15 Venueuditorium
Invited Session V

Chairman : David Bartl, University of Ostrava, Czech Republic.

1. | Suresh Chandra(Indian Institute of Technology Delhi) Applicatiai Quadratic
Programming in Portfolio Optimization

2. | Valeriu Ungureanu (State University of Moldova) Mathematical TheofyPareto-
Nash-Stackelberg Game-Control Models

Tea Break: 15:15-15:45

January 29, 2015 Time: 15:45-18:30 VenuAuditorium

Parallel session-IlI
Chairman : T. E. S. Raghavan University of lllinois at Chicago, USA

1. | Prasenjit Mondal & Sagnik Sinha (Jadavpur University, Kolkata-70R0Bidia) One
Player Control Semi-Markov Games With Limiting Aage Payoffs

2. | Kalpana Shukla (GLA University, Mathura-281406 India) Optimaliand Duality of
Variational Programming Problems

3. | S. K. Mishra and. B. Upadhyay(Banaras Hindu University, Varanasi-221005, India)
On Relations between Vector Variational Inequadityl Nonsmooth Vector Pseudolinear
Optimization Problems

4 | Amit K. Bardhan (Faculty of Management Studies, University of Det®n Computation
of Minimal Forecast Horizon for a Stochastic Dynarnot-Size Problem

5. | Debasish Ghorui(Jadavpur University, Kolkata) Use of Maple tov&Optimization
Problem

6. | Rwitam Jana, (Jadavpur University, Kolkata), On computatiomgs MATLAB




January 29, 2015 Time: 15:45-18:30 Venu€onference Room
Parallel session-IV

Chairman : T parthasarathy, Chennai Mathematical Institute
and Indian Statistical Institute Chennai

R. K. Arora, Amit Sachdeva, V Ashok, Abhay Kumar, S Pandiaiki@m Sarabhai Spact
Centre, Trivandrum) Multi-objective Shape Optimiaatof a Re-entry Capsule

Sadia Samar Ali(New Delhi Institute of Management, New Delhi) Boqing Green
Manufacturing antecedents: A MICMAC Analysis

M. Upmanyu, R. R. Saxena (University of Delhi) On Solving alkibbjective Fixed
Charge Problem with Imprecise Fractional Objectives

Pulkit Dwivedi (Shiv Nadar University, India) Portfolio Optimizati Problem involving
Big Data Analytics

Abhinav Banerjee (Shiv Nadar University, India) Pricing Decision tdpisation Using
Data for Online Retailers

Rupakshi Bhatia (Shiv Nadar University, India) On Optimizing ResoeiiConsumption
and Crowd-based pick-up and delivery for a distidounetwork

Premanjali Rai and Kunwar P. Singh, (CSIR-Indian Institute of Tantogy Research,

Lucknow) Optimization of Tetracycline Adsorption Bjagnetic Carbon from Water Using

A\1%

Box-Behnken Design and Response Surface Modeling

January 30, 2015 Time: 10:00 -11:20 Venueuditorium

Invited Session VI

Chairman : R. B. Bapat, Indian Statistical Institute Delhi

T. Parthasarathy (Chennai Mathematical Institute, Chennai, Indiadn&ian Statistical
Institute, Chennai, India) Completely Mixed Stosti@Games

Pranab Muhuri (South Asian University, New Delhi) Optimizatiomter Fuzzy
Uncertainty For Time And Safe-Critical Systems

Tea Break: 11:20-11:45



January 30, 2015 Time: 11:45-13:00 Venueuditorium
Invited Session VII

Chairman : Valeriu Ungureanu, State University of Moldova

1. | Aparna Mehra (Indian Institute of Technology Delhi) Data Envatoent Analysis
Approach to ‘Green’ Efficiency

2. | A. K. Das (Indian Statistical Institute, Kolkata) Role afritipal Pivot Transform in
Optimization

Lunch: Guest House Lawn Time 13:00 — 1400

January 30, 2015 Time: 14:00 -15:15 Venueuditorium
Invited Session VIl

Chairman : S. K. Neogy, Indian Statistical Institute Delhi Cetre

1.| C. S. Lalitha (University of Delhi) Solution Concepts in VectordaBet Optimization

2. | Pankaj Gupta (University of Delhi) Portfolio Optimization: SoniRecent Advances

Tea Break: 15:15-15:30
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January 30,2015 Time: 15:30-17:30 VenuAuditorium

Invited Session X

Chairman : A. K. Das, Indian Statistical Institute, Kolkata

P. C. Jha University of Delhi) Sustainable Supply Chain Maeagnt

Sagnik Sinha, Jadavpur University, Kolkata 700032, India) Semirkésr Decision
Processes with Limiting Average Rewards

January 30, 2015 Time: 15:45-17:30 Venu€pnference Room

Parallel session-V

Chairman : T parthasarathy, Chennai Mathematical I nstitute
and Indian Satistical Institute Chennai

B.S. PandaArti Pandey (Indian Institute of Technology Delhi New Delhipén
Neighborhood Locating-Dominating Set In Graphs: @taxity And Algorithms

Amita Sharma (Indian Institute of Technology Delhi New Delhfn overview of Index
Tracking and Enhanced Index Tracking

Meenal Chauhan(Visva-Bharati University, Shantiniketan) On Solgi Optimization
problemin R

Desai Trunil Shamrao (ICGEB, New Delhi) Metabolic Modelling through Gpization
Strategies

S. Krishnakumar (ICGEB, New Delhi) Genome Scale Metabolic Model/Blepment and
Flux Analysis of Thermophilic Organism: An Slico Optimization Approach

High Tea: 17:30-18:00
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ABSTRACT OF THE PAPERS

A Bilevel Location-Allocation Problem in the PlanarRegion

Egidio D’Amato *, Elia Daniele T, Lina Mallozzi

* Dipartimento di Ingegneria Industriale e dell’Informazione, Seconda Universita degli Studi di Napoli,
Via Roma 29, 80039 Aversa (Italy) egidio.damato@unina2.it
T Fraunhofer Institut fiir Windenergie und Energiesystemtechnik - IWES, Ammerlinder HeerstraBe 136,
26129, Oldenburg (Germany) elia.daniele@iwes.fraunhofer.de
! Dipartimento di Matematica e Applicazioni, Universita degli Studi di Napoli “Federico II”
Via Claudio, 21 - 80125 Napoli (Italy) mallozzi@Qunina.it

A distribution of citizens in an urban area (regfalar region in the plane), where a given number
of services must be located, is given. Citizens gasitioned in service regions such that each
facility serves the costumer demand in one of #rgice regions. For a fixed location of all the

services, every citizen chooses the service mimimithe total cost, i.e. the capacity acquisition

cost plus the distribution cost (depending on thedl distance).

In our model there is a fixed cost of each serdepending on its location and an additional cost
due to time spent being in the queue for a serdepending on the amount of people waiting for
the same service, but also on the characteristitseoservice itself (for example, its dimension).
The objective is to find the optimal location ofetlservices in the urban area and the related
costumers patrtition.

We consider a two-stage optimization model to sdve location-allocation problem. The social
planner minimizes the social costs, i.e. the fixedts plus the waiting time costs, taking into
account that the citizens are partitioned in thgiore according to minimizing the capacity
acquisition costs plus the distribution costs i $lrvice regions.

This model is studied from a theoretical and a micak point of view. Existence results of

solutions to the bilevel problem have been prowedding optimal transport theory. We find also

a solution of the bilevel problem numerically, bgams of a genetic algorithm procedure.

-12 -



Ordinal Optimization in Simulation and Pure Exploration Multi-Armed Bandit
Methods

Sandeep Juneja*
Tata Institute of Fundamental Research, Mumbai

juneja@tifr.res.in

Consider the ordinal optimization problem of fingia population amongst many with the largest
mean when these means are unknown but populatioples can be generated via simulation.
Typically, by selecting a population with the lasgsample mean, it can be shown that the false
selection probability decays at an exponential. lasgely researchers have sought algorithms that
guarantee that this probability is restricted tosmall $\delta$ in order $\log (1Ndelta)$
computational time by estimating the associategelateviations rate function via simulation. We
show that such guarantees are misleading. We tdapt anethods from multi-armed bandit
literature to devise algorithms that provide thesenputational guarantees on the probability of

false selection*jointly with Peter Glynn, Stanford University

On Minty Variational Principle For Nonsmooth Vector Optimization Problems

with Approximate Convexity
S. K. Mishra

Department of Mathematics
Banaras Hindu University
Varanasi-221005, India

In this paper, we consider a vector optimizatioolgbem involving locally Lipschitz approximately
convex functions and give several concepts of apprate efficient solutions. We formulate
approximate vector variational inequalities of Spaechia and Minty type and use these
inequalities as a tool to characterize an approtane#ficient solution of the vector optimization
problem.

Keywords: Nonsmooth vector optimization; Approximately cemv functions; Clarke
subdifferentials; Approximate vector variationadgualities
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Application of Quadratic Programming in Portfolio O ptimization

Suresh Chandra
Department of Mathematics, Indian Institute of Treabgy Delhi
Hauz Khas, New Delhi - 110016, India

The celebrated Mean-Variance Theory of MarkowitzRortfolio optimization is discussed and it
is shown that Quadratic Programming plays a ntajerin this development. Certain limitations

of this theory along with some recent developmangsalso presented.

Solving Optimization Models Using MATLAB
Reshma Khemchandani
Department of Computer Science
South Asian University, New Delhi
Matlab Optimization Toolbox provides functions fdinding parameters that minimize or
maximize objectives while satisfying constraintsheT toolbox includes solvers for linear
programming, mixed-integer linear programming, gqa#id programming, nonlinear optimization,
and nonlinear least squares. These solvers casdzkta find optimal solutions to continuous and
discrete problems, to perform tradeoff analysesl &nincorporate optimization methods into
algorithms and applications. In my talk, | woulddiscussing
-Solvers for nonlinear least squares, data fittargl nonlinear equations
-Quadratic and linear programming
-Optimization app for defining and solving optintiba problems and monitoring solution
progress

-14 -



Support Vector Machines and its Extension.
Reshma Khemchandani
Department of Computer Science

South Asian University, New Delhi

The last decade has witnessed the evolution of @upfector Machines (SVMs) as a powerful
paradigm for pattern classification and regressi®WMs emerged from research in statistical
learning theory on how to regulate the tradeofireein structural complexity and empirical risk.
One of the most popular SVM classifiers is the maxin margin one, that attempts to reduce
generalization error by maximizing the margin beswewo disjoint half planes. The resultant
optimization task involves the minimization of anwex quadratic function subject to linear
inequality constraints. In this talk main topic Vide theory of SVM and its applications and
extensions.

Optimization Under Fuzzy Uncertainty For Time And Safe-Critical Systems

Pranab Muhuri
Department of Computer Science

South Asian University, New Delhi

During the systems designing phase, decision Masalye mostly approximated estimations by
the designers. Considerations of crisp approximatiften results with wrong decisions. Models
are accepted or rejected based on mere complidribese estimated decision variables. This
indicates that there are underlying uncertaintigbése decision variables. Therefore fuzzy
numbers are considered for modelling these deciaoiables. Fuzzy numbers can model these
decision variables very well offering wider optidies the system designers in choosing a right
model for a particular application. The talk shafhlight several techniques of ‘optimization
under fuzzy uncertainty’ with applications in theas of scheduling, energy efficiency,

reliability and redundancy optimizations especifdlytime and safety critical systems.
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Solution Concepts in Vector and Set Optimization

C. S. Lalitha
Department of Mathematics
University of Delhi South Campus

The main aim of the presentation is to focus onesafnthe existing solution concepts in vector
and set optimization. The well-known notions ofi@éint and weak efficient solutions in vector
optimization have been extended to set-valued prodlby many researchers. In this approach the
solution concept requires just one point of thegeaet of the solution to satisfy the vector
criterion definition. Another approach referred a8 the set criterion approach involves the
comparison of the entire image set rather thangusingle element of this set. Even though the
order relations are quasi-orders, the solution ephasing set criterion is more appropriate for set

valued optimization problems.

Completely Mixed Stochastic Games
T. Parthasarathy
Chennai Mathematical Institute, Chennai, India

Indian Statistical Ir(%stitute, Chennai, India
Consider a finite stochastic games. In this talktiyeto address the following question: Suppose
the stochastic game is completely mixed. Can weirsdiyidual matrix games corresponding to
each state completely mixed ? Under some conditi@answer the question in the affirmative in
the discounted case. Converse of this result esifrin each state each player has only two actions
but it is not true if each has three actions. Aténd we give some examples to show the sharpness
of our results.

(This is a joint work with Sujatha Babu and NagamaKrishnamurthy).
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Multiple Attribute Decision Making in e-Business- AFuzzy Approach
B.K. Mohanty

Indian Institute of Management

LUCKNOW - 226 013

In any business traditional or online a buyer ndlyndevelops in his/her mind some sort of
ambiguity, given the choice of similar alternatipeoducts. For example, in a CAR purchasing
problem a buyer always in dilemma given a choic€ARs like , Maruti Alto, Santro, i20 etc.
The ambiguity or dilemma is mainly due to two reasoFirstly how to make a final product
choice and secondly on what basis the other preduititbe rejected. In order to answer the above
questions, the customer may like to classify trapcts in different preference levels, preferably
through a numerical strength of preference. Fompte, one can say an i20 may be 20% better
than Maruti 800 or vice versa. Achievement of giassification will serve as a decision aid to the
customer in the sense that while purchasing a ptduer/she will come to know how far he/she is
compromising with reference to the best availabtepct (zero compromise if the best product is
purchased) and to what extent the buyer's choicefesior to the best available products in the
Internet.

In real terms, the buyer expects this product flaaion and final product recommendation from
the e-business system itself. This task is nexifmossible in the e-business as there is no direct
interaction takes place between the sales persamdl the buyer. This difficulty is further
multiplied when the buyers express their produetcHjrations in day to day linguistic terms. For
instance; in any business situation normally a bey@ress his/her desire linguistically or fuzzily
defined terms. Another difficulty in successful iieymentation of e-business is to consider buyers'
multiple desires or attributes, which are conffigtinon commensurable and fuzzy in nature, while
making his/her product choices.

For example while purchasing car a buyer may esphes/ her desires in multiple number of
attributes which are conflicting, non commensurabtel in fuzzy or linguistic terms in the
following way.

» The price of the car should beound $20000.
* Resale value should Ihegh
* Moreor less mileage should baround 20Kms/gallon
* The CAR should beomfortable
* Maintenance cost must baw.
In the above statements italic words are fuzzy.

The above statements are vague for computatioromeasut they are the realistic day to day
language of the buyers for business purposestitradi or online. At times, the customer wants to
make some trade-offs in the attribute specificatjanostly in a situation when there is a conflict
amongst the product attributes. For example, inGAR purchasing problem, the conflict may
arise between the attributes "price and "mileaddie buyer may like to compromise a little
amount of price in order to get a better mileags.tide attribute "price” and 'Mileage" are non

-17 -



commensurable and defined imprecisely ( as showthénabove statements), for the e-business
system it becomes more complicated to assess therddineeds and to finally recommend a

product. Before the product recommendation, Hirissness system needs to understand the
buyers' above requirements. Further, the e-busBystem requires representing and incorporating
the linguistic or fuzzily defined terms of the buyato the system to make the e-business more
customers' focused. Fuzzy logic helps in solvimg above complex problems and arriving at a

solution as per the buyers' requirements.

In general it is observed that while making a padchoice a buyer normally assigns some
weights to the product attributes implicitly. Foraenple in a CAR purchasing problem a buyer's
hidden linguistic weights to attributes price'agely important”, to mileage "more or less OK", to
maintenance cost " moderate" and to resale valuthigk" etc. Not only have that, to another
product the same customer's weighting pattern asantn traditional markets the above implicitly
defined hidden weights of the buyers can be somewkplicated through the buyers' body
language and style of talking. However, in the shbess it is next to impossible to articulate these
underlying weights of the attributes when the comls make subjective judgements and gives an
overall rating of the product. Enunciation of thdsgdden weights will not only make the e-
business more customers focused, but also helpalyang the needs of the customers in their
product requirements. This work addresses thiseidsy using the concept OWA (ordered
weighted average) operator and the linguistic dtiant

Legal Disputes Resolved Via Game Theoretic Methods

T. E. S. Raghavan
Department of Mathematics, Statistics and CompbéeEnce
University of lllinois at Chicago
851 S. Morgan, Chicago, IL 60607, USA,

e.mail: ter@uic.edu

Mathematical foundations of conflict resolutions deeply rooted in the theory of cooperative and
non-cooperative games. While many elementary mooklsonflicts are formalized, often one

raises the question whether game theory and itkemadtically developed tools are applicable to
actual legal disputes in practice. We choose amele from union management conflict on

hourly wage dispute and how zero sum two personegdu@ory can be used by a judge to bring
about the need for realistic compromises betweentwo parties. We choose another example
from the 2000 year old Babylonian Talmud to descitlow certain debt problem was resolved.
While they may be unaware of cooperative game thebeir solution methods are fully consistent

with the solution concept called the nucleolus dGlhgame.

-18 -



Portfolio Optimization: Some Recent Advances
Pankaj Gupta
Department of Operational Research

University of Delhi, Delhi, India

Optimization models have been widely used in fimandecisions and are globally accepted as one
of the finest approaches to arrive at the optimaéstment decision. We consider some classes of
portfolio optimization problems treated throughigas portfolio optimization models. Most basic
portfolio optimization problems are based on meanance optimization models corresponding to
return and risk preferences of the investor. Timeathematical portfolio optimization problems are
either the quadratic programming or linear paraimgirogramming problems. The early major
contributions of the field are contributed Markowitz (1952, 1959)andRoy (1952) The term
“optimization” in portfolio selection problem aints find an optimal portfolio, which provides the
lowest level of risk for a required level of retusn conversely, the highest return for a specified
level of risk. By varying the values of risk /retulevel, one can obtain a set of optimal portfolios
collectively called as the efficient frontier. Tlkeare many critical issues that require major
attention while arriving at the optimal investmelgcision. One can note that besides the return
and risk preferences there could be other prefesenf the investor based on more important
criteria. Further, the issue of transaction costsritical to the construction and management of
portfolios and there can be major impact of thesstx on performance of the portfolio.
Furthermore, the extensions of the classical meaiawce portfolio optimization model have been
proposed by considering alternative measures bfamsl many realistic constraints other than the
capital budget constraint in order to arrive atlleéer decision making in the financial decisions.
A common assumption in most of early portfolio ap#ation models is that we have enough
historical data of assets (securities) to consuligttibutions for return and risk and that the kedr
situation in future can be correctly reflected Bget data in the past. Such an assumption ignores,
for example, the appearance of new assets in thketnar the uncertain situations arising from
social and economical conditions. To deal with utagety, the major emphasis has been given to
fuzzy set theory concepts for building portfoliotiopzation models using fuzzy variables for
returns instead of random variableSupta et al. (2014). We will focus on certain issues
highlighted as above to present some major cortioibs of the recent literature from the field.
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One Player Control Semi-Markov Games With
Limiting Average Payoffs
Prasenjit Mondal & Sagnik Sinha

Jadavpur University
Kolkata-700032, India

Zero-sum two-person finite state and action spaegs-Markov games with limiting average
(undiscounted) payoffs are considered where thmsitran probabilities and the transition times

are controlled by a fixed player in all states. pveve the existence of value and optimal semi-
stationary strategy (i.e., a semi-Markov strateglependent of decision epoch counts) for both the
players. Some of the results obtained in this papereasily be extended to nonzero-sum

undiscounted semi-Markov games.

Keywords. Semi-Markov games, limiting average payoffs, plaser control semi-Markov

games, semi-stationary strategies.
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Sustainable Supply Chain Management

P. C. Jha
Department of Operational Research
University of Delhi

Due to customer’s initiative and government ledigég companies are under legal and social
pressures to redesign the logistics network inot@@chieve sustainability. The need of the hour
is for companies to take cognizance of the alarmemgsting situation and act accordingly.
Sustainability can be attained by restricted useaifiral resources, waste minimization and by
reducing the negative social and environmental chpd supply chain practices and decisions.
Organizations can contribute to sustainable devedsy by integrating environmentally, socially
and financially viable practices into the complstgply chain lifecycle, from product design and
development, to material selection, (including naaterial extraction or agricultural production),
manufacturing, packaging, transportation, warehysidistribution, consumption, return and
disposal. Environmentally sustainable supply chamanagement and practices can assist
organizations in not only reducing their total aartfootprint, but also in optimizing their end-to-
end operations to achieve greater cost savingspaofitability. Reverse logistics is inherently
associated with sustainability which has promptednufacturers in many countries to be
financially and organizationally responsible foe tiake-back of their products when they reach the
end of their life cycle. Instead of carting produtd landfills, the value can be retrieved throagh
variety of other paths, such as refurbishing, ramfecturing, donations, secondary market sales
and recycling, thus simultaneously reducing harnefiféct on the environment while increasing
profitability, product utilization and social impadVajor issues of all three dimensions will be

addressed separately as well as simultaneously.
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When are Some Queues (Not) in Equilibrium?

N. Hemachandra
Indian Institute of Technology Bombay, India

Consider a $M/M/1$ queue where admitting an arriji@es queue manager a reward of $r$
Rupees, but, incurs a holding cost of $h$ Rupeegdoh time unit the admitted arrival spends
waiting for service. Suppose the manager has aaropt either admitting an arrival or declining
admission to it. For discounted reward structures known that threshold policies are optimal: it
is optimal to admit an arrival if and only if theimber in the system is not more than a suitable
$RM*$; this means that at optimality only a fractiof arrivals are admitted which we view as the
Quality of Service, QoS, offered by the queue. Sgppnow that the Poisson arrival rate of the
queue, $\lambda$, is a function of the fractioncatomers admitted, QoS; the QoS in turn
depends on the arrival rate. Under mild conditiams,argue that if there is no equilibrium in such
queues, there is an equilibrium set. We identify thle of the multiple optimal threshold policies
in the existence of these equilibrium sets. Chandmite support of discrete valued inter-arrival
times also has a similar role. We illustrate thevabwith numerical examples bringing out the role
of symbolic computation tools. We also indicate saiypos in the known algorithm to compute
the optimal thresholds, which may be of independeaterest. (Based on an on going joint work
with Kishor Patil and Sandhya Tripathi.)

On Linear Complementarity Problem with a Hidden-Z Matrix
Dipti Dubey
Indian Statistical Institute
7, S. J. S Sansanwal Marg, New Delhi 16

Matrix classes plays an important role in the tlyesord algorithms of linear complementarity
problem (LCP). The class of hidden-Z matrices wadied by Mangasarian and Pang in 80s and
LP formulations are given to solve LCP for variepecial cases. We revisit the classes of hidden-

Z matrices and discuss various properties.
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On Solving Optimization problem in R
Meenal Chauhan
Visva-Bharati University

Shantiniketan, West Bengal

In this presenatation the use of R programming language (an "Open soure" package) is explained in the
context of solving linear and nonlinear optimization problems. We intend to present the use of Ip ()
function in the IpSolve package and solve() function in the IpSolve API package for solving the linear
problems while using solnp() function in the Rsolnp package in order to obtain the solutions of nonlinear
programming problems. We observe that R is a one of the highly efficient software for dealing with
optimization problems.

Data Envelopment Analysis Approach to ‘Green’ Effieency
Aparna Mehra
Department of Mathematics, Indian Institute of Tredbgy Delhi
Hauz Khas, New Delhi - 110016, India

Since its inception by Charnes, Cooper and Rhadé978, data envelopment analysis (DEA) has
come a long way in measuring relative efficiencgrecof homogeneous decision making units
(DMUs). DMUs are entities which consume multipleuits to produce multiple outputs. DEA is a
popular multicriteria decision making (MCDM) aidpable to distinguish the benchmark entities
based on an efficiency score and also identify dberces and amounts of inefficiency in the
inefficient DMUs. The latter one is an importanatigre of DEA approach for it not only identify
the inefficient units among the compared ones kgt set targets for these DMUs. A sensible and
realistic target-setting is important for successwery system to improve its efficiency in due
course. Another significant aspect of DEA approaithat, unlike many other widely used
MCDM techniques, it does not require supply of vistsgfor decision makers or decision criteria
involved in the problem.

In the thirty years of DEA history, several mathéice programming models have been
prescribed in literature to measure different typé®fficiency scores, viz. technical efficiency,
ecological efficiency, quality efficiency, to naradew. Through this talk, we shall aim to explore
some of the existing optimization models for DEAdatheir applications more specifically to

problems with environment concerns; for instanaegrsupply chain, green transportation, green
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product designs. With society becoming more awarermvironmental issues, green management
has emerged as a key approach for organizatiobedome environmentally sustainable. In last
couple of years DEA approach and its associateon@ation models have contributed in this

direction. We shall be understanding and highligipthese points in details.

Semi-Markov Decision Processes with Limiting Averag Rewards

Sagnik Sinha,
Jadavpur University
Mathematics Department
Kolkata 700032, India
e-mail: sagnik62@yahoo.co.in; ssinha@math.jdvu.ac.in

Limiting average (Undiscounted) reward finite (stand action spaces) semi-Markov decision
processes (SMDPs) are considered. Existence optamal semi-stationary strategy (i.e. a semi-
Markov strategy independent of decision epoch goimproved. All the work in the field of

Markov decision processes considered under limiéimgrage reward criterion can be viewed as

special cases of the developments of this paper.

Multi-objective Shape Optimization of a Re-entry Casule
R. K. Arora, Amit Sachdeva, V Ashok, Abhay Kumar, S Pandian
Aeronautics Entity, Vikram Sarabhai Space Centreyafidrum

The aerodynamic shape optimization problem of-antey body has conflicting multi-objectives:
minimization of its weight and maximizing its sthity. The shape of a ballistic re-entry body is
typically a spherical nose-cone-flare configuratiand the design parameters for the multi-
objective optimization are nose radius, first cahitare angle and its length and second conical
flare angle and its length. A response surface inmdgenerated which provide aerodynamic
coefficients as a function of these parameters. mbdel is generated using modified Newtonian
flow which is valid for hypersonic flows. Particwvarm Optimization technique is used to solve
the multi-objective problem.

Key words: Particle swarm optimization, multi objective opizettion, hypersonic flow
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Optimality and Duality of Variational Programming P roblems

Kalpana Shukla

Department of Mathematics
GLA University, Mathura-281406 India

We consider the following multi-objective variatadrproblem as the following form:
min | £2(t,(6) X() X(0))e....min] £t x(t) %(t) K(O))ek
subjectto x(a) =0=x(b),
x(a) =0=x(b)
h (t,x(t),x(t),x(t))<0,jOM ={1,2,..m}
xOPS(T,R),

Where functionf',i DK ={1,2,...k} andh’, jOM ={1,2,...m} are continuously differentiable
function defined on xR" xR" xR".

In this paper we have established some optinenditions for the multiobjective variational
programming problems with generalized convexityhagjher orders. A higher order dual is
associated and weak and strong duality resultseatablished under generalized convexity

assumptions.

Keywords: Multiobjective programming, Variational probleniuality
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Role of Principal Pivot Transform in Optimization

A. K. Das
Indian Statistical Institute, 203, B. T. Road, Katk

The principal pivot transform (PPT) is an operatodra linear system exchanging unknowns with
the corresponding entries of the right-hand sidehef system. The concept of principal pivot
transform helps to develop many theories and dlyos in optimization theory and plays an
important role in the study of matrix classes. Ho#ion of PPT is encountered in mathematical
programming, statistics and numerical analysis apather areas.
One of the main matrix classes discussed in adsmtiwith PPTs is the class of P-matrices of
whose principal minors are positive. Tucker asstvés principal pivot transform preserves the
class of P-matrices. However, it is interestingdte that if the diagonal entries for every PPT are
nonnegative, then the matrix need not be a Po-xmdathie notion of PPT is originally motivated by
the well-known linear complementarity problem (LCFhe linear complementarity problem is
normally identified as a problem of mathematicabgsamming and provides a unifying
framework for several optimization problems. Intgadar, the problem of computing a Karush-
Kuhn-Tucker (KKT) point of a convex quadratic pragming problem can be formulated as a
linear complementarity problem. Matrix classes @ayimportant role for studying the theory and
algorithms of LCP. Several algorithms have beemgdesl for the linear complementarity problem
which is matrix class dependent, i.e. the algorgtwork only for LCPs with some special classes
of matrices and can give no information otherwise.
In the context of linear complementarity probleimme of the matrix classes are defined based on
principal pivot transform. For example, Cottle aBdone introduced the notion of a fully
semimonotone matrix by requiring that every PPEwath a matrix is a semimonotone matrix. For
the class of fully semimonotone matrix with someliadnal conditions, LCP(q,A) has a unique
solution. Stone studied various properties of fulynimonotone matrix and conjectured that fully
semimonotone matrix with Qo-property are contaime&o. Parthasarathy et al. introduced fully
copositive matrices, a subclass of fully semimonetmatrix. The conjecture was shown to be true
when fully semimonotone matrix was replaced byyfutbpositive matrices. Neogy and Das
introduced two new classes of matrices based artipal pivot transform. One of these classes
has the property that its PPTs are either copesibivalmost copositive with at least one PPT
almost copositive and the other class has the propieat its PPTs are either semimonotone or
almost copositive with at least one PPT almost sitpe.
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These PPT based matrix classes are important @sgpect to Lemke's algorithm. In fact, these
classes extend the class processable by Lemkelstlaig. It is well-known that Lemke's

algorithm finds solution for a linear complementaproblem for the class of Po with Qo-
property. However, it is difficult to verify whetha matrix class belongs to Po with Qo-property
or not. The class mentioned above is a subclaBs @fith Qo-property and the membership of this

class is easy to verify. The PPT based matrix elassotivate further study and applications in
matrix theory.

Interval Valued Intuitionistic Fuzzy Multiple Crite ria Decision Making
Problem
Mamata Sahu*, Anjana Gupta*, Aparna Mehra**
* Department of Mathematics, Delhi Technological University, Delhi 110042
** Department of Mathematics, Indian Institute of Technology Delhi, Delhi 110016

A Multi-criteria Decision Making(MCDM) problem fanterval valued intuitionistic fuzzy(IVIF)
information is considered. Hierarchical clusteragproach is applied using equivalence relation.
Entropy method is applied for calculating weighttshe criteria. Method is illustrated

via an example.

Keywords: Interval-valued intuitionistic fuzzy set, Hierar¢ghgluster analysis, correlation,
equivalence relation, relation, Multi-criteria Dgsicin Making (MCDM), entropy method.
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Optimization of Tetracycline Adsorption By Magnetic Carbon from Water Using Box-

Behnken Design and Response Surface Modeling

Premanjali Rai and Kunwar P. Singh
Environmental Chemistry Division
CSIR-Indian Institute of Toxicology Research
M.G.Marg, P.B.80, Lucknow-226001
Uttar Pradesh, India
Frequent detection of pharmaceuticals in the aquatatrices, including drinking water has
become a cause of serious concern from human asidgezal health perspectives. Adsorption
based treatment process by a novel magnetic carboan efficient technique for water
decontamination. However, the conventional adsomptissays based on one-factor at a time
approach is cumbersome, fails to reveal the inteaeffects of the process variables and the
area of true optimum is seldom reached from theestigated experimental domaiiihis largely
depreciates any efficient treatment technique. Eetite need of an optimal treatment process
which yields the desired response within less tiamergy and cost is explicit. The present study
involves statistical optimization of three processiables (temperature (°C), pH and adsorbent
dose (g/l)) in aqueous phase adsorption of tetfexeyca ubiquitous broad spectrum antibiotic by
plastic waste derived magnetic carbon using BoxAReh Design (BBD) and Response Surface
Modeling (RSM).The optimization modeling of the process variabtelved the following steps:
(1) performing the statistically designed experitsesmccording to the design, factors, and levels
selected; (2) estimating the coefficients of theose-order polynomial model to predict the
response (adsorption capacity of the magnetic cafbhm/g));and (3) checking suitability of the
selected model. Results showed tha highest response obtained from the three-fatioege-
level BBD corresponded to an adsorption capacityloil mg/g at temperature of 50°C, pH 7 and
adsorbent dose of 1 g/l. Afteerforming a quadratic fit between the design fictmd response, the
model predicted an adsorption capacity of 53.12gnagoptimized factor settings of temperature 49.69
°C, pH 6.9 and adsorbent dose of 0.4ag)/d constant initial tetracycline concentratiorl060 mg/l
This was experimentally verified to be 49.34 mgfgder laboratory conditions. The analysis of
variance (ANOVA) was performed to evaluate theistiaal significance of the model and its
components. The Fisher’'s F test and associateabilap (p) values in ANOVA demonstrated overall
significance of the model (p<0.05). The coefficiehidetermination (B was computed to be as high

as 0.992 while the AdjRwas close at 0.979, indicating inclusion of adégummber of model terms.
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The goodness of fit of the regression model wathéuradjudged from the Root Mean Square Error of
Prediction (RMSEP), Relative Square Error of Prealic(RSEP) and Chi-Squarg2( values. There
was good agreement between the model predictedcegpetimental response as the RMSEP, RSEP
andy’ values were as low as 1.00, 3.29 and 0.33 respéctiThe fitted polynomial equation was
illustrated in the form of three dimensional gragathisurface plots. The interactive effects of pkhwi
temperature (°C) and pH with adsorbent dose (g/Hewistically influenced the adsorption of
tetracycline by the prepared magnetic carbon. EBhected model was also validated using an external
dataset generated from experimental runs perforataéndom combinatorial levels of the process
variables. The Rand RMSEP values determined from the model vatidaget were 0.970 and 2.26
respectively, indicating robustness and good pteeiability of the model. Hence, BBD combined
with RSM can be suitably applied as a predictivel @nocess optimization tool in adsorption of

emerging pollutants such as pharmaceuticals froterwa

An overview of Index Tracking and Enhanced Index Tacking

Amita SharmaShubhada Aggrawal and Aparna Mehra

In this paper, we aim to overview some of the @xgstoptimization techniques to track and

enhance the benchmark index. Subsequently, we gpeopomodel for enhanced indexing using
relaxed second order stochastic dominance criteaaroncept derived from almost second order
stochastic dominance.

Keywords Index tracking, enhanced indexing, second orderhsistic dominance, almost second

order stochastic dominance.
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Approximate Lagrangian duality for set-valued optimization problem
C.S. Lalitha*,Mansi Dhingra**

*Department of Mathematics, University of Delhi SiocCampus, Benito Jaurez Road, New Delhi
110021, India.
**Department of Mathematics, University of Delhiei 110007, India

In this paper, we study approximate Lagrangianitjuidr set-valued optimization problem where
the solutions are defined using set relations thtoed by Kuroiwa
(Kuroiwa, D.: The natural criteria in set-valued optimization. Sitrikaisekikenkytisho

Kokytiroku 1031, 85-90 (1998)).

Keywords: Set-valued optimization, Approximate solutionsgtangian duality

Optimization of Farm Income through Farming Systemson Tribal Farms in

Udham Singh Nagar district of Uttarakhand
Shalini Raghav*
Sanjay Kumar Srivastava**
*Institute of Agricultural Sciences, Banaras Hindniversity
Varanasi — 221005, Uttar Pradesh (INDIA)
** Govind Ballabh Pant University of Agriculturahd Technology, Pantnagar

The main aim of this study is to examine the pa&dity to increase the farm income through
farming system. To analyze the same, linear progriaig technique has been used. The study is
conducted in Udham Singh Nagar district of Uttagaldh based on the primary data collected
from 60 tribal farmers for the agricultural year08809. Farming systems practiced by more than
90 per cent of tribal farmers in the study areeoissidered as major farming systems. The farming
systems selected are Crop + Livestock (FS-I), @rtyp (FS-I11), Crop + Livestock + Orchard (FS-
[l1) and only livestock (FS-1V) farming systems. mdss the farming systems, potential to increase
Net Return Over Variable Cost (NROVC) over existolgn is highest in Farming System (FS)-IV
(livestock) followed by FS-I (Crop+Livestock) andSHl (Crop). Whereas in case of FS-II
(Crop+Livestock+Orchard), potential to increase itheome is only 0.27 per cent. Major policy
implications emerged from the study are; more #&tians required towards the improvement of

orchard and livestock rearing. Income of the trilaamers can be increased through increasing the
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area under orchard and by rearing improved breetive$tock. Potato cultivation should be
encouraged in the study area, however, its coldgéorequirement for the crop produce needs to
keep in mind. Therefore, it is possible to incre#lse farm income of tribal farmers through
reallocation of existing farm resources optimalhdar all the farming systems.

Keywords: Optimization, Farm Income, Farming System and alriarms

Designing vehicle parameters using Split and discdrdecision making strategy

Syeda Darakhshan Jabeen
Department of Mechanical Engineering

Indian Institute of Technology Kanpur

In this paper, we present a mathematical modelhafliacar with two passengers. The model under
study has important features such as; non-lineafiguspension spring and damper, tire damping
with non-linear spring stiffness. These featurdglate the model to real application. The response
of the dynamical system running over a road witheseof irregular shaped bumps has been
studied by simulation. These bumps have been maiiieatly expressed. The suspension and tire
parameters have been determined optimally usingva hybrid algorithm in time domain. The
developed algorithm is based on Split and Discarat&yy (SDS) and advanced real coded genetic
algorithm (ARCGA). To find these parameters we héwenulated a constrained non-linear
optimization problem to minimize the vibration expaced by the passenger as well as to enhance
road holding performance during riding. For thiggmse the weighted sum of sprung mass jerk
and tire deflections are minimized under technaalgconstraints. Moreover, the results obtained

from simulations of model with original and optiraz suspension parameters are compared.

Keywords: Suspension, half car, optimization, genetic atpani
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Exploring Green Manufacturing antecedents: A MICMAC Analysis

Sadia Samar Al
New Delhi Institute of Management, Tughlakabaditagsbnal Area

New Delhi 110062, India
With rapid change in technology, customer needs glothalization, manufacturing itself is
evolving. Due to the global climate, humans haeetstl to realize the vulnerability of nature and
disasters it may bring as response of our neglgeBoduring developments pose challenges for
supply chain managers on the strategic managempattese of today’'s companies. These trends
embrace ongoing globalisation and the increasirsgipa of competition, the emergent demands
of security, environmental protection and resowca city as the need for flexible, trustworthy and
cost-efficient business systems capable of supmgptustomer diversity. Manufacturing plays a
strategic role in an organisation to improve perfance. Green manufacturers try to make
products that have a lower environmental impaah thher products. India has a huge consumer
base and a tremendous market and efforts are neéedmdalyse waste reduction efforts. Critical
things needed is the sort of lean technologiesergrehemical and life cycle assessment and
engineering to make processes more scalable iprésence of variable demand. Nevertheless,
this study has been specifically undertaken to aneppressures which motivates manufacturing
industries to increasingly adopt green manufactupnominent contribution. Hence, the study
benefits the researchers by providbrgght outlook for future.
Keywords: Green Manufacturing, practices, ISM and MICMAC s

Genome Scale Metabolic Model Development and Fluxnalysis of

Thermophilic Organism: An In Silico Optimization Approach.

S. Krishnakumar
ICGEB, New Delhi.

In our day-to-day life, the liquid fuels that arenmemonly used in transportation and other
commodities are the various forms of petroleum potsl derived from fossil fuels. However, due
to the reduction in the availability of fossil fgednd its potential risk of scarcity in the fututesre

is a huge demand for producing biofuels from sastale energy sources. In an attempt to that, the
first generation biofuels such as bioethanol amdliesel was produced from food crops, however
as it was directly affecting the food supply chdive second generation biofuels from agricultural
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wastes or lignocellulosic biomass was implementedfoenergy applications. Rice-straw is one
such lignocellulosic waste material, which can beadily hydrolyzed into fermentable sugars
through appropriate pre-processing treatment. Btharoducing microbes, which are ubiquitous

in nature, can avail these hydrolyzed sugars ®gibwth and metabolism and can convert this
into ethanol. As India is the third largest producgrice crop in the world, the readily available

rice-straw wastes can be used as a potential feediir bioethanol production.

Thermophilic organism, a well-known species to graiv high temperature and known to
efficiently hydrolyze starch material was used asfarence model strain, in order to understand
its metabolic potential to produce ethanol. A lasgale metabolic model was constructed for this
organism andn silico analysis was performed by maximizing the cell gtows an objective
function to produce ethanol through linear prograngvapproach. During the model development
process, all the pre-requisite metabolic informatod the organism was used and systematically
organized in a mathematical format, such that sepreng S.V=0, wherein S is a m x n
stoichiometric matrix comprising of 'm' number oétabolites and 'n' number of reactions, and V
denoting the fluxes to be calculated for each nadti@h A flux balance analysis was performed for
the set of these formulated equations and intraleelimetabolic fluxes was computed for each
metabolites, by considering the system at steaatg stith the input of known constraints and flux
values.

Furthermore, the gaps in the model were identifird corrected using 'gap-filling' approach. To
overproduce the yield of ethanol, the possibleieffit metabolic routes to engineer the strain was
identified using 'Optknock' and 'GDLS' (Genetic Igaghrough Local Search) methods, which are
heuristic algorithms and it uses bilevel optimiaatand mixed-integer linear programming(MILP)
approaches to solve the optimization problem. Ténxelbped metabolic model would find large
application in suggesting all the possilesilico predictions to engineer the strain such that to
produce increased amount of biofuels.

Metabolic Modelling through Optimization Strategies

Desai Trunil Shamrao

ICGEB, New Delhi.

Genome scale metabolic models (GSMMs) are convenian of representing known information

about the metabolism of an organism in the forma ahetabolic network. They contain all the
known biochemical reactions in an organism; trartspeactions for metabolites and biomass
reaction based of biochemical composition of thgaorsm in question. GSMMs can be used to
predict the metabolic behaviour of the organismmgd$iux balance analysis (FBA).

GSMM is essentially a stoichiometric matri®) (of size im x n', wherem equals to number of
metabolites andh equals to number of reaction in the model. FBAvesla system of linear
equationsS-v = Q for unknownv which is column vector of length' representing the flux values
(flux distribution) of individual reactions. Theeto' in the right hand side of the equation assumes
a metabolic steady state i.e. the rate of formatbrany metabolite is equal to the rate of
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consumption of the metabolite in the network. Thkitson is calculated subject to an objective
function (e.g. maximization of biomass reactiornxfland constraints on the flux values (elements
of v) individual reactions can take. Constraining reectluxes to experimentally measured values
make the model behave close to the actual organism.

Although FBA can roughly predict the metabolite retion/uptake profiles of organisms, the
internal reaction rates are quite difficult to potdAlso, the prediction of metabolic behaviour of
engineered organism (perturbed system) is not lplessvith simple FBA. This poses serious
limitations in finding knockout/knock in strategiésr the production of industrially important
metabolite from an organism.

Various FBA based optimization methods are usedpredict the perturbed system's flux
distribution. They differ in the objective functibanctions and the way they impose constrains on
individual flux values. | work on finding knockowtrategies for the production of biofuel
molecules in bacteria. | have used Genetic Dedgough Local Search (GDLS) method to
identify knockout strategies and Relative ChangeéL(RTCH) method to predict flux distribution
of organisms after knockouts. GDLS is heuristicrapph which uses local search with multiple
search paths and mixed integer linear programmmmgdentify best knockout strategy for
metabolite production with at least some definedimum growth rate (biomass reaction flux).
RELATCH predicts the flux distribution of the engered organism by minimizing the relative
change in flux values with respect to the wild tygpganism's flux values.

Myriad optimization methods are available on digf@r programming platforms for metabolic
modelling. Some are based on bilevel (e.g. OptKhackeven multilevel (e.g. RobustKnock)

optimizations. Each one has its own strengths amitations. In order to develop new

optimization methods which can predict metabolibax@our of organisms more accurately, the
understanding of mathematics behind optimizatiablems, their formulation and finally coding

in familiar programming platform is necessary. Merkshop on Applied Optimization Models

and Computation can help me in this purpose.

On Relations between Vector Variational Inequalityand Nonsmooth Vector
Pseudolinear Optimization Problems
B. B. Upadhyayand S. K. Mishra
Department of Mathematics, Faculty of Science

Banaras Hindu University, Varanas - 221005, India

This paper deals with the relations between a imolutf a nonsmooth Stampacchia type vector
variational inequality problem and efficient an@perly efficient solutions of a nonsmooth vector
optimization problem. We derive a characterizafionthe Clarke generalized gradient of locally

Lipschitz pseudolinear functions. This characterzais employed to establish that a variant of
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nonsmooth Stampacchia type vector variational iaktyuis a necessary as well as sufficient
optimality condition for a solution to be efficiefar a nonsmooth pseudolinear vector optimization
problem. To the best of our knowledge, such residt®e not been established till now.

Keywords: Nonsmooth vector optimization; Vector variationaguality; Locally Lipschitz

function, Pseudolinearity.

Opinion mining using Internet Reviews: A Fuzzy MADM approach
Mahima Gupta

Great Lakes Institute of Management, Chennai, India

With the emergence of Web 2.0, the large numbeusfomers’ reviews is available to be read by
the potential buyers. It is a common practice eflilnyers to assess popularity of the products after
reading other users’ views about them on the ietefFhese opinions about the products’ multiple
features are scattered over on the net and aressqa linguistically in day to day terms. Further,
the expressions regarding the product’s performamoaultiple features vary in multiple degrees.
Thus it becomes difficult for a buyer(user) to getcomprehensive view about a product’s
performance relative to other products availablethe market considering all the features
simultaneously. In our paper, we propose a metlgyoto calculate the popularity score of the
products as per opinions or reviews of the othgelsiin the internet. The views are taken across
multiple features that may be important for a buyethat product category. The methodology is
based on the techniques of Fuzzy Multiple AttribDkecision Making. The views regarding the
products’ multiple features are taken from diffdreveb sites. The views regarding a product
feature, expressed linguistically, is represented linguistic 2-tuple using a basic linguisticnter
set (F. Herrera 2000). The numerical equivalenthese linguistic preferences are obtained using
the technique given in (Herrera and Martinez 200Mese values across multiple attributes are
aggregated using PROMETHEE that gives us rankinth@fproducts considering their multiple

features. The methodology is illustrated with tleéplof an example in product category
Solving Optimization Problems using Mathematica

Deepmala

Indian Statistical Institute, 203, B. T. Road, Katk
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Mathematica is a software system and computer language folirusgathematical applications.
The three classes of Mathematica computations awenerical, symbolic, and graphical.
Mathematica can be used as a calculator with a rhigier degree of precision than traditional
calculators. It is an advanced software system #ratbles symbolic computing, numerics,
program code development, model visualization arafegsional documentation in a unified
framework. The first version of Mathematica wasasled by Wolfram Research, USA in 1988.
Mathematica includes an internal compiler to optenthe performance of numerical code and
compilation to external C code. Both systems caliz@itan external C compiler for optimized
performance of users' numerical code and automp&dormance enhancement for key

computations such as the numeric solution of dfféal equations.

Mathematica is an interactive program with a vasge of uses:

- Numerical calculations to required precision

- Symbolic calculations/ simplification of algelraxpressions
- Matrices and linear algebra

- Graphics and data visualisation

- Calculus

- Equation solving (numeric and symbolic)

- Optimization

- Statistics

- Polynomial algebra

- Discrete mathematics

- Number theory

- Logic and Boolean algebra

- Computational systems e.g. cellular automata

Mathematica Versions are available for:
*  Windows XP, Vista
e Mac OS-X
e Unix/Linux

Mathematica provides a very powerful and flexibdwieonment both for carrying out optimization
techniques and for developing appropriate optinonadlgorithms.

The aim of this talk is to explore how technologsed teaching with Mathematica helps students

in understanding optimization methods. Student®Rehers solve the optimizations problems by
using Mathematica.
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In optimization we discuss the facilities for numeand symbolic, global and local constrained
and unconstrained optimisation as:

e Numeric:
v local — FindMinimum, FindMaximum
v’ fitting - FindFit
v global - NMinimize, NMaximize

e Symbolic:
v" Minimize
v Maximize

» The above functions have been updated for Mattiean0.0.2.

The numerical capabilities of the Mathematica dhestrated by simple and more advanced
examples, pointing towards a broad range of pakapplications. We demonstrate some simple
examples of optimization problems. Some examplescase study are also used to discuss the
comparative study among Mathematica, Matlab and I&ap the context of Optimizations
techniques.

A rich variety of real world optimization problensan be cast as integer linear programming. In
this talk, we show how Mathematica tools can belusesolve these programming problems when
some or all the decision variables must be integer.

The methods used to solve local and global optitizgproblems depend on specific problem
types. Optimization problems can be categorizedraatg to several criteria. Depending on the
type of functions involved there are linear and lm&ar (polynomial, algebraic, transcendental
etc.) optimization problems. Mathematidainctions for constrained optimization include
Minimize, Maximize, NMinimize and NMaximize for dbal constrained optimization,
FindMinimum for local constrained optimization, ahshearProgramming for efficient and direct
access to linear programming methods.

Linear programming problems are optimization proidevhere the objective function and
constraints are all linear. Mathematica has a cwttle of algorithms for solving linear
optimization problems with real variables, access& LinearProgramming, FindMinimum,
FindMaximum, NMinimize, NMaximize, Minimize, and Manize. LinearProgramming gives
direct access to linear programming algorithmsyioles the most flexibility for specifying the
methods used, and is the most efficient for larg@esproblems. FindMinimum, FindMaximum,
NMinimize, NMaximize, Minimize, and Maximize aremeenient for solving linear programming
problems in equation and inequality form.

The simplex and revised simplex algorithms solaedr programming problems by constructing a
feasible solution at a vertex of the polytope dadiby the constraints, and then moving along the
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edges of the polytope to vertices with successigehaller values of the objective function until

the minimum is reached. Although the sparse impigat®n of simplex and revised algorithms
are quite efficient in practice, and are guaranteetind the global optimum, they have a poor
worst-case behavior: it is possible to construdinear programming problem for which the

simplex or revised simplex method takes a numbesteps exponential in the problem size.
Mathematicamplements simplex and revised simplex algorithrssg dense linear algebra. The
unique feature of this implementation is that itpsssible to solve exact/extended precision
problems.

Numerical algorithms for constrained nonlinear wmization can be broadly categorized into

gradient-based methods and direct search methodsdie@t search methods use first derivatives
(gradients) or second derivatives (Hessians) in&tion. Examples are the sequential quadratic
programming (SQP) method, the augmented Lagrangethod, and the (nonlinear) interior point

method. Direct search methods do not use derivatieemation. Examples are genetic algorithm

and differential evolution, and simulated annealing

Direct search methods tend to converge more sldwli/can be more tolerant to the presence of
noise in the function and constraints. Typicallglgorithms only build up a local model of the
problems. Furthermore, to ensure convergence afdhaive process, many such algorithms insist
on a certain decrease of the objective functioaof@ merit function which is a combination of the
objective and constraints. Such algorithms wilahvergent, only find the local optimum, and are
called local optimization algorithms.

In Mathematicalocal optimization problems can be solved usingdMmimum. Global
optimization algorithms, on the other hand, atterptfind the global optimum, typically by
allowing decrease as well as increase of the abgoterit function. Such algorithms are usually
computationally more expensive. Global optimizatiproblems can be solved exactly using
Minimize or numerically using NMinimize.

In addition to a demonstration of how to use (and mot to use) Mathematica's built-in general
procedure Find Minimum for doing unconstrained moedr programming, the package
MultiplierMethod.m is provided for accomplishingwade variety of more complex optimization

problems, including nonlinear programming with noear equality and inequality constraints.

Mathematica can also make use of MathLink to imtevath numerous other familiar programs
such as Excel. It is worth noting that Mathematioatains close variants of

all the standard iterative and logical (branchioginmands of other well-known languages, Do's,
For's, If 's, etc., we discuss these in detailsnduthe talk.

Mathematica, then, is an environment that one tam 8sing quickly, easily, and productively for
many standard needs. But it is also an environntbat can, with learning and effort,
accommodate almost any computational research need.
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To solve optimizations problems, we can use otbémware namely Matlab and Maple. Matlab,
Mathematica, and Maple have a full-featured commiaredinterface alternative to their GUIs and
devoted adherents\ll three are available for Windows, Mac OS X, Liyuand most flavors of
Unix (Solaris, AlX, IRIX, HP-UX, Tru64).

*kk

Convex Optimization for Big Data in Finance
Pankaj Kumar

Shiv Nadar University, India.

We present review of some representative convergattion algorithms/techniques for big data
in finance, especially High Frequency Trading (HFDur selective review outlines that with the
ever increasing availability of data in financeding per se, there is need to solve ever larger
instances of data science and machine learninggmsh many of which turn out to be convex
optimization problems in huge dimensions. This dedntne need for efficient algorithms, which
can benefit from distributed computing, where oalpart of the input is stored on each of the

nodes of a cluster and both the computation andraamcation are designed accordingly.

Keywords: Convex Optimization, High Frequency Tragj Big Data Trading Strategies

On computation using MATLAB

Rwitam Jana,
Jadavpur University, Kolkata

MATLAB is both a computer programming language andoftware environment for technical
computing. It integrates computation, visualizatioand programming in an easy-to-use
environment where problems and solutions are egpte#n familiar mathematical notation. It
includes

* Math and Numerical computation

* Algorithm development

* Modeling, simulation, and prototyping

» Data analysis, exploration, and visualization

» Scientific & engineering graphics

» Application development, including graphical usgeirface building
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MATLAB is an interactive system whose basic datament is an array that does not require
dimensioning. Every number can be represented dsxmé#é allows solving many technical
computing problems. It would take to write a pragrim a scalar non-interactive language such as
C and FORTRAN.

The name MATLAB stands for matrix laboratory. MATBAwas originally written to provide
easy access to matrix software developed by thePABK and EISPACK projects. Today,
MATLAB engines incorporate the LAPACK and BLAS ldies, embedding the state of the art in
software for matrix computation. Normally numericamputation and simulation can be done
with the help of MATLAB. Actually there are variotsolboxes in MATLAB that perform more
specialized computations, dealing with applicatid8TLAB have the following features:

* User friendly(GUI)
» Easy to work with
» Powerful tool for real and complex mathematics
* Platform independence
* Plotting
Normally researchers and scientists in the fieldVathematical sciences, Physical sciences and

Medical sciences are the main user of this softwAeethis is a user friendly language large
computation can be done with the help of MATLAB.

The MATLAB system consists of five main parts:

Development Environment: This is the set of tools and facilities that hgtpu use MATLAB
functions and files. Many of these tools are grephuser interfaces. It includes the MATLAB
desktop and Command Window, a command history,doreand debugger, and browsers for
viewing help, the workspace, files, and the sepath.

MATLAB Mathematical Function Library: This is a vast collection of computational

algorithms ranging from elementary functions, lgwm, sine, cosine, and complex arithmetic, to
more sophisticated functions like matrix inversetmm Eigen-values, Bessel functions, and fast
Fourier transforms.

MATLAB Language: This is a high-level matrix/array language witmtol flow statements,
functions, data structures, input/output, and dbpeiented programming features. It allows both
"programming in the small" to rapidly create quiekd dirty throw-away programs, and
"programming in the large" to create large and demppplication programs.

Graphics: MATLAB has extensive facilities for displaying wecs and matrices as graphs, as
well as annotating and printing these graphs.dluishes high-level functions for two-dimensional
and three-dimensional data visualization, imagegssing, animation, and presentation graphics.
It also includes low-level functions that allow ytufully customize the appearance of graphics as
well as to build complete graphical user interfamesour MATLAB applications.

MATLAB Application Program Interface (API):  This is a library that allows you to write C
and FORTRAN programs that interact with MATLAB. itticludes facilities for calling routines
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from MATLAB (dynamic linking), calling MATLAB as aomputational engine, and for reading
and writing MAT-files.

There is a toolbox for optimization in MATLAB. Optization Toolbox is a collection of functions
that extend the capability of the MATLAB numericngputing environment. There are four
general categories of Optimization Toolbox solvers:

Minimizers: This group of solvers attempts to find a local minm of the objective function near
a starting point x They address problems of unconstrained optinmatiinear programming,
quadratic programming, and general nonlinear prograg.

Multi-objective minimizers: This group of solvers attempts to either minimike maximum
value of a set of functions (fminimax), or to firdlocation where a collection of functions is
below some prespecified values (fgoalattain).

Equation solvers: This group of solvers attempts to find a solutioratscalar- or vector-valued
nonlinear equation f(x) = 0 near a starting pointBquation-solving can be considered a form of
optimization because it is equivalent to finding thinimum norm of f(x) nearox

Least-Squares (curve-fitting) solvers:This group of solvers attempts to minimize a sum of
squares. This type of problem frequently arisedittmg a model to data. The solvers address
problems of finding nonnegative solutions, boundedinearly constrained solutions, and fitting
parameterized nonlinear models to data.

All the toolbox functions are MATLAB M-files, madgp of MATLAB statements that implement
specialized optimization algorithms.

Running the optimization: There are two ways to run the optimization namélging
“Optimization app” (Start the optimization app byping optimtool at the command line.) and
using command line functions.

Simulink is an interactive tool for modeling, siratihg, and analyzing dynamic, multidomain
systems. It lets you accurately describe, simulataluate, and refine a system's behaviour
through standard and custom block libraries. Sinkutnodels have ready access to MATLAB,
providing you with flexible operation and an exteesrange of analysis and design tools. You can
use your models for many tasks beyond modelingsandlation via other products. The Simulink
Report Generator extracts design information in e®dhto technical documents, and the Real-
Time Workshop and Real-Time Workshop Embedded Cgdeerate highly portable ANSI C and
ISO C code from models for use in embedded systeapg] prototyping, model deployment, and
hardware-in-the-loop applications.

Importing data in MATLAB means loading data from external file. Thamportdata function
allows loading various data files of different fats. When you run the file, MATLAB displays
the image file. However, you must store it in thierent directory. Now consider the case of export
data. Data export in MATLAB means to write intceBl MATLAB allows you to use your data in
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another application that reads ASCII files. ForsthMATLAB provides several data export
options.

Use of Maple to Solve Optimization Problem
Debasish Ghorui

Jadavpur University, Kolkata

Maple is technical computing software for engingemathematicians, and scientists. Maple’s
world-leading computation engine offers the bread#épth, and performance to handle every type
of mathematicsMaple is a computer program for doing a varietysgimbolic, numeric, and
graphical computations. Such a program is commoalled a CAS, short for Computer Algebra
System, originally developed as a joint researcjept centered at the University of Waterloo and
ETH Zurich. In Mathematics we can work with a viasige of uses:

* Algebra
* Basic Mathematics
* Calculus

* Calculus of Variation

« Differential Equations

» Differential Geometry

* Discrete Mathematics

» Factorization and Solving Equation
* Financial Functions

*  Geometry

e Group Theory

* Linear Algebra

* Logic

* Mathematical Functions
* Number Theory

* Numerical Computations
e Optimization

* Power Series

* Special Functions

e Statistics

* Tensor Analysis

* Vector Calculus

The first concept of Maple arose from a meetinglavember 1980 at thidniversity of Waterloo
Researchers at the university wished to purchasemgputer powerful enough to rivlacsyma
Instead, it was decided that they would develojr tvwen computer algebra system that would be
able to run on lower cost computers. The first tadiversion appearing in December 1980 with
Maple demonstrated first at conferences beginnimgl982. The name is a reference to
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Maple'sCanadian heritageBy the end of 1983, over 50 universities had esmf Maple installed
on their machines.

In 2005, Maple 10 introduced a new “document mods”part of the standard interface. The main
feature of this mode is that mathematics is entastay two dimensional input. In 2008, Maple 12
added additional user interface features found sthdmatica, including special purpose style
sheets, control of headers and footers, bracketmmaf, auto execution regions, command
completion templates, syntax checking and autdaiigation regions. Additional features are
added for making Maple easier to use as a MATLABIdox. Maple 13 introduced a new
flythrough feature for graphing a new way to viszmlgraphing. In September 2009 Maple and
Maplesoft were acquired by the Japanese softwat@lere Cybernet Systems. Maple 16's
performance was being undercut by Mathematica wheampared its newest version to Maple
15. Many of Maplel6's performance enhancements aeteally much better than Mathematica's
hence Wolfram's decision to compare it to an eavision.Maple 16's graphical environment is
much improved over the padlaple performs best on problems involving symbdaiE,opposed to
numerical computation. However, it is generallyieat use Maple on numerical problems rather
than write programs in FORTRAN or C, for numericalculations that are not too involved.
Maple also provides the user with a lot of graphpzaver.

Maplesoft offers a suite of products designed folin@ placement testing, homework delivery,
drill and practice, exam questions and assignméngs, stakes testing, standards and gateway
testing, and “just in time” teaching. The Mo6biusoject is the biggest academic initiative in
Maplesoft's 25 year history. Create math apps,estteem with everyone, and grade them to assess
understanding. MapleNet offers a suite of matherahtservices that let you use Maple in
interactive web and desktop applications, sharetisols over the web through interactive Maple
documents, and develop rich technical web condMaplesoft's Professional Services can help
you implement your modeling and simulation strategg timely and cost effective way. Our team
of highly experienced engineers, mathematiciand,camputing experts are the ideal complement
to your teamMaple software consists of two distinct parts ngmeer interface and computation
engine.

User Interface: We can use the Mapleser interface to enter, manipulate, and analyze
mathematical expressions and commands. The userfaicé communicates with the Maple
computation engine to solve mathematical problemgsdasplay their solutions.

Computation Engine: The Maple computation engine is the command psmreswhich
consists of two parts namely kernel and math liprar

The kernel is the core of the Maple computation engine. Ittams the essential facilities
required to run and interpret Maple programs, aadage data structures.

The Maple kernel also consists kirnel extensions, which are collections of external compiled
libraries that are included in Maple to provide l@vel programming functionality. The math
library contains most of the Maple commands. It includesctionality for numerous
mathematical domains, including calculus, linegehlta, number theory, and combinatorics. Also,
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it contains commands for numerous other tasksudiey importing data into Maple, XML
processing, graphics, and translating Maple codether programming languages. All library
commands are implemented in the high-level Mapleg@mming language, so they can be
viewed and modified by users. By learning the Maptegramming language, one can create
custom programs and packages, and extend the Niaaley.

Optimization: The Optimization package is a collection of commands for numewcsdilving
optimizationproblems, which involve finding th@inimum or maximumof anobjective function
possibly subject t@onstraints The package takes advantage of built-in libraxtines provided
by the Numerical Algorithms Group (NAG). The packaplvedinear programgLPs),quadratic
programs(QPs),nonlinear program@LPs), and both linear and nonlinéeast-squareproblems.
Both constrained and unconstrained problems arepéad. In general, variables are assumed to
be continuous, antbcal solutions are computed for problems that arecootvex However, the
LPSolve command does accepteger programa&nd the NLPSolve command provides|labal
search algorithm for limited situations. The follog is a list of commands available in the
Optimization package:

(i) ImportMPS

(ii) Interactive

(iii) Maximize

(iv) Minimize
Minimize(obj,constr,bd,opts)
Maximize(obj,constr,bd,opts)
Minimize(opfobj,ineqcon,eqcon,opfbd,opts)
Maximize(opfobj,ineqcon,eqcon,opfbd,opts)
obj=algebraic; objective function
constr = set or list of relation; constraints
bd=sequence of name=range; bounds for one or vaoiables
opfobj=procedure; objective function
ineqcon=set or list of procedure; inequality comistis
eqgcon=set or list of procedure; equality constgint
opfbd= sequence of ranges; bounds for all variables

opts= equation of the form: option=value, wherei@ptis one of assume, feasibilitytolerance,
infinitebound, initialpoint, iterationlimit; spegifoptions for the Minimize or Maximize command

The opts argument can contain one or more of thewimg options. The list below contains the
options applicable to most or all of the Optimipatpackage.

assumenonnegative; assume that all the variables are nonnegative

feasibilitytolerance= realcons(positive) -- Set the maximum absolute allowable constraint
violation.

infinitebound =realcons(positive) -- Set any value greater than the infinitebountuevdo be
equivalent to infinity during the computation.

initialpoint = set(equation), list(equation), or list(numeric) -- Use the provided initial point, which
is a set or list of equatiorvarname = value (for algebraic form input) or a list of exactlyvalues
(for operator form input).
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iterationlimit = posint -- Set the maximum number of iterations perforntgdthe algorithm.
variables dist(name) or set(hame) -- Specify the problem variables when the objecfinction is
in algebraic form.

(v) LPSolve
(vi)LSSolve
(vii)  NLPSolve
(vii) QPSolve

Calling sequence

LPSolve(c, Ic, bd, opts)

NLPSolve(obj, constr, bd, opts)
NLPSolve(opfobj, inegcon, eqcon, opfbd, opts)
QPSolve(obj, constr, bd, opts)

Optimization[LPSolve](Matrix Form) - solve a linear program in Matrix Form

Parameters:

¢ = Vector; linear objective function

Ic = list; linear constraints

bd = list; bounds

opts = equation(s) of the form option = value wheption is one of assume, binaryvariables,
depthlimit, feasibilitytolerance, infinitebound, itialpoint, integertolerance, integervariables,
iterationlimit, maximize, nodelimit or output; spigcoptions for the LPSolve command.

Task Scheduling in Cloud Computing Environments usig

Large Scale Linear Programming

Shreya Khosla
Big Data Analytics Center,Shiv Nadar University

Cloud computing is a recently evolved computingiieology based on utility and
consumption of computing resources rather thanngglaical servers or personal devices to
handle applications. It involves deploying groupsemote servers and software networks
that allow centralized data storage and online ssct® computer services or resources. A
simple example of cloud computing is Yahoo emaihad, or Hotmail etc. All you need

is just an internet connection and you can startisg emails.

While handling the complex applications there ambfems faced and thus we need

task scheduling in order to deal with them. Thebfgms can be divided into two classes.
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The one is computing intensive, the other is datianisive. As far as the data intensive
application is considered, our scheduling stratdgyuld decrease the data movement
which means decreasing the transferring time; cautife computing intensive tasks, our
scheduling strategy should be to schedule thetddtee high performance computer.
Our main contributions are as follows:

(1) We formulate a model for task scheduling irud@omputing to minimize the

overall executing cost and the transforming time.

(2) We propose an interior point method(IPM) forelar programming-which has

gained extraordinary interest in the past 10 yearhe infeasible-primal-dual algorithm
to solve the task scheduling which is widely coastd the most efficient general purpose
IPM.

Interior point methods are now very reliable optiation tools. Sometimes only for

the reason of inertia, the operations research agmniynkeeps using the simplex method
in applications that could undoubtedly benefit frima new interior point technology.
This is particularly important in those applicasonhich require the solution of very
large linear programs (with tens or hundreds ofifamd constraints and variables).The
model formulated in our case has a linear objedtinetion and linear constraints with
large number of variables.

The most efficient interior point method todayhe infeasible-primal-dual algorithm.

It is computationally most attractive IPM, indeektbeen implemented in all commercial
software packages.

The major work in a single iteration of any IPM eats of solving a set of linear
equations, the so-called Newton equation systens. Siistem reduces all IPMs to the
problem that is equivalent to an orthogonal progecof a vector on the null space of the
scaled linear operator.

There are two effective direct approaches for sgjthe Newton equations: the augmented system
approach (M. Arioli, J. W. Demmel, and I. S. Dul\#ag sparse linear

systems with sparse backward error. SIAM J. MaalAAppl. , 10(2):165-190, 1989.,

M. Arioli, I. S. Du, and P. P. M. de Rijk. On thagmented system approach to sparse
least-squares problems. Numer. Math. , 55:667-6889). and the normal equations

approach. The former requires factorization of mmsnetric indefinite matrix, the latter

works with a smaller positive definite matrix.

Another approach discussed is a hybrid interiongg@implex approach. It has been

shown in literature that the combination of intepoint/simplex is a powerful tool for

very large scale linear programs. We can applyrttethod using CPLEX OPTIMIZER.

Classification of URLs based on malign/benign: An atimization approach

Ashish Bhayana
Big Data Analytics Center, Shiv Nadar University

Optimization provides a powerful toolbox for solgidata analysis and learning problem. Today
millions of rogue websites advance a wide varidtyoams including marketing counterfeit

goods,perpetrating financial fraud(e.g.,'phishiag{l propgating malware. All these activities
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have in common the use of the URL(Universe Resouocator) as an agent to bring internet
users into their inuence. It is di_cult for usefigure out the associated risk with the click of a
unfamiliar URL, as this can be a difficult judgmeatmake. In this paper, we consider a large
scale problem of classification, consider a probtgnaentifying/labeling a URL on the
basis,whether it is malicious or nonmalicious. Wasider the method of SVM(Support Vector

Machine) in classifying the labels(malign/benighe mathematical model is framed as:

Given a training set {(x,y;)}i_, of training examples where y; € {£1}, the hyperplane
parametrized by normal vector w that balances the goal of seperating the data and mazxi-
mizing margin can be found by solving the following optimization problem:

min §Hw|| +E Zg;max(o, 1 —y(w.x)),

where X\ > 0 is called the reqularization parameter.

We can think of the problem as requiring the mizetion of the empirical loss, plus a
regularization term that limits the complexity bétsolution[Shalev-Shwartz et al., 2007].
In addition,small-literature survey has been doms@me approaches, such as (Gradient
Descent, Stochastic Gradient Descent,Second-orddregit methods, sub-gradient descent
and projection) algorithms to optimize the abowvection.

Portfolio Optimization Problem involving Big Data Analytics
Pulkit Dwivedi

Big Data Analytics Center, School of Natural Scesc
Shiv Nadar University, India

Within the changing business scenarios, IT appboatand assets are getting more and more
pivotal for the maximized business performancembiaganization. This results in the production
of various types of data being produced every tagle amount of structured and unstructured
data are produced in financial markets. The grownmgprtance financial market has pushed the
organizations to lookout for ways to optimize thgartfolio by processing these data. This could
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help and investor to make an informed investmeoisitn. Based on the previous works, there
were some gaps identified. None of the previousiéaorks could handle the both structured data
and unstructured data for portfolio optimizatiomthis paper, a framework has been reviewed to
incorporate both structured and unstructured datadrtfolio optimization. This framework
considers both stock price data and current aftidta (i.e. news articles, market sentiments) to
help investors to make an informed investment daciAll listed firms at a particular stock
exchange are considered as the initial input tdrdmaework and the output would be a set of
stocks that would maximize the return and minintieerisk. Portfolio optimization consists of
three processessset selection, Asset weighting and Asset management. This framework proposes
to achieve the first two processes using a 5-stagf@odology. The stages include shortlisting
stocks using Data Envelopment Analysis (DEA), ipaoation of the qualitative factors using text
mining, stock clustering, stock ranking and optimigthe portfolio using optimization heuristics.
DEA is used to narrow the sample space of firmglbytifying the efficient firms. Productive
efficiency of decision making units (or DMUs) cam imeasured with this. Decision making units
(DMU) represents the attempts to formalize marketiacision-making in complex environments.
The key factors influencing the DMU's activitieslide: Buy class (e.g. straight rebuy, new task
or modified rebuy), Product type (e.g. materiatspponents, plant and equipment and MRO
(maintenance, repair and operation) and Importahtige purchase. DEA calculates the efficiency
score of a DMU based on the given set of inputs and

outputs.

We will review CCR DEA Model, where we assume that there are # DMUs to be evaluated.
Each DMU consumes varying amounts of m different mputs to produce s different outputs.
Specifically, DMU; consumes amount x; of input i and produces amount y,; of output . We
assume that x; > 0 and y,; > 0 and further assume that each DMU has at least one positive mput
and one positive output value. We now turn to the “ratio-form” of DEA. In this form, as
mntroduced by Charnes, Cooper, and Rhodes, the ratio of outputs to inputs 1s used to measure the
relative efficiency of the DMU; = DMU, to be evaluated relative to the ratios of all of the j = 1,

-48 -



2, ....n DMU; . We can interpret the CCR construction as the reduction of the multiple-output
/multiple-input situation (for each DMU) to that of a single ‘virtual' output and ‘virtual® mput.
For a particular DMU the ratio of this single virtual output to single virtual mput provides a
measure of efficiency that i1s a function of the multipliers. In mathematical programming
parlance, this ratio, which i1s to be maximized, forms the objective function for the particular
DMU being evaluated, so that symbolically

max hy (it, V)= 31y Vo / 2 ViXig (1.1)

where the variables are the u, 's and the v;’s and the y,,’s and x;,'s are the observed output and
mput values, respectively, of DMU, , the DMU to be evaluated. Of course, without turther
additional constraints (developed below) (1) 1s unbounded.

A set of normalizing constraints (one for each DMU) reflects the condition that the virtual output
to virtual input ratio of every DMU, mcluding DMU; = DMU,, must be less than or equal to
unity. The mathematical programming problem may thus be stated as

max ho (it, V)= r 1ty Vro / D i ViXio (1.2)
subject to
Doty Vo /Y i ViXip = 1 for j=1....n,

i, 1> 0 forall i and r.

After short listing the stocks, in order to validahe firms as potential candidates for portfolio

optimization, the latest information about the camyp is retrieved and processed from online

news articles and tweets using text mining to #m@isents about the company in current context.

The validated efficient firms are clustered intdfetent groups to aid the diversification of

portfolio. This is further followed by ranking ohe stocks within each cluster and followed by

asset weighting using optimization algorithms. Rahlktocks should be optimized to maximize

returns and to minimize risk. Various optimizatibauristics like Particle Swarm Optimization

(PSO) or Ant Colony Optimization (ACO) can be usétis framework would help the investors

to choose the proportions of various assets todde im a portfolio, in such a way as to the

portfolio better than any other according to somiigon.
Keywords: Portfolio Optimization, Big Data, Hadoop, Data Elogment Analysis (DEA)

Pricing Decision Optimisation Using Data for OnlineRetailers

Abhinav Banerjee

Shiv Nadar University, India
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This work serves to show how an online retailer naa its wealth of data to optimize pricing
decisions on a daily basis. One of retailers’ biggdallenges is pricing and predicting demand for
products that it has never sold before, which actéwr a large part of sales and revenue. Having
done a literature review, we present a two-foldrapph, wherein we first try and devise a demand
prediction model using regression trees and otharparametric structural models, along with the
dependence of a product’s demand on the pricerapeting products. We then try and develop an
efficient algorithm using Linear and Integer Progmaing Models for multi-product price
optimization. Together, these can potentially cancbeated and implemented into a real time

pricing decision support tool.

On Optimizing Resource Consumption and Crowd-basegick-up and delivery for a
distribution network,
Rupakshi Bhatia
Shiv Nadar University, India

Optimal utilization of resources is a key compeéitiadvantage for logistics providers. Excess
capacities lower profitability (which is criticabf low-margin forwarding services), while capacity
shortages impact service quality and put custorasisfaction at risk. In this presentation we
discuss how Logistics providers perform resourcaniping, both at strategic and operational

levels.

On Solving a Multiobjective Fixed Charge Problem

with Imprecise Fractional Objectives
M. Upmanyu*, R. R. Saxena**
*Department of Mathematics, University of Delhi, |Die India
**Department of Mathematics, Deen Dayal Upadhyagél€ge, University of Delhi, Delhi,
India
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The fixed charge problem is a special type of mw@r programming problem which forms the
basis of many industry problems wherein a chargesseciated with performing an activity. In real
world situations, the information provided by thecion maker regarding the coefficients of the
objective functions may not be of a precise natlines paper aims to describe a solution algorithm
for solving such a fixed charge problem having ipidtfractional objective functions which are

all of a fuzzy nature. The enumerative technigueetigped notonly finds the set of efficient
solutions but also a corresponding fuzzy solution, enabling the decision maker to operate
in the range obtained. A numerical example is presented to illustrate the proposed
method.

Keywords: Fixed Charge Problem, Multiobjective Programming, Fractional

Programming, Fuzzy Objective Function

Open Neighborhood Locating-Dominating Set In

Graphs: Complexity And Algorithms
B.S. Panda, Arti Pandey

Department of Mathematics
Indian Institute of Technology Delhi
Hauz Khas, New Delhi 110016, INDIA
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A set D CV of a graph G = (V. E) is called an open neigh borhood
locating-dominating set (OLD-set) if (¢) Na(v) n D £ @ for

all v € V', and (i¢) Ng(uw) N D #£ Ng(v) M D for every pair of distinct
vertices u,v € V(G'). Given a graph &G = (V, FE), the MIN OLD-SET
problem is to find an OLD-set of minimmum cardinality. The cardinality
of a minimum OLD-set of ¢ is called the open neighborhood location-
domination number of graph ., and is denoted by ~v.4(G). Given a
graph G and a positive integer &k, the DECIDE OLD-sSET problem is to
decide whether &' has an OLD-set of cardinality at most k. The DECIDE
OLD-seT problem is known to be NP-complete for general graphs. In
this paper, we strengthen this NP-complete result by showing that the
DecipE OLD-seET problem remains NP-complete for perfect elimination
bipartite graphs, a subeclass of bipartite graphs. Then, we show that
the MIN OLD-SET problem can be solved in polynomial time in chain
graphs, a subclass of perfect elimination bipartite graphs. We show that

T . r o ¥ 2n " - kil e B S S—
for a graph G, ~v.a(G) = AT where n denotes the number of ver-
tices in graph G, and A(G) denotes the maximum degree of G. As a

; A(G)+2 ; ; 2 : ,
consequence we obtain a %—approx_unatu;m algorithm for the MIN

OLD-sSET problem. Finally, we prove that the MIN OLD-SET problem is
APX-complete for bounded degree graphs.

Keywords: Domination, Open neighborhood location domination, chain graph,
perfect elimination bipartite graph, NP-completeness, APX-completeness

An AHP-PROMETHEE Il Method for 2-tuple Linguistic M ulti-criteria
Group Decision Making
Anjali Singh*, Anjana Gupta*, Aparna Mehra**
*Department of Mathematics, Delhi Technological Wnsity, Delhi 110042, India
**Department of Mathematics, Indian Institute ofch@ology Delhi, New Delhi 110016, India

The paper aims to propose a hybrid AHP-PROMETHEMRdthod for multicriteria group decision
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making problems where the criteria values take2tiigple linguistic information. The method can
be seen as an extension of the traditional analytierarchy process (AHP) to extract the exact
weights of criteria which are then supplied to FROMETHEE Il method to rank various
alternatives.

The PROMETHEE Il method is also extended to workhwa-tuple linguistic information. A
graphical representation is provided to demonstthte aggregated evaluation of optimal
alternative. A prototype example is presented lostitate the practicability of the proposed
method.

Keywords. Multicriteria decision making, PROMETHEE-II, Analgél hierarchy process, 2-tuple
Linguistic variables.

On Computation of Minimal Forecast Horizon for a Sbchastic

Dynamic Lot-Size Problem

Amit K. Bardhan
Faculty of Management Studies, University of Delbglhi 110007

This paper presents a computational procedure dentifying minimal forecast horizon for
dynamic lot-sizing problem with stochastic demaAd.future demands assumed to be discrete
random variables with integers values. An integegmmming approach is suggested based on a
stochastic-programming formulation of the problé€dm an extensive test bed, the computational

tractability of this approach is demonstrated.

Multiobjective Vendor’s Decision Problem on Contingent Demand Satisfaction

Akhilesh Kumar’, Anjana Gupta’, Aparna Mehra™
Department of Applied Mathematics, Delhi TechnotadiUniversity, Delhi, India
Department of Mathematics, Indian Institute of Trembgy, Delhi, India
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The planning of production and other operationa firm is done based on demand forecasts. But
production decisions get affected by actual rettimaof the demand. These decisions are taken
keeping into consideration production capacitiesn&imes sudden and unforeseen demands from
customers arise. This happens generally in thewhsa customers of a vendor firm get some new
contracts or there is a short term but high flugtuein their demands. When this sudden or
contingent demand arises on customers’ side, thegte a demand for corresponding spare parts
for their vendors. The vendor’s decision to satisiig demand fully or partially is restricted by it
own available resources, as processes like pramuctpacity expansion can't be carried out in
such a short response time.

In this paper, we consider the problem of a veriidor which manufactures products that are used
by its customer firms as spare parts to manufactoree particular products. We will try to
address the decision making on the extent of satish of contingent demand of each customer.
While deciding on the extent of demands of its eors, the vendor firm doesn’'t always
concentrate just on the objective of profit, bugoabn the future business and relation with its

customers.

Fuzzy BCC Data Envelopment Analysis Model: A Credibity Approach

Shivi Agarwal
Department of Mathematics, BITS, Pilani, RajastB88031, India

This paper presents Fuzzy Data Envelopment Ana(jdd=A) model under variable returns to

scale using credibility approach. FDEA is used teasure the relative efficiencies of a set of
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decision making units (DMUs) under fuzzy environti@nwhich the input and output data can be
represented as linguistic variable characterizefubyy variables. The FDEA is solved using the
concept of chance-constrained programming and lafiégdiapproach. In a special case, when
fuzzy inputs and fuzzy outputs are independentizajlal or triangular fuzzy variables, the model
can be transformed into crisp linear programmirigalfy, numerical illustration is presented to
illustrate the FDEA model to measure the efficieméyDMUs with fuzzy data as well as the
effectiveness of the presented method. By extenttifgzzy environment, the DEA approach is
made more powerful for application.

Keywords: Data Envelopment Analysis, Efficiency, Fuzzy LRB®xedibility Theory, Chance-

constrained programming (CCP).

Optimized Resource Utilization Techniques for CloudComputing Environment
J.K. Verma andC.P. Katti
Jawaharlal Nehru University/School of Computer &t@yns Sciences, New Delhi, 110067, India

Digital revolution led to shift from the industriage to Information and Communication Technology

(ICT) age. Cloud computing is one of the important ratmn of the digital revolution. It is a new
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paradigm for hosting and delivering services usitandard protocols of the Internet. It refers te th
service-oriented architecture that offers ubigustemd convenient computing, greater flexibility- on
demand services, minimized total cost of ownerstgduced burden of Information Technolod¥)(
overhead for the end-user, and many other thingshmbffers computing any time and anywhere.
Cloud computing allows access to the large comgugower in a fully virtualized mode by
aggregating configurable pool of resources that @amvisioned and released rapidly in dynamic
fashion. It also provides the capability to utiligealable, distributed computing environments withi
the confines of Internet with minimal managemeifaréfvhile keeping a single coherent system view.
Last few decades are witness of steeper growtlemmacid of high computational power. Such trend in
demand of computing power caused the establishofelarge-scale data centers that are situated at
geographically apart locations. However, theseglatple data centers consume an enormous amount
of electrical energy which results into very higbeoating cost and large amount of carbon dioxide
(CO2) emission due to heavy resource underutilizatMfe present optimized resource utilization
techniques to overcome the problems such as resoumaterutilization, high energy consumption, and
large CQ emissions. Further, we present a comparative saudgng the presented and existing
techniques showing that proposed methodologiesedatpns over the existing one in terms of energy
consumption and the number of VM migrations.
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Mathematical Theory of Pareto-Nash-Stackelberg
Game-Control Models

Valeriu Ungureanu

Abstract. We expose the current evolution of Pareto-Nash-Stackelber game-control
theory by referring various real dynamic processes with particular features and pa-
rameters. Among different concrete examples, we present analyses and investigation
for the problem of linear discrete-time Pareto-Nash-Stackeberg control of decision pro-
cesses that evolve as Pareto-Nash-Stackeberg games with constraints (a mixture of hi-
erarchical and simultaneous games) under the influence of echoes and phenomena. We
present mathematical models, solution notions, conditions for Pareto-Nash-Stackeberg
control existence and method for Pareto-Nash-Stackeberg control computing. Wol-
fram Mathematica applications, demonstrations and benchmarks are exposed, too.

1 Introduction

Interactive decisions situations, which involve both sequential decisions and si-
multaneous decisions made by independent and interdependent players with one
or more objectives, can be modelled by means of strategic games (Stackelberg
game [4,15], Nash game [5,8, 10-14], Pareto-Nash game [2, 3, 6, 9], Pareto-Nash-
Stackelberg game). At every stage (level) of the Nash-Stackelberg game a Nash game
is played. The stage profiles (joint decisions) are executed sequentially throughout
the hierarchy as a Stackelberg game. At every stage of the multiobjective Pareto-
Nash-Stackelberg game a multiobjective Pareto-Nash game is played. Stage profiles
are executed sequentially throughout the hierarchy. Via notion of best response map-
ping graph we define unsafe and safe Stackelberg equilibria for Stackelberg games,
pseudo and multi-stage Nash-Stackelberg equilibria for Nash-Stackelberg games,
and Pareto-Nash-Stackelberg equilibria for multiobjective Pareto-Nash-Stackelberg
games.

When the players in such games have to control a system, we obtain a new kind of
problems, which are as game problems, as control problems. The second part of this
work deals with game-control problems. A direct-straightforward method for solving
linear discrete-time optimal control problem is applied to solve control problem of
a linear discrete-time system as a mixture of multi-criteria Stackelberg and Nash
games. For simplicity, the exposure starts with the simplest case of linear discrete-
time optimal control problem and, by sequential considering of more general cases,
investigation finalizes with the highlighted Pareto-Nash-Stackelberg and set valued
control problems. Different principles of solving are compared and their equivalence
is proved.

(©Valeriu Ungureanu, 2015
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The third part of the work investigates linear discrete-time Pareto-Nash-
Stackelberg control problems with echoes and retroactive future,

2 Strategic Games
Consider the noncooperative strategic game
I'= (N {Xp}pen. {/p(2) }pen),
where
e N ={1.2,...,n} is a set of players,
o X, C R is a set of strategies of player p € N,
® kp < too,peN,

e and fy(x) is a p™ player cost function defined on the Cartesian product

X = x_ X, — profiles set of the game. Without loss of generality suppose
peN
that all players minimize the values of their cost functions.

Suppose that the players make their moves hierarchically:

first player chooses his strategy x1 € X; and communicates it to the second
player,

the second player chooses his strategy r9 € X after observing the moves x4
of the first player and communicates x1, 9 to the third player,

and so on

at the last the n'" player selects his strategy z,, € X,, after observing the

moves 1, ..., ro—1 of the preceding players.
On the resulting profile x = (1, .... r,) every player computes the value of his cost
function.

When player p € N moves, players 1.2,....p— 1 are leaders or predeces-
sors of player p and players p+ 1.....n are followers or successors of the
player p. Players have all the information about the predecessors choices
and doesn’t have information about the choices of the successors, but the
ph player (p < n) has all the information about the all strategy sets and
the cost functions of the players p.p+1.....n.
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By backward induction, every player n,n — 1,...,2 determines his best move
mapping and the first player determines the set of his best moves:

By (21, ...;tp1) = Argmin f, (21, ..., Tn—1,Yn) ,
Z/neXn,
Bn—l(xlu ) xn—?) == Arg min fn—l (:1717 ey n—25 Yn—1, yn) ;

Yn—1,Yn: (171,...,117,1_2, Yn—1, yrz)eGT11

By(x1) = Argmin fo(x1, 92, s Yn) s
~ Y253 Yn: (1E1~,y27~~--,yn)EGT3
X = Argmin  f1 (Y1, Yn)
(Y1,e-yn) EGT2

where

Grp,={reX:x1€X1,....,0p-1 € X, 1,0, € By(21,..c,00p_1) },
Grn—l = {ZE S Grn 1 € X17 vy Tp—2 € Xn—2a ('Tn—l’xn) € Bn—l(xly ---axn—Q)};

Gro={x € Grs: a2 € X1,(22,....,2,) € Ba(21)}.
Evidently, Gry C Grsg C --- C Gry,, and forms a family of nested sets.

Definition. Any profile & € X of the game is called unsafe (optimistic, strong)
Stackelberg equilibrium.

This definition of the unsafe Stackelberg equilibrium is equivalent with respective
[4] definition. For n = 2 the unsafe Stackelberg equilibrium notion and original
Stackelberg equilibrium [15] notion are equivalent.

3 Unsafe Stackelberg Equilibrium. Existence and Properties

1 Theorem. For every finite hierarchical game the set X of unsafe Stackelberg
equilibria is non empty.

2 Theorem. If every strategy set X, C Rk p = T,n is compact and every cost
Junction f,(x1,...,2p,...,x,),p = 1,n is continuous by (z,, ..., x,) on X, X --- x X,
for every fized v1 € Xi,...,xp—1 € X,_1, then the unsafe Stackelberg equilibria set
X is non empty.

3 Theorem. If every strategy set X, C RFr p = T,n is convex and every cost
function fy(x1,...,xp, ..., xn),p = 1,0 is strict convex by (xp,...,x,) on X, X -+ X
X, for every fived v1 € Xy,...,x,—1 € X,_1, then the game has a unique unsafe
Stackelberg equilibrium with the “guaranteed” realization property.

4 Safe Stackelberg Equilibrium

The safe Stackelberg equilibrium notion is equivalent with respective notion in
[4].
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By backward induction, every player 2, ...,n determines his best move mapping
and the first player determines the set of his best moves:

By(x1,.yxy_1) = Argmin f, (21, ..., Tp—1,Yn)
y"leXTL

Bn—l(-rla ceey xn—?) = Arg ?Enin HL&X fn—l (51317 vy Tn—2,Yn—1, yn) s
n—1 Yn

(1717---amn—Q,yn,—layn)eGrn

Bn—2($17-'-a$n—3) = Al’gmin max fn—l (961,---79671—3,3}71—2,---7yn)7
Yn—2 Yn—1,Yn
(1717---71711—37y71,—21---7yn)GG"'n—l

By(w1) = Argmin max f5 (21,42, Yn),

(21,y2 e yn ) EGT3

X = Argmin max fi (y1,..-, Yn)
Y1 Y2,..Yn
(ylv”wyn,)EGTQ
where
GT’n = {1’ e X : Tr1 € Xl, vy Tp—1 € Xn_l,(En c Bn(:xl, ...,l‘n_l)},
Grn—l = {.Z‘ € Grn RIS Xla vy Tp—2 S Xn—27 (xn—laxn) S Bn—l(xla ---71‘71—2)} 3

Gry = {x € Grg:mxy € Xy, (w9, ...,m,) € Bg(ml)} )

Evidently, Gro CGra C -+ C Grp_1 C Gry, too.

Definition. The profile & € X of the game is named safe (pessimistic, weak)
Stackelberg equilibrium.

In general, the unsafe Stackelberg equilibria set is not equivalent to a safe Stack-
elberg equilibria set, i.e. X £ X.

Theorems 1—3 analogs for safe Stackelberg equilibrium may be formulated and
proved. In the theorem 3 conditions the unsafe and safe Stackelberg equilibria are
identical.

5 Pseudo-Equilibrium. Nash-Stackelberg Equilibrium

Consider the strategic game

I'= (N, {X hiespen,, {f1(2) hespen,),

where

o S={1,2,....s} is a set of stages,
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Ny ={1,2,...,m;} is a set of players at stage (level) [ € S,

X;, C R*» is a set of strategies of player p € N; at stage [ € S,

e s < 4o, N < +oo,l €S,

th

and fé(w) is a I'M stage p'™ player cost function defined on the Cartesian prod-

uct X = X Xt

peNles P
Elements z = (gj%,m%,...,x,lll,m%,x%,...,m%Z,...,xf,xi,...,:L‘fls) € X form profiles

of the game.
Suppose that the players make their moves hierarchically:

at the first stage players 1,2, ...,ny selects their strategies x{ € X{, 24 € X,
..ah € X} simultaneously and communicate it to the second stage players

1,2,...,n9,

the second stage players 1,2,...,n2 select simultaneously their strategies

@} e X, a3 € X3,...,22, € X2, after observing the moves (21,23, ...,2},)

» Yng no
of the first stage players and communicate two stages result to the third stage
players,
and so on

the s stage players 1,2,..,nm, select simultaneously their strategies
x] € Xi,x3 € X5,...,x;, € X, at the last after observing the moves

1.1 T2 .2 2 s—1 ,.s—1 s—1 oo
(1,25, oy Ty X7, X5, oy Ty s 25,y @) Of the precedent stages
players.

On the resulting profile z = (x%,x%,...,x%l,x%,x%,...,;r:,%Q,...,xf,m%,...,mis) every

player computes the value of his cost function.

Suppose that the ['" stage p'™™ player has all information about all
strategy sets and the cost functions of the players of stages [,/ + 1,...,s.
Without loss of generality suppose that all players minimize the values of
their cost functions.

Definition. The profile & € X of the game is pseudo-equilibrium if for every
l € S there exist y't!' € X+ . y" € X" such that

Lial  al1 lal 041 ; Lial Al I+l ; ! !
L@t a2l T Ly > @t Ly T Ly Ve, € X, Vp e N,

l

sl (4 1 al il
where 21, = (L7, .., Ty 15 Bppigs -oes T )-

Accordingly the definition, players 1,2,...,n;, [ = 1,2,....s — 1, s select their
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pseudo-equilibrium strategies:

B,(xL,) = Argmin f) (z,[x1,).p € Ny,

T, 6X1
(@' 2?, .. 2%) € PE1 ﬂ Grp7
2s1 2 p612\f1 1202
Bi(#',x%,) = Argmin f; (2", 2,/x2,).p € N,
:r‘ €X2
(21,82 23, ..., 2%) € PE2 ﬂ Grp,
PEN2

sial 22 as—l s e es (sl as—1 s|ls
By(i', &%, 2", x2,) = Argmin f; (2',.... 2" 2ylx%,),p € N,
rpeX,
(#'.47,...4%) € PE* = (] Gr,
pEN,

where

Gr]gz {(i’l,$2, ,° 1:12) GBZQJ(‘Q:l?X%P)}’pE Na,
GT;: {<f17 7i3§_17 q) T € B;(jlv 7$q 17Xip)}’p€ Nq’

Surely, the set of all pseudo-equilibria is PE = PE”.

The pseudo-equilibrium definition does not used the information that at the
following stage the stage players will choose the strategy accordingly the pseudo-
equilibrium statement. As the result, the profiles do not safe the required statement
at all stages.

For excluding this inconvenient, it’s reasonable to choose strategies by backward
induction procedure and thus we obtain a new equilibrium notion.

By stage backward induction, players 1,2,...,n;, [ = s, — 1,...,2,1 select their
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equilibrium strategies:

Bi(a',....,2*"'2® )= Argmin I» (xl, T ysllz®,), p € N,

P —p
yp€Xp
NSE* = () G,
pEN
By Mot Lt et =
= Arg min ;_1 (2!, ...,x’s_Q,yp 1||fc_p .Y°) . € No1,
up Ly
(x5 2y 1||a:5 L y®)eENSE®
NSES! = ﬂ Grs L
peNs 1
B;’Q(ml, a2 xs:pg) =
. .,‘—2 1 S— s
= Arg min S G Y T 2H:L’_p Ly
vy Ryt
('t 2y ) ENSEST!
pe NS‘—27
NSE™?= () Gri?
peNks‘fQ
1,1 o L1 2 s
Bp($—p) = Arg min fp (ypHm—pv Yy ’.“’yq) » D € N17
Jp ﬁ""y (yp”x_p y2$"'* )ENSEZ
1_
NSE' = () Gr},
peENy
where
e X l=T175-1,
Gr, = q:EX:xpqu . p € N,
xs € B ( 1,...,308_1 Lat,)
ple XLi=T15-2,
Grsl=(axe NSE*: 2% € Xipl, ,p € Noon,
x';)_l € B;_l(xl, e x'S_Q,Q:S_;l)
1 1
ro, € X2
Gr}): r € NSE?: “[P = 7F ,p € Ny.
x, € By(x,)

Of course, NSE! C NSE?C...C NSE".
Definition. Every element of the NSE" is called Nash-Stackelberg equilibrium.

The set of all Nash-Stackeberg equilibria NSE! is denoted by NSE also.

If s = 1 and n; > 1, then every Nash-Stackelberg equilibrium is the Nash
equilibrium. If s > 1 and n1 = n2 = ... = ns = 1, then every equilibrium is
an unsafe Stackelberg equilibrium. Thus, the Nash-Stackelberg equilibrium notion
generalizes the both Stackelberg and Nash equilibria notions.
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By stage backward induction, players 1,2,....,n;, [ = s, — 1,...,2,1 select their
equilibrium strategies:

Bi(at, ..., 2% ) = Argmin £ (z, .2 ypll®,), p € Ny,

P —p
vpeXp
SNSE* = NSE* = (] Grs,
PEN;
ns—1/,.1 s—2 _s—1\ __
S (LT et ) = 1
— Arg min max f el G e e e T B R =\
s— ys
Yp

(! 2y~ |22yt ESNSES

SNSES = () Gy,

pENs_1
Hs—2/, 1 s—2 53
P € e N
— Argmin max 72 (2 33'9*3,y5*2|\:1:8_—2,ysfl,ys) ,
1572 ysfl ys p P P
Yp ’

(2t 23y TP et %y ) ENSES !

pE€Neg, SNSES2 = [ Gry™?,
PENs—Q
Sl s L1 2 s
By(x_,) = Argmin max  f, (yll2,. y7, .. y7) .p € Ny,
yp Yy 7"'~,yb
(y,%llfil_p,1/2,-~-,y"‘)€1\h‘5E2
SNSE'= () Gr,.
pENY
where
e X 1=T175—1,
Grp=RreX: 2i, €X?, , p € N,
as € Ba(al, ot at )
e X i=T15-2,
Grs'={aeNSE*: 2°)' e X1, (P EN-
s—1 ~ Rs—1(..1 §—2 ,5—
Ty € By (Lt )

1 1
~ vl eX

Grlz{xENSEQ: P },pENl.
p :c;EB;,(aﬁl_p)

Surely, SNSE' C SNSE? C -.- C SNSE”.
Definition. Elements of SNSE! are called safe Nash-Stackelberg equilibria.

The set of all safe Nash-Stackeberg equilibria SNSE! is denoted by SNSE also.
In the same manner as for Nash-Stackelberg games the equilibrium principles
can be introduced. An essential difference in corresponding definitions is the strong
requirement that every minimization or maximization operator must be interpreted
as Pareto maximization or minimization operator. Evidently, the Pareto optimal
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response mapping and the graph of the Pareto optimal response mapping are con-
sidered for every player. An intersection of the graphs of Pareto optimal response
mappings is considered in every definition as the stage profile.

6 Linear discrete-time optimal control problem

Consider the following problem [1]:

(1)

where 2°, 2, ¢ € R", u', b' € R, A"~! € R™", B' € R d' € R¥, D' € RF*",
dat = (2t brut = bty t=1,.., T, u=(u', ... u").

1 52

4 Theorem. Let (1) be solvable. The sequence @', u?,...,u’ forms an optimal
control if and only if u' is the solution of linear programming problem

("Bt + TTATB! - 4 T AT AT=2 L ATBY + b') ! — max,
Dyt < d,

fort=1,...,T.

5 Theorem. If A" = Al =... = AT-1= A, B'=B*>=...= Bl =B, and (1) is
solvable, then the sequence u',w?,...,u’ forms an optimal control if and only if 0
is the solution of linear programming problem

(¢'B+ ™ AB 4+ ¢"2(A)*B + -+ + ' (A)T'B + b') u' — max,
Diu! < d,

fort=1,...,T.

Theorem 4 establishes a principle for solving (1). By considering Hamiltonian
functions
Hy(u') = (p'B"+ b u'),t=T,....1,

where p',t =T, ..., 1 are defined by recurrently, as it is conjectured in [1] and proved
above by two ways, the maximum principle of Pontryagin [7] holds.

1 52

6 Theorem. Let (1) be solvable. The sequence U ....,u" forms an optimal

control if and only if

, U

_ty B 4
Hi(u") = m:IDI%%?(gdt Hy(u'),t="1T,...

1.

Y

Theorems 4 and 6 are equivalent.
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7 Linear discrete-time Stackelberg control
problem

Let us modify the problem (1) by considering the control of Stackelberg type [15],
that is Stackelberg game with 7" players [?,4,5,15]. In such game, at each stage
t (t = 1,...,T) the player t selects his strategy and communicates his and all
precedent selected strategies to the following t 4+ 1 player. After all stage strategy
selections, all the players compute their gains on the resulting profile. Let us name
such type of system control as Stackelberg control, and the corresponding problem
— linear discrete-time Stackelberg control problem. The described decision process
may be formalized as it follows:

(c"2' +bMu') — max,

ul

|
] =

fl(xvu)

1

~
Il

(*2" + bv*'u") — max,

u2

|
] =

fQ(iU, u)

t=1

T
fr(z,u) = Z (cTtxt + thut) — max,

T
u
t=

—_

pt = At Byt =1, ., T,
Diut <d't=1,..T,

where 2°, 2%, ™ € R", uf, 0™ € R™, A™"! € R™", B' € R™™, d' € RF, D' € RF*",
ot = (™t ot = (0™t tr =1, ., T

In fact, as we can find out, the strategy sets of the players are interconnected
and the game is not a simple normal form game. A situation similar with that in
optimization theory may be established — there are problems without constraints
and with constraints. So, the strategy (normal form) game may be named strategy
game without constraints. Game which contains commune constraints on strategies
may be named strategy game with constraints.

1 52

7 Theorem. Let (2) be solvable. The sequence i, ...,al forms a Stackelberg
equilibrium control in (2) if and only if u™ is optimal solution of linear programming
problem

fw(uﬂ) — (C7r7rB7T + C7T7T+1A7rB7r + C7T7r+2A7T+1A7TB7r 4ot
4T AT=1AT=2  ATBT 4 bm) u™ — max,
D™u™ < d”,
form=1,...,T.
8 Theorem. If A" =A' =... = AT"1 = A, B'=B>=...=B" = B, and (2) is

solvable, then the sequence @', %, ..., u’ forms a Stackelberg equilibrium control if
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and only if u™ is the solution of linear programming problem
(c™B+ ™ AB + -+ ¢™H(A)TTTB 4 0™ ) T — max,
u™
D™u™ < d™,
form=1,...,T.

Theorem 7 establishes a principle for solving (2). The maximum principle of
Pontryagin may be applied for solving (2) too. Let us consider the following recurrent
relations

pﬂ‘T — CTE‘T
Tt 7Tt—§’—1 t Tt (3)
prt o= ptTr AN =T —1,..,1,
where m = 1,...,T. Hamiltonian functions are defined as

Hey (u') = (p"B '+ 0™ u") t=1T,..., 1,7 =1,...,T,
where p™ t =T,..., 1,7 =1,...,T, are defined by (3).

9 Theorem. Let (2) be solvable. The sequence of controls @', ..., u" forms a Stack-
elberg equilibrium control if and only if

H.:(u")= max H;(u"),
form=1,...,T.

8 Conclusions

The reasonable volume of an extended abstract doesn’t permit to expose entirely
the presented work, which includes mathematical models of Pareto-Nash-Stackelberg
game-control types and principles for their solving.

The examined processes of decision making are very often phenomena of real
life. Their mathematical moddeling as Pareto-Nash-Stackelberg games and control
processes gives an powerful tool for investigation, analysis and solving hierarchical
decision problems. Nevertheless, the problem of equilibrium principle choosing in
real situations is a task for both a decision maker and a game theorist.

There are different types of control: optimal control, Stackelberg control, Pareto-
Stackelberg control, Nash-Stackelberg control, Pareto-Nash-Stackelberg control, etc.

The direct-straightforward, dual and classical principles (Pontryagin and Bell-
man) may be applied for determining the desired control of dynamic processes.
These principles are the bases for pseudo-polynomial methods, which are exposed as
a consequence of theorems for linear discrete-time Pareto-Nash-Stackelberg control
problems and to the problems with echoes and retroactive future.

The direct-straightforward principle is applied for solving the problem of deter-
mining the optimal control of set-valued linear discrete-time processes.
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1

There are many generalizations of Farkas” Lemma and Duality Theorem for lin-
ear programming in the literature (Anderson & Nash, 1987; Goberna & Lopez,
1998). In the following section, we recall a particular generalization due to Bartl

Farkas’ Lemma and Linear Optimization
in Abstract Spaces: the infinite case

David Bartl

Department of Mathematics, Faculty of Science, University of Ostrava,
30. dubna 22, 701 03 Ostrava, Czech Republic,
e-mail bartl@osu.cz, telephone +420 59709 2276

Abstract

We study the problem of linear programming in the setting of a vector
space over a linearly ordered (commutative or skew) field. The dimension
of the space may be infinite. The objective function is a linear mapping
into another linearly ordered vector space over the same field. In that al-
gebraic setting, we recall known results: Farkas’ Lemma, Gale’s Theorem
of the alternative, and the Duality Theorem for linear programming with
finite number of linear constraints. Given that “semi-infinite” case, i.e.
results for finite systems of linear inequalities in an infinite-dimensional
space, we are motivated to consider the infinite case: infinite systems of
linear inequalities in an infinite-dimensional space. Given such a system,
we assume that only a finite number of the left-hand sides is non-zero
at a point. We shall also assume a certain constraint qualification (CQ),
presenting counterexamples violating the (CQ). Then, in the described
setting, we formulate an infinite variant of Farkas’ Lemma along with an
infinite variant of Gale’s Theorem of the alternative; we also formulate
the problem of an infinite linear programming, its dual problem, and the
Duality Theorem for the problems. Finally, we show an application to
the problems of semi-infinite linear programming and put a question for
further research.

Extended Abstract
Introduction

(2007). We shall introduce some notation and concepts first.

Let F be a linearly ordered (commutative or skew) field. (A field is skew
if and only if it is not commutative.) The ordering of the field F' is a binary

relation “<” such that, for all A\, u € F|

A<pu <= A—nu<o0

This is a revised and extended version of the paper [BARTL, D. Farkas’ Lemma, Gale’s
Theorem, and Linear Programming: the Infinite Case in an Algebraic Way. Global Journal

of Mathematical Sciences (GJMS), 1 (2012) 18—23. ISSN 2164-3709].
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and
A0V AN>0,

AZLO0OAA>0 = \=0,
AZ0A >0 = A+u>0,
AZ0A >0 = Au>0,

where we have used the usual convention that A > p if and only if ¢ < A. The
field of the real numbers R or that of the rational numbers Q with the usual
ordering is an example of a linearly ordered commutative field. Linearly ordered
skew fields also exists; an example of such a field was given already by Hilbert in
1901, see Cohn (1995, Notes and comments to Chapter 1, p. 45, with Sections
2.1 and 2.3, pp. 47-50 and 66) and Lam (1991, Example 1.7, p. 10, and above
Proposition 18.7, p. 288).

Let W be a vector space over the field F. No additional structure (such as
topology) is assumed on the space W, whose dimension may be finite or infinite.
For example, if I = R, then W can be R", finite-dimensional, or Cjo 1], the space
of real continuous functions on the closed interval [0, 1], or another functional
space. Considering a problem of linear optimization (or programming), the
space W will be the primal variable space (the “base space”) in which we shall
work:

Let A: W — F" be a linear mapping and let b € F'" be a column vector.
Then

Ar <b

is a finite system of linear inequalities, which circumscribes the set of the feasible
solutions. For example, if FF = R and W = R"”, then A is induced by a matrix
A € R™*". Considering such a problem of linear programming, the space
F will be the primal constraint space.

Let V' be a linearly ordered vector space over the linearly ordered (commu-
tative or skew) field . The ordering of the space is a binary relation “=” such
that, for all u,v € V,

u=v &< u—0v=0

and, for all A € F and u,v € V, it holds

u=<0Vu=0,
U=0ANANu=0 = u=0,
u=0ANv=0 = u+0v=0,
AZ>0ANu>=0 = dAu=0,
where, again, we have used the usual convention that u = v iff v < u. The

space F'! or, more generally, the space F'” with the lexicographical ordering is
an example of a linearly ordered vector space. (Given two vectors u = (u;),

v = (v))X, € FV, recall that u is lexicographically less than or equal to v,
writing w =< w, iff, for some iz € {1,...,N, N + 1}, we have u; = v; for
i=1,...,4 — 1 and u;, < v;, if ip < N.) Considering a problem of linear

programming, the space V will be the space of the “objective values” of a
linear mapping v: W — V whose value is to be maximized subject to the given
constraints.

Let A: W — F"™ be a linear mapping, let b € F™ be a column vector,
and let v: W — V be a linear mapping. Then the primal problem of linear
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programming, which we consider, is to

maximize yx
subject to Ax < b.

For example, when F = R and W = R” and V = R!, then A corresponds to
a matrix A € R"*" and v corresponds to a row vector ¢! € R'>". Note that
the case when V = RY with the lexicographical ordering has some applications
in the multiobjective optimization.

The symbol “/” (Greek letter iota) transposes the next two elements; the
elements are to be multiplied in the new order. For a vector © € V and a scalar
A € F, we have

LUA = Au,

the A-multiple of the vector u. If u = (u;)’, € V™ is an m-component column
vector of vectors, then its transpose w” is a row vector, which can be multiplied
by the symbol ¢ from the left and by another column vector A = (\;)", € F™
of scalars from the right. We have

A1
it = (Luyr oo LUyy) : = LU+ U A = N UL A U,
>\'rn,

Note that, actually, the vector u € V' induces a linear mapping

tu: B —V,
LU A — LUN = AU

for A€ F. If a: W — F'is a linear form, then tua: W — V is the composition
of the mappings. For an x € W, we have

o = w(az) = (ax)u .
Analogously, the vector w € V'™ induces a linear mapping

T e — Vv,

T X — A
for Ae F'". If A = (a;)"y: W — F' is a linear mapping, which is made up
of m linear forms ay,....0,: W — F, then tuA: W — V is the composition
of the mappings. For an x € W, we have

Ay = LuT(A:L') = uy(a1x) 4+ -+ L () = (rx)ug + -+ + (@) Uy, -

Conventions analogous to those above also apply when «w € F or uw € F™.

Finally, the symbol o shall denote the zero linear form o: W — F on W
with ox = 0 for all @ € W. The symbol o shall denote a column vector of zeros
of the field F' or the vector space V; the meaning will always be clear from the
context. Inequalities between column vectors — like Az < b, y < b, Ar < o,
A > o or u = o — are understood componentwise.
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2 Algebraic linear programming

Let V' be a linearly ordered vector space over a linearly ordered (commutative
or skew) field F, let W be a vector space over the field F, let A: W — F™
and v: W — V be linear mappings, and let b € F'"" be a column vector. The
following three results — Farkas” Lemma 1, Gale’s Theorem 2 of the alternative,
and Duality Theorem 3 for linear programming — were proved by Bartl (2007):

Lemma 1 (Farkas’ Lemma). It holds
VeeW: Ar <o — ~ax <0 (1)

if and only if
FJuec V™ ur=o: m'A=r~. (2)

Remark 1. Formula (2) essentially means that, given linear mappings A: W —
F™ and v: W — V, there exists a non-negative linear mapping (u’ : F™ — V
which makes the following diagram commute:

W A F m

-
~
~
Y _ T
~ L

£

v

We say that a linear mapping L: F" — V is non-negative iff it preserves also
the ordering, i.e. for all A € F™ if A > o, then LA = 0. Shorter algebraic
proofs of Farkas” Lemma can be found in Bartl (2008, 2012a, and 2012b).

Theorem 2 (Gale’s Theorem). It holds that
breW: Az <b (3)

if and only if
INel A>o0: ANTA=0 A ATb<O. (4)

Remark 2. Formula (3) says that the system of linear inequalities Az < b has
no solution. Formula (4) means in words that, in the space F"*, there exists
a hyperplane that separates the subspace Rng A = { Az : © € W } [rom the
shifted cone {y € F'™ : y < b}. (See Fig. 1.) Indeed: The system Ax < b
has no solution if and only if the set {y € F" : y < b} does not intersect
the range Rng A of the mapping A. The column vector A induces the linear
form (AT : F' — F with (AT : y — (ATy for y € F™. The equality tATA = o
means in words that the linear form is zero on the subspace Rng A, i.e. the range
Rng A is contained in the kernel of the form. Observe that (ATy < (ATb for all
ye{ye "y < b} if and only if A > o. We can see hence that, choosing
a constant ¢ € F so that tA\Tb < ¢ < 0, the hyperplane {y € F™ : ATy = ¢}
scparates the subspace Rng A from the shifted cone {y € F™ 1y < b}. Scc
also Bartl (2012c).

Theorem 3 (Duality Theorem). Consider the following primal and dual proh-
lem of linear programming:

(P) maximize ~x (D) minimize (u’b
S.t. Ax < b, S.t. tuTA =~
u = o,
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rY2
Rng A={Ax:x € W} ye Fm
~ X
~
~
~
~
~
S o o _
S Y1
b \\\
~
~
.Yy<b S
~
~
\\
L)\Ty:const.

Figure 1: Illustration of Gale’s Theorem of the alternative. The system Ax < b
has no solution, i.e. the subspace Rng A = { Ax : © € W } does not intersect the
shifted cone { y € F" : y < b} so that both sets are separated by a hyperplane
{y € F" : 1 ATy = const.} with (ATb < const. < 0.

where x € W and uw € V' are variable. Then:

1. If =* € W is an optimal solution to the primal problem (P), then there is
an optimal solution u* € V" to the dual problem (D) with va* = (u*'b.

II. If w* € V" is an optimal solution to the dual problem (D) and the vector
space V is non-trivial, then there is an optimal solution x* € W to the
primal problem (P) with vz* — tu*"'b.

Remark 3. Farkas’ Lemma 1 essential to prove Part I and Gale’s Theorem 2 is
necessary to prove Part 11 of Duality Theorem 3 (Bartl, 2007).

We have recalled three general results (Bartl, 2007). When we put F' = R,
the field of the real numbers, take W = R, a space of a finite dimension, and
V = R!', the real axis, in Farkas’ Lemma 1, Gale’s Theorem 2, and Duality
Theorem 3, then we obtain the classical version of Farkas’ Lemma (Farkas,
1902), Gale’s Theorem of the alternative (Fan, 1956; Gale, 1960), and Duality
Theorem for linear programming (Gale et al., 1951), respectively. See Bartl
(2007, 2008, 2012a, and 2012b) for a more detailed discussion. Recall that the
case when V = R” with the lexicographical ordering has some applications in
the multiobjective optimization.

3 Infinite algebraic linear programming

3.1 Motivation

In the preceding section, we recalled some results with a finite system of linear
inequalities Ar < o (Farkas’ Lemma 1) or Ax < b (Gale’s Theorem 2 and
Duality Theorem 3). It has been an interesting question whether it is possible to
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obtain analogous generalized results with an infinite system of linear inequalities
Ax <o or Ax <b.

Farkas’ Lemma 1 is a cornerstone in the theory due to Bartl (2007): all
the results (Gale’s Theorem 2, other theorems of the alternative, and Duality
Theorem 3) follow from it. That is why we shall deal with an infinite version of
Farkas’ Lemma first. Thus, let M be an infinite index set and let a;: W — F|
for i € M, be linear forms. We consider the infinite system of linear inequalities
Ax < o, or ai;x < 0 for i € M. Assuming that yx < 0 for all x € W such that

Ax < o, we should have
v = A = Z LU; O

ieM

for some non-negative u € VM i.e. some non-negative vectors u; € V fori € M.
That is, for an @ € W, we should have

yr = il Axr = E LU OGT
ieEM

However, the sum >, tu;c;;x must be correct — we do not consider any ad-
ditional concept such as topology or convergence here — whence, only a finite
number of the terms can be non-zero. In addition, as in Remark 1, we should
have the commutative diagram

w4 9

-
-
o -
s
l %/ L’U.T
1%

perhaps with w € V™, meaning that possibly all of the u; can be non-zero or
positive. Hence, we can guess that we should have ? = FM) | the space of all
infinite sequences with only a finite number of non-zero entries.

3.2 Definitions, counterexamples, and the constraint qual-
ification

Let V be a linearly ordered vector space over a linearly ordered (commutative
or skew) field F' and let W be a vector space over the field F.

Let M be a (finite or infinite) index set. Formally, a column vector u =
(u;)icnr € VM of vectors of the space V is a sequence or mapping

uw: M —V,
wu: T Uu; .
Now, for a set X, we write Fin X iff the set X is finite. Analogously then, a

column vector A = (\;);ens € F™M) of scalars of the field F' with a finite number
of non-zero entries is a sequence of mapping

A: M — F,
A Lo— N\
with

Fin{ieM: X\ #0}.
_/4_



To conclude, we have the two spaces

VM —fwu: M-V},
FOD = {X: M — F:Fin{ie M :X\;#0} },

where M is an index set. Now, we conjecture that the following version of
Farkas’ Lemma could hold:

Hypothesis 1 (An infinite version of Farkas’ l.emma). Let V be a linearly
ordered vector space over a linearly ordered (commutative or skew) field I, let
W be a vector space over the field F, let M be an index set, and let A: W —
FO) and ~: W — V be linear mappings. Then

VeeW: Avr <o — v =0

if and only if
Ju e VM u = o: tulA=~.

Indeed, although the “if” part of Hypothesis 1 is trivial, the “only if” part
does not hold in general.

Counterexample 1. For simplicity, let us consider F' = R, the ficld of the real
numbers, and V = R!, the one-dimensional real axis. Let W = ¢op = RM be
the functional space of all sequences © = (x;);2, of real numbers with only a
finite number of non-zero entries.

Let M = NU{w} = {1.2,3,... }U{w} be the set of all finite natural numbers
with a transfinite clement. Let us consider the forms ay = x; fori = 1,2, 3, ...,

?

and a,x = >, —x;, putting y& = >0 | —ix; for an & = (2,)52, € W. In a
less formal way, we can represent oy, as, s, ..., and «, with v as row vectors:
ap =( 1 0 0 0 ),
az =( 0 1 0 0 ),
as =( 0 0 1 0 ),
ay =( 0 0 0 1 ),
a,=( -1 -1 -1 =1 ),
~ =( -1 -2 -3 -4 )

Thanks to the choice of the space W = c¢po, only a finite number of the linear
forms «; is non-zero at a point & € W, and the [orm «,, with the mapping ~y are
well defined because only a finite number of the terms is non-zero in the sums.

Now, choose an &€ = (z;)72, € W = ¢coo. If & = x; < 0 for i = 1, 2,
3, ..., and a,x < 0, i.e. > 2, x; > 0, then & = o, hence y& = 0, so y& < 0.
However, there exist no non-negative numbers uq, us, us, ..., and wu,, such that

>0
V= Uy + D Ui

The counterexample motivates us to introduce a certain constraint qualifi-
cation: we shall exclude the case described in Counterexample 1.

(Remark. It turns out that Counterexample 1 describes the only basic situ-
ation that can be found to counter the statement of Hypothesis 1.)
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Definition 1 (F-lincar independence). Let A: W > F(M) be a lincar mapping
so that we have an indexed collection {«;};eas of linear forms such that, for
any ©* € W, the set {i € M : a,x # 0} is finite. Now, let M* C M be any
subset of the index set M. We say that the subcollection {«; }iear~ is F-linearly
independent iff

Yy € FMT LA;‘I\}*AAJ* = E LA ;g =0 —> Ap+ = O.
€M™

Definition 2 (Constraint Qualification (CQ)). Let A: W — F) be a linear
mapping. We say that the linear mapping A satisfies the constraint qualifica-
tion (CQ) iff, for any subset M* C M such that the subcollection {«;}icns= is
F-linearly independent, and for any infinite subset M~ C M™*, there exists a
point x € W such that

Ar <o and Ay—x # 0.

The latter condition means that a;x # 0, hence a;x < 0, for at least onei € M.

(Remark. The constraint qualification (CQ) presented in Definition 2 is
weaker than that originally presented in the paper [BARTL, D. Farkas’
Lemma, Gale’s Theorem, and Linear Programming: the Infinite Case in an
Algebraic Way. Global Journal of Mathematical Sciences (GJMS), 1 (2012) 18—
23. 1ISSN 2164-3709]. The old (CQ) requested that, whenever M~ C M* C M
with M~ infinite and {a;}iens- being F-linearly independent, there exists a
point x € W such that Ar < o with Ay;-x # o and Aps«\p-x = o. The last
condition (Aps«\ar—2 = 0) is unnecessary.)

Assuming the constraint qualification (CQ), the “only if” part of Farkas’
Lemma (Hypothesis 1) becomes to hold true (see the next subsection).

Now, we shall be concerned with an infinite version of Gale’s Theorem. Let
us consider an infinite system Az < b with the linear mapping A: W — F),
Thus, it might seem plausible that we should have b € F*)_ Then, however,
the system Ax < b would not be interesting: we would have a finite system
a;x < b; for i € M with b; # 0 and the remaining, possibly infinite, part
a;x < 0 for ¢ € M with b; = 0. Therefore, we shall consider the more general
case when b € FM . Formally, a column vector b = (b;);enr € FM of scalars of
the field F' is a sequence or mapping

b: M —s F,
b: i ——b;.

Naturally, we have to assume that the column vector b comprises only a finite
number of negative entries. (Otherwise, the system Az < b could not have a
solution as only a finite number of entries of the left-hand column can be non-
zero.) In order that the sum (ATb = > ienr LA is well defined, we shall require
that only a finite number of the terms is non-zero, i.e. the set {i € M : \; #
0 A b; # 0} is finite. Thus, we conjecture that the following version of Gale’s
Theorem could hold:

Hypothesis 2 (An infinite version of Gale’s Theorem). Let W he a vector
space over a linearly ordered (commutative or skew) field F, let M be an index

- /06 -



set, let A: W — F(M) pe a linear mapping, and let b € FM be a column vector.
Under the assumption Fin{i € M : b; < 0}, it holds that

AreW: Az <b
if and only if
INEFM X>o0, Fin{ic M: X\ #A0A b #0}: ANA=0 A ATb<0.

Again, while the “if” part of Hypothesis 2 is obvious, its “only if” part does
not hold in general.

Counterexample 2. Take F' = R, the field of the real numbers, with W =
Cop = R(N), the functional space of all sequences « = (x;)7, of real numbers
with only a finite number of non-zero entries. Consider the system

—r1 <

|
—

—To + X1 <
—r3 + T2

—T4 + I3

INCIACIA
5|>—n [l N ST

—I5 + X4

Obviously, the system has no solution in the space W = c¢go. However, no
finite linear combination of the left-hand sides yields the zero linear form on W:
all the left hand-sides have to be summed up; then, however, the sum of the
right-hand sides is zero, not negative.

3.3 The main results

Let V be a linearly ordered vector space over a linearly ordered (commutative or
skew) field F let W be a vector space over the field I, let M be an index set, let
A: W — FM) he a linear mapping satisfying the constraint qualification (CQ),
let b € FM be a column vector with Fin{i € M :b; <0}, and let v: W — V
be a linear mapping. Then, the following three results hold true:

Lemma 4 (Farkas” Lemma). If
VeeW: Ar <o = yx <0, (5)

then
Jue VM u=o0: uTA=~. (6)

Theorem 5 (Gale’s Theorem). If
freW: Ax <b, (7)

then
INe FM XN>0: ATA=0 A ATb<0. (8)
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Theorem 6 (Duality Theorem). Consider the following primal and dual prob-
lem of linear programming:

(P) maximize ~x (D) minimize (u’b
S.t. Ax < b, S.t. iuTA =~
u = o,

Fin{ie M:u; #0 A b; #0},

where x € W and u € VM are variable. Then:

1. If x* € W is an optimal solution to the primal problem (P), then there is
an optimal solution u* € VM to the dual problem (D) with va* = u*"'b.

II. If w* € VM is an optimal solution to the dual problem (D) and the vector
space V is non-trivial, then there is an optimal solution x* € W to the
primal problem (P) with va* = iu*1b.

Gale’s Theorem 5 is surprising: if the system Ax < b has no solution, then,
by (8), some finite subsystem of it has no solution. The condition Fin{i € M :
Ai =0 A b; # 0} is not necessary in Gale’s Theorem 5 (though conjectured in
Hypothesis 2), but its variant is essential in the dual problem (D) in Duality
Theorem 6. Let us observe that, if the set A is finite, e.g. M = {1,..., m},
then the constraint qualification (CQ) is naturally satisfied — there is no infinite
subset M~ C M* C M. Thus, Farkas’ Lemma 4, (Gale’s Theorem 5, and
Duality Theorem 6 generalizes Farkas” Lemma 1, Gale’s Theorem 2, and Duality
Theorem 3, respectively.

The proofs of the main results are long. The author is really sorry that he
has not published them yet, regrettably. ..

3.4 An application in semi-infinite linear programming

Now, the above results are quite general and abstract. It is an interesting ques-
tion whether they can be applied to some problems of infinite linear program-
ming whose solution is already known (e.g., Anderson & Nash, 1987), perhaps
establishing a new approach to solving those problems. In this section, we
show that they can be applied to problems of semi-infinite linear programming
(Goberna & Loépez, 1998).

Let a row vector ¢! € R'*” be given. We also have an index set 7', row
vectors a/ € R'™ and numbers b, € R for ¢t € 7. Consider the primal problem
of semi-infinite linear programming (Goberna & Lépez, 1998, Section 1.1, p. 3),
where x € R" is variable:

(PLSIP) inf CT.’L’

s.t. al'x > b, for t €T
Write the variables x as a difference @ = 1+ — = of two non-negative magni-

tudes 21,2~ > o, and introduce new non-negative variables z, > 0 for t € 7.
Then, we can write problem (Ppsip) as follows:

min ¢zt — eTa—
st. alzt —alz= — 2, =0, for teT, (9)
zT, = >0, 2, >0 for teT.



This problem is of the form (D). Formulate the corresponding primal prob-
lem (P):
max >0 Ay

teT
s.t. S hnal <0 ety
teT (10)
- Z Ata;‘r S _CT7
ter
— <0 for t € T,

where \; € R are variable. We must have A € R in order to satisfy the condi-
tion that the mapping “A: W — F)” on the left-hand side of the constraints
attains only finitely many non-zero values at any point. So we can write the
problem in the form

(Dr.ste) sup > by
teT

sit. >0 Aal =T,
leT
A >0 for t €T,
Fin{teT : X #0},

which is the Haar Dual (Goberna & Lépez, 1998, Section 2.2, p. 49) of the
primal problem (Pprsrp) of the semi-infinite lincar programming,.

Now, it is a question whether the mapping “A: W — FW” on the left-hand
side of the constraints of the “primal problem (P)” (10), satisfies the constraint
qualification (CQ). Applying Definition 2 to problem (10), we obtain that, for
any infinite set 77— C 77, there must exist a non-negative point A € R such
that Z%T)\ta;r = o7 with A\; > 0 for at least one ¢ € 7"~. Then Duality
Theorem 6 applies to problems (Pygrp) and (Dpsip)-

3.5 Further research

Problems of the subsequent [orm are olten considered in inlinite programming
(Anderson & Nash, 1987, Section 3.3, pp. 38—40).

T.et X be a real vector space and let Y be a locally convex topological vector
space over the field R of the real numbers. Let a linear mapping A: X — Y,
a point b € Y, and a linear functional ¢: X — R be given. Let a non-negative
cone I’ C X be given in the space X. Write x > 0 iff x € I

The algebraic dual of the space X is to be denoted by X7, the topological
dual ol the space Y is to be denoted by Y*. For a y € Y*, we have tby = yb,
the value of the functional y at b. For a y € Y*, we also have tAy = y A, the
composition of the mapping A and y. And, for ¢,d € X7, write d < ¢ iff cx < dx
for each « € P. (So that 1Ay < ¢ means yAx < cx for all x € P.)

Consider the next primal and dual problem (Anderson & Nash, 1987, Sec-
tion 3.3, pp. 38—40), where x € X and y € Y* are variable:

(EP) inf cx (EP*) sup by
s.t. Aw =0, s.t. LAy <c.
x>0,
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The purpose is to prove the Duality Theorem of the following form (Anderson
& Nash, 1987, Theorem 3.3, p. 41): Problem (EP) is subconsistent and has a
finite subvalue M if and only if problem (EP*) is consistent and has a finite
value M. That is a certain least upper bound (infimum) is equal to the greatest
lower bound (supremum) of problem (EP*).

Duality Theorem 6 for problems (P) a (D) is of different nature. Firstly, we
assume that there ewxists an optimal solution, i.e. the maximum or minimum
is attained. The mentioned Duality Theorem of Anderson & Nash (1987) uses
suprema and infima only — optimal solutions (points) may not exist, i.e. we can
only get arbitrarily close to the optimal value. (The existence of true optimal
solutions of (EP) and (EP*) is discussed in Anderson & Nash (1987, Chap-
ter 3) too.) Secondly, the mapping A of problems (P) and (D) must satisfy the
constraint qualification (CQ).

Notice the space of the values of the objective functions of problems (EP)
and (EP*) is the space R!, the real line. It holds the property it is complete, i.e.
each non-empty above (or below) bounded set has a supremum (or infimum).
It is known that this is the only linearly ordered vector space of that property.
(If G is a linearly ordered group which is complete in the above sense, then it
is isomorphic with the additive group of the field R. Holder Theorem.)

A general linearly ordered vector space V' is that of the values of the objective
functions of problems (P) and (D), which we consider. It follows the existence
of suprema and infima is not guaranteed there. That fact does not matter in
Duality Theorem 6 for problems (P) and (D) because we assume the existence of
optimal solutions, hence, we assume that the optimal values are attained there.

It is a question if it is possible to weaken the Duality Theorem for problems
(P) and (D) somehow even in our very general algebraic setting (the space W
and the linearly ordered space V over F). For example, we may consider just
to show that “there is no duality gap” in the following way:

Let V¥ = {u eV idreW: Ar <b A u = y(x) } be the set of all vectors
v € V that are bounded from above by some objective value of problem (P).
Analogously, let VI = {v eV :JueVM: A=+ A u>=o0o A Fin{ie
M:u; Z0 A b 20} A v=ulb} je be the set of all vectors v € V that are
bounded from below by some objective value of problem (D).

Then, it holds (?) that u < v for all u € V+ and for all v € VT and that
VU VT = V. (An analogy of the Dedekind Cut.)

In this way, we can express essentially the same as the equation “sup = int”
does while we do not need the concept of the supremum and infimum, which
may not exist in the space V either.

The question whether such a result can be established is a motivation of our
further research.
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