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Abstract. In this work we consider a growing random graph sequence
where a new vertex is less likely to join to an existing vertex with high
degree and more likely to join to a vertex with low degree. In contrast
to the well studied preferential attachment random graphs [4], we call
such a sequence a de-preferential attachment random graph model. We
consider two types of models, namely, inverse de-preferential, where the
attachment probabilities are inversely proportional to the degree and
linear de-preferential, where the attachment probabilities are propor-
tional to c−degree, where c > 0 is a constant. For the case when each
new vertex comes with exactly one half-edge we show that the degree of
a fixed vertex is asymptotically of the order

√
logn for the inverse de-

preferential case and of the order logn for the linear case. These show
that compared to preferential attachment, the degree of a fixed vertex
grows to infinity at a much slower rate for these models. We also show
that in both cases limiting degree distributions have exponential tails.
In fact we show that for the inverse de-preferential model the tail of the
limiting degree distribution is faster than exponential while that for the
linear de-preferential model is exactly the Geometric

(
1
2

)
distribution.

For the case when each new vertex comes with m > 1 half-edges, we
show that similar asymptotic results hold for fixed vertex degree in both
inverse and linear de-preferential models. Our proofs make use of the
martingale approach as well as embedding to certain continuous time
age dependent branching processes.

1. Introduction

Networks are ubiquitous in our surroundings. Complex biological net-
works such as protein-interaction networks, social networks, and electronic
networks (such as the HTTP network of the WWW) form the very basis of
modern human existence. Across disciplines, many scientists have attempted
to study the properties of these complex structures. With increased com-
putational power, it has become possible to study large real-life networks.
These empirical studies have observed some distinctive properties (such as
“scale-free” structure and “small-world” property) which are exhibited by a
number of complex networks.

Random graph models have been put forward to explain specific prop-
erties observed in complex networks. We will be specifically interested in
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the distribution of vertex degrees in large networks. Empirical studies have
reported that many complex networks have degree distributions which are
“scale-free”, that is, the tail of the degree distribution decays roughly like a
power-law.

The most classical model for a random graph is the Erdós- Rényi random
graph [6]. However, asymptotically, the tail of the vertex degree distribution
in an Erdós- Rényi random graph decays exponentially. Thus these random
graphs are not suitable models for real-life complex networks. This has
necessitated the development of other models which would exhibit these
unique properties observed in real networks.

Preferential attachment random graphs, such as the Albert-Barabasi Model
[4], have emerged as a popular choice for modeling complex networks. In
this class of models, one starts with a simple initial configuration of vertices
(e.g. two vertices joined by an edge) and adds a new vertex at each step. In
the simplest case, an existing vertex is chosen with probability proportional
to some weight w : N → R+ of the degree of the vertex, and the new vertex
is joined by an edge to the sampled vertex. The function w is taken to be
an increasing function — high degree vertices are therefore more likely to
be attached to the new vertex. This leads to the term “preferential attach-
ment”. If w is taken to be linear, the degree distribution of the resulting
random graph actually exhibits the “scale-free” property (see e.g. [13]).

In a general version of the preferential attachment model, one similarly
starts with a simple configuration of vertices and adds a vertex at each step.
However, in this case, the new vertex is attached to a fixed number m of
existing vertices. Often, it will be convenient to imagine that the new ver-
tex has m- half edges attached to it, and these half-edges are attached to
existing vertices. Numerous alternative models have been suggested in the
literature for choosing m vertices. For example, the vertices may be cho-
sen in an independent and identically distributed manner with probabilities
proportional to a function of their degrees, or the m half edges attached to
the new vertex may be sequentially joined to existing vertices (sampled with
probabilities proportional to a function of their degrees) and the degrees of
the vertices might be updated during the intermediate steps.

Here we explore the opposite phenomenon. We start with a simple config-
uration of vertices and add a new vertex at each step. We study two random
graph models where vertices with high degrees are less likely to be attached
to the new vertex. These random graphs will be called “De-preferential
Attachment” random graphs. Having initiated the study independently,
we later discovered that such models have been discussed in Physics litera-
ture earlier as models for food webs [10, 11]. It is interesting to note that
these papers contain non-rigorous study of the model which leads to the
same conclusions. However, it must also be stated that the papers include
more results than what we have been able to derive rigorously. It is per-
haps worthwhile to continue the study to establish all the results which the
physicists have derived using their non-rigorous arguments. Similar models
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have also been studied mainly through simulations in Computer Science lit-
erature for modeling “peer-to-peer” networks [8]. In the context of certain
other type of random reinforced models, such as, urn models, the concept of
“De-preferential” selection has been studied in the recent literature [3, 7].

We will be specifically interested in the evolution of the degree of a fixed
vertex and the asymtotic degree distribution of these two random graph
models. Our results for one of the models will be critically dependent on
the embedding of the discrete time random graph process into a sequence
of continuous time pure birth processes.

1.1. Model. The two de-preferential attachment random graph models will
be denoted by “linear de-preferential attachment model” and “inverse de-
preferential attachment model”. For both models, we start with a simple
configuration of vertices and add a single new vertex at each step. Initially,
we allow the new vertex to join to one of the existing vertices. Later, we
generalize both models and allow the new vertex to join to m(≥ 1) existing
vertices. It is worth noting that if m > 1 then it is possible to get loops
at a single vertex or multiple edges between two vertices. As in the case
of preferential attachment random graphs, numerous alternatives may be
suggested for choosing the m vertices which are joined to the new vertex.

In both the models, each of the m-half edges of a vertex is attached to one
of the existing vertices. The attachment is carried out sequentially and the
degrees of the existing vertices are updated during the intermediate steps.
We will see that this choice allows us to couple the inverse de-preferential
attachment model naturally with a continuous time age-dependent branch-
ing process for m = 1 case and with a sequence of pure birth processes for
m > 1. This coupling will play a critical role in the analysis of the inverse
de-preferential attachment model.

Initially, our starting configuration is a “hanging” tree consisting of two
vertices joined by an edge and a “free” edge linked to one of the vertices.
We add vertices sequentially and attach the new vertices randomly to the
existing vertices to form a sequence of growing graphs. Later, we generalize
the models to include the m > 1 scenario. In this case, our starting config-
uration is a graph consisting of two vertices joined by m edges and m free
edges linked to one of the vertices.

1.2. Notation. We introduce some notation that will be used throughout
this paper. We denote the random graph process by {Gn}∞n=2. The graph
Gn has vertices V (Gn) = {v1, · · · , vn}. At time (n + 1), we introduce the
vertex vn+1 with half edges en+1,1, · · · , en+1,m. Also, let di(n + 1, k), k =
0, · · · ,m − 1, denote the degree of the vertex vi, i = 1, · · · , n, after k half-
edges of vn+1 have been attached to the graph. Here degree refers to both the
in and out-degree of a vertex. We will use {Fn,k : n ≥ 2, k = 0, · · · ,m− 1}
to denote the natural filtration associated with the random graph process.
Finally, let di(n + 1, 0) = di(n). For m = 1, the natural filtration will be
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simply denoted by {Fn : n ≥ 2} and the half edge of vertex vn+1 will be
denoted by en+1.

Finally, let Nk(n) denote the number of vertices of degree k in Gn.

Pk(n) = Nk(n)
n denotes the empirical proportion of vertices of degree k in

Gn.

1.2.1. Linear De-preferential. For m = 1,

P (en+1 = {vn+1, vi}|Fn) ∝
(

1 − di(n)

2n− 1

)
=⇒ P (en+1 = {vn+1, vi}|Fn) =

1

n− 1

(
1 − di(n)

2n− 1

)

For m > 1, j = 1, · · · , n, and k = 0, 1, · · · ,m− 1,

P (en+1,k+1 = {vj , vn+1}|Fn+1,k) =
1

n− 1

(
1 − dj(n + 1, k)

k + (2n− 1)m

)
1.2.2. Inverse De-preferential. For m = 1,

P (en+1 = {vn+1, vi}|Fn) ∝ 1

di(n)

=⇒ P (en+1 = {vn+1, vi}|Fn) = Cn
1

di(n)

where C−1
n = Dn =

n∑
i=1

1

di(n)
.

For m > 1, j = 1, · · · , n, k = 0, · · · ,m− 1,

P (en+1,k+1 = {vj , vn+1}|Fn+1,k) ∝ 1

dj(n + 1, k)

=⇒ P (en+1,k+1 = {vj , vn+1}|Fn+1,k) = Cn+1,k
1

dj(n + 1, k)

where C−1
n+1,k = Dn+1,k =

n∑
j=1

1

dj(n + 1, k)
.

1.3. Outline. The rest of the paper is organized as follows. In Section 2 we
state our main results for both the linear and inverse de-preferential models,
while the proofs are presented in Sections 3 and 4 respectively.

2. Main Results

In this Section we state the main results for the two random graph models.
For both models, we start with the results for m = 1 case and then we will
state the results for the m > 1 case.

2.1. Linear De-preferential.
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2.1.1. m = 1 Case. We now state the results for the m = 1 case.

Theorem 2.1. Let (Gn)∞n=1 be a sequence of random graphs following a
linear de-preferential attachment model with m = 1. Then as n → ∞,

di(n)

log n

P−→1. (2.1)

Thus the degree of a fixed vertex grows like log n. In Athreya et. al.([2]),
similar rates have been derived for linear preferential attachment and sub-
linear preferential attachment models when w(k) = kp, 12 < p < 1. In com-
parison, the degree of a fixed vertex grows like O(

√
n) in linear preferential

attachment, and like O((log n)q), where q = 1
1−p when w(k) = kp, 12 < p < 1.

Hence, the degree of a fixed vertex grows at a slower rate in comparison to
linear and this class of sub-linear preferential attachment models.

We also have a central limit theorem for this model.

Theorem 2.2. Let (Gn)∞n=1 be a sequence of random graphs following a
linear de-preferential attachment model with m = 1. Then as n → ∞,

di(n) − log n√
log n

d−→ N(0, 1). (2.2)

The next theorem gives the limit of the empirical distribution of vertex
degrees.

Theorem 2.3. Let (Gn)∞n=1 be a sequence of random graphs following a
linear de-preferential attachment model with m = 1. Let

Pk(n) :=
1

n

n∑
i=1

1
(
di(n) = k

)
, (2.3)

be the fraction of vertices with degree k. Then ∃ C1 > 0, such that, as
n → ∞

P

max
k

∣∣Pk(n) − pk
∣∣ > C1

(
log n

n
+

√
log n

n

) = o(1), (2.4)

where pk = 1
2k
, k ≥ 1.

We note that the limit {pk}∞k=1 decays exponentially. It is interesting to
note that Rényi had identified the same limit for the empirical degree distri-
bution of a random graph process where new vertices are added sequentially
and attached uniformly to one of the existing vertices. We interpret this
as follows: asymptotically, the degrees di(n) are negligible in comparison to
2(n − 1) and therefore, asymptotically, every vertex is attached “approxi-
mately” uniformly to one of the existing vertices. In this sense, the linear
de-preferential attachment model represents a weak form of de-preferential
attachment. We will see that the inverse de-preferential attachment model
represents a stronger form of de-preferential attachment.

Finally, we have the asymptotic size biased distribution.
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Theorem 2.4. Let (Gn)∞n=1 be a sequence of random graphs following a
linear de-preferential attachment model with m = 1. Let v < n be a fixed
vertex and k ≥ 1. Then as n → ∞,

P
(
en+1 = {vn+1, v}, dv(n) = k

)
→ 1

2k
. (2.5)

2.1.2. m > 1 Case. We now state the generalizations of the above results
for m > 1.

Theorem 2.5. Let (Gn)∞n=1 be a sequence of random graphs following a
linear de-preferential attachment model with m > 1 and di(n) be the degree
of a fixed vertex i ≥ 1. Then as n → ∞,

di(n)

m log n

P−→1. (2.6)

The next result collects the CLT for the m > 1 case.

Theorem 2.6. Let (Gn)∞n=1 be a sequence of random graphs following a
linear de-preferential attachment model with m > 1. Then as n → ∞,

di(n) −m log n√
m log n

d−→ N(0, 1). (2.7)

Remark: Unfortunately, we have been unable to derive an analogue of
Theorem 2.3 for m > 1. Needless to say that we expect the empirical
degree distribution to converge just like in the m = 1 case, but have been
unsuccessful in conjecturing the form of the limiting degree distribution; this
has been the main barrier in establishing such a result.

2.2. Inverse De-preferential.

2.2.1. m = 1 Case. We have the following results for the m = 1 case. Let
λ∗ > 0 satisfy the equation

∞∑
n=1

n∏
i=1

1

1 + iλ∗ = 1. (2.8)

Theorem 2.7. Let (Gn)∞n=1 be a sequence of random graphs following a
inverse de-preferential attachment model with m = 1. Then as n → ∞,

di(n)√
log n

→
√

2

λ∗ a.s. (2.9)

Our next results identify the limit of the empirical degree distribution
and its properties.

Theorem 2.8. Let (Gn)∞n=1 be a sequence of random graphs following a
inverse de-preferential attachment model with m = 1. Let

Pk(n) :=
1

n

n∑
i=1

1
(
di(n) = k

)
, (2.10)
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be the fraction of vertices with degree k. Then ∀k ≥ 1, as n → ∞,

Pk(n) → kλ∗

kλ∗ + 1

k−1∏
i=1

1

iλ∗ + 1
a.s. (2.11)

The proof of this result will critically exploit the embedding of this discrete
time random graph process into a continuous time age dependent branching
process where each vertex reproduces according to i.i.d copies of a particular
pure birth process. λ∗ is actually the Malthusian Parameter of this pure
birth process.

Corollary 2.9. The limiting empirical degree distribution of a sequence
of random graphs following the inverse de-preferential attachment model
with m = 1 has mean 2, mode 1 and its tail decays at a rate faster than
exponential.

Finally, in this case, we also have the asymptotic size biased distribution
for the de-preferential attachment model.

Theorem 2.10. Let (Gn)∞n=1 be a sequence of random graphs following the
inverse de-preferential attachment model with m = 1. Let v < n be a fixed
vertex and k ≥ 1. Then as n → ∞,

P
(
en+1 = {vn+1, v}, dv(n) = k

)
→

k∏
i=1

1

1 + iλ∗ . (2.12)

2.2.2. m > 1 Case. We only have the following result for the m > 1 case in
the inverse de-preferential model.

Theorem 2.11. Let (Gn)∞n=1 be a sequence of random graphs following the
inverse de-preferential attachment model with m > 1. Then ∃ constants
0 < c < C, such that, as n → ∞

P

(
c ≤ di(n)

m
√

log n
≤ C

)
→ 1. (2.13)

This last result is unsatisfactory, as it only states that asymptotically for
every fixed vertex i ≥ 1 the sequence of random variables(

di(n)

m
√

log n

)
n≥1

remains tight. We believe that they must be converging at least in proba-
bility (and equivalently weakly) to a limiting constant.

3. Proofs for the Linear De-preferential Models

This section includes the proofs of the main results for the linear de-
preferential case. We rely on martingale techniques to derive our results.

We start by presenting the proofs for Theorem 2.5 and Theorem 2.6.
Theorem 2.1 and Theorem 2.2 follow by putting m = 1.
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3.1. Proof of Theorem 2.5. We derive a recursive relation for E[di(n)].

E[di(n + 1)] = E[di(n + 1,m− 1)] +
1

n− 1

(
1 − E[di(n + 1,m− 1)]

(m− 1) + m(2n− 1)

)
=

(
1 − 1

n− 1

1

(m− 1) + m(2n− 1)

)
E[di(n + 1,m− 1)]

+
1

n− 1

= αnE[di(n,m)] +
βn

n− 1

where

αn =
m−1∏
j=0

(
1 − 1

(n− 1)(j + m(2n− 1))

)
and

βn = 1 +

m−1∑
k=1

m−1∏
j=m−k

(
1 − 1

(n− 1)(j + m(2n− 1))

)
. Let an = E[di(n)], n ≥ i, ai = m w.p. 1. We define, for n ≥ i + 1

γn =
n−1∏
k=i

αk

We define γi = 1. Therefore, we have the recursion,

an+1

γn+1
=

an
γn

+
βn

(n− 1)γn

=⇒ cn+1 = cn +
βn

(n− 1)γn

where cn = an
γn

, n ≥ i. Therefore, we have,

cn+1 = m +
βi

(i + 1)γi
+ · · · +

βn
(n + 1)γn

We note that βn ↑ m as n → ∞ and that

γn ↓ κ =

m−1∏
j=0

∞∏
n=i

(
1 − 1

(n− 1)(j + m(2n− 1))

)
as n → ∞. Let hn = 1 + 1

i+1 + · · · + 1
n . Then we have hn

logn → 1 as n → ∞.

Using these results, we can prove that cn
hn

→ mκ−1 as n → ∞. We observe
that this implies an

m logn → 1 as n → ∞.

Next we consider the variance. We will establish that for any j ≥ 1 and
k = 0 · · · ,m− 1,

Var[dj(n + 1, k + 1)] ≤ Var[dj(n + 1, k)] +
1

n− 1
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First we observe that

E[dj(n+1, k+1)|Fn+1,k] =

[
1 − 1

(n− 1)(k + m(2n− 1))

]
dj(n+1, k)+

1

n− 1
,

and hence we get

Var[E[dj(n+1, k+1)|Fn+1,k]] =

[
1 − 1

(n− 1)(k + 2m(n− 1))

]2
Var[dj(n+1, k)].

Also, we have,

Var[dj(n + 1, k + 1)|Fn+1,k] = Var[dj(n + 1, k + 1) − dj(n + 1, k)|Fn+1,k]

=
1

n− 1

[
1 − dj(n + 1, k)

k + m(2n− 1)

][
1 − 1

n− 1

[
1 − dj(n + 1, k)

k + m(2n− 1)

]]

≤ 1

n− 1

Combining, we get,

Var[dj(n + 1, k + 1)] = Var[E[dj(n + 1, k + 1)|Fn+1,k]]

+ E[Var[dj(n + 1, k + 1)|Fn+1,k]]

≤ Var[dj(n + 1, k)] +
1

n− 1

Using this relation repetitively, we get,

Var[dj(n + 1)] ≤ Var[dj(n + 1,m− 1)] +
1

n− 1
≤ · · ·

≤ Var[dj(n)] +
m

n− 1

Therefore, Var(dj(n)) ≤ C0 log n for some fixed constant C0. Let c < 1.
For n sufficiently large, E[di(n)] ≥ cm log(n). We fix δ > 0. Therefore, by
Chebyshev inequality, for n sufficiently large,

P

[
| dj(n)

E[dj(n)]
− 1| > δ

]
≤ Var(dj(n))

δ2(E[dj(n)])2

≤ C0 log n

δ2{c(m log n)}2

=
C0

δ2c2m2

1

log n

→ 0
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This establishes that
dj(n)

E[dj(n)]

P→1 as n → ∞. Combining this with the

information that
E[dj(n)]
m logn → 1 as n → ∞, we get that the degree of a fixed

vertex scales like m log n.

3.2. Proof of Theorem 2.6. The Central Limit Theorem will be derived
by an application of the Martingale Central Limit Theorem. We need to
define a “linear” sequence of random variables from the doubly indexed
sequence {di(n, k)} to apply the Central Limit Theorem. To this end, we
define,

Z(k−1)m+j = di(i + k, j)

Also, if {Fn,k} denotes the natural filtration of the random graph process,
then we define

F̃(n−i−1)m+k = Fn,k

We note that for 0 ≤ k ≤ (n − i)m, Zk = di(i + p, q), where p =
⌊

k
m

⌋
+ 1

and q = k (mod m).

It may be easily observed that P (Zk−Zk−1 = 1|F̃k−1) = ζk = 1−P (Zk−
Zk−1 = 0|F̃k−1) where

ζk =
1

i +
⌊
k−1
m

⌋
− 1

1 − Zk−1

(k − 1) (mod m) + m(2i + 2
⌊
k−1
m

⌋
− 1)


We define the triangular array {Yn,k : k = 1, · · · , (n− i)m},

Ynk =
Zk − Zk−1 − E[Zk − Zk−1|F̃k−1]√

m log n

We define σ2
nk = E[Y 2

nk|F̃k−1] = 1
m lognζk(1 − ζk)

Hence we have,

(n−i)m∑
k=1

σ2
nk = I1 − I2 where

I1 =
1

m log n

(n−i)m∑
k=1

ζk

I2 =
1

m log n

(n−i)m∑
k=1

ζ2k
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Now, it follows that I2
P→0 as n → ∞.

I1 = I11 − I12

I11 =
1

m log n

(n−i)m∑
k=1

 1

i +
⌊
k−1
m

⌋
− 1


I12 =

1

m log n

(n−i)m∑
k=1

 Zk−1

(i +
⌊
k−1
m

⌋
− 1)((k − 1) (mod m) + m(2i + 2

⌊
k−1
m

⌋
− 1))


I11 → 1 as n → ∞. We will show that I12

P→0. This will establish that
(n−i)m∑
k=1

σ2
nk

P→1 as n → ∞. We have seen in the proof of Theorem 2.5 that

E[di(n)]
m logn → 1 as n → ∞. Also, Zk = di(i + 1 +

⌊
k−1
m

⌋
, k (mod m)) ≤ di(i +

1+
⌊
k−1
m

⌋
). We fix ϵ > 0. Then ∃N ≥ i such that ∀n ≥ N , E[di(n)]

m logn ≤ (1+ϵ).

Therefore,

E[I12] =
1

m log n

(n−i)m∑
k=1

 E[Zk−1]

(i +
⌊
k−1
m

⌋
− 1)((k − 1) (mod m) + m(2i + 2

⌊
k−1
m

⌋
− 1))


≤ 1

m log n

(n−i)m∑
k=1

 E[Zk−1]

(i +
⌊
k−1
m

⌋
− 1)(m(2i + 2

⌊
k−1
m

⌋
− 1))


≤ 1

m log n

(n−i)m∑
k=1

 E[di(i + 1 +
⌊
k−1
m

⌋
)]

(i +
⌊
k−1
m

⌋
− 1)(m(2i + 2

⌊
k−1
m

⌋
− 1))


=

1

m log n

n−i−1∑
j=0

[
E[di(i + j + 1)]

(i + j − 1)(2i + 2j − 1)

]

≤ 1

m log n

N+1∑
j=0

E[di(i + j − 1)]

(i + j − 1)(2i + 2j − 1)
+

1

log n

n−i−1∑
j=N+2

(1 + ϵ) log(i + j − 1)

(i + j − 1)(2i + 2j − 1)

→ 0

An application of Markov inequality will establish that I12
P→0. Next, we note

that |Ynk| ≤ 2√
m logn

. Hence using the Martingale Central Limit Theorem,

we have,
n∑

k=i+1

Ynk
d−→ N(0, 1) (3.1)
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Finally, we observe that E[Zk − Zk−1|F̃k−1] = ζk. Hence, using similar
arguments as above, we may conclude that

(n−i)m∑
k=1

E[Zk − Zk−1|F̃k−1] −m log n√
m log n

P→0. (3.2)

Combining (3.1) and (3.2) completes the proof.

3.3. Proof of Theorem 2.3. We begin by observing a few important facts
about the frequencies of degrees for the m = 1 case.

Proposition 3.1. Let (Gn)∞n=1 be a sequence of random graphs following a
linear de-preferential attachment model with m = 1. Let

Nk(n) :=

n∑
i=1

1
(
di(n) = k

)
, (3.3)

be the number of vertices with degree k. Then ∃C > 0, such that, as n → ∞.

P (sup
k

|Nk(n) − E[Nk(n)]| ≥ C
√

n log n) → 0. (3.4)

Proof. We first observe that Nk(n) = 0 if k > n.

P (sup
k

|Nk(n) − E[Nk(n)]| ≥ C
√
n log n)

= P (max
k≤n

|Nk(n) − E[Nk(n)]| ≥ C
√
n log n)

≤
n∑

k=1

P (|Nk(n) − E[Nk(n)]| ≥ C
√

n log n)

We will prove that uniformly in k ≤ n,

P (|Nk(n) − E[Nk(n)]| ≥ C
√
n log n) = o(n−1).

For l = 1.2, · · · , n, we define Ml = E[Nk(n)|Fl]. {Ml}nl=1 is a martingale.
M1 = E[Nk(n)|F1] = E[Nk(n)] as F1 is the trivial sigma field. Also,
Mn = Nk(n). Therefore, Mn −M1 = Nk(n) − E[Nk(n)]. As the degree of
at most 2 vertices is affected due to the addition of the lth vertex, we have
|Ml −Ml−1| ≤ 2. Then, by the Azuma-Hoeffding inequality,

P (|Nk(n) − E[Nk(n)]| ≥ a) ≤ 2 exp

[
− a2

8n

]

Taking a = C
√
n log n for any C > 2

√
2, we have,

P (|Nk(n) − E[Nk(n)]| ≥ C
√

n log n) ≤ 2 exp

[
−C2 log n

8

]
= o(n−1)
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This completes the proof of this proposition. □

Our next proposition identifies the limit of the empirical degree distribu-
tion.

Proposition 3.2. In the setup of the previous result, that is, Proposi-
tion 3.1, ∃ a constant C1 such that ∀n ≥ 2 and all k ∈ N,

|E[Nk(n)] − pkn| ≤ C1 log n

where pk = (12)k, k ≥ 1.

Proof. We first note that pk is the unique solution of the recurrence relation

2pk = pk−1 + 1(k=1)

where we define p0 = 0.
Recall, Nk(n) denotes that number of vertices with degree exactly k in

the graph Gn, thus,

NK(n+1)−Nk(n) =


+1 if k = 1 or

k > 1 and (n+ 1)-th vertex joins to a (k − 1) degree vertex
−1 if (n+ 1)-th vertex joins to a k degree vertex
0 otherwise.

(3.5)

Thus,

E[Nk(n + 1) −Nk(n)|Fn]

=
1

n− 1

(
1 − k − 1

2n− 1

)
Nk−1(n) − 1

n− 1

(
1 − k

2n− 1

)
Nk(n) + 1(k=1)

We define ϵk(n) = E[Nk(n)] − npk. We wish to prove that max
k

|ϵk(n)| ≤
C1 log n for some fixed constant C1 > 0. We first note that

E[Nk(n + 1)]

=

(
1 − 1

n− 1

(
1 − k

2n− 1

))
E[Nk(n)] +

1

n− 1

(
1 − k − 1

2n− 1

)
E[Nk−1(n)] + 1(k=1)

Also,

(n + 1)pk = npk + pk

= npk +
1

2
pk−1 +

1

2
1(k=1)

=

(
1 − 1

n− 1

(
1 − k

2n− 1

))
npk +

npk−1

n− 1

(
1 − k − 1

2n− 1

)

+
npk
n− 1

(
1 − k

2n− 1

)
+

(
1

2
− n

n− 1

(
1 − k − 1

2n− 1

))
pk−1 +

1

2
1(k=1)
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Combining, we get,

ϵk(n + 1) =

(
1 − 1

n− 1

(
1 − k

2n− 1

))
ϵk(n) +

1

n− 1

(
1 − k − 1

2n− 1

)
ϵk−1(n)

+
1

2
1(k=1) − γk(n),

where γk(n) = npk
n−1

(
1 − k

2n−1

)
+

(
1
2 − n

n−1

(
1 − k−1

2n−1

))
pk−1. We will now

use induction on n to complete the proof.
We start with the base case n = 2. In this case, Nk(2) = 0 for k > 2.
Now, |N1(2) − 2p1| = 0 and |N2(2) − 2p2| = 1

2 . Therefore, max
k

|ϵk(2)| <

C1 log 2 holds whenever C1 > 1
log 2 . So the proposition holds for the base

case. We will now assume that the proposition is true for n and extend the
proposition to n + 1. So we assume that we have found a C1 > 0 such that
max
k

|ϵk(n)| ≤ C1 log n. We first extend the proposition for k = 1. We have,

ϵ1(n + 1) =

(
1 − 1

n− 1

(
1 − 1

2n− 1

))
ϵ1(n) +

1

2
− n

2(n− 1)

(
1 − 1

2n− 1

)

=

(
1 − 1

n− 1

(
1 − 1

2n− 1

))
ϵ1(n) − 1

2(n− 1)
+

n

2(n− 1)(2n− 1)
,

and thus we get

|ϵ1(n + 1)| ≤

(
1 − 1

n− 1

(
1 − 1

2n− 1

))
|ϵ1(n)| +

1

2(n− 1)
+

n

2(n− 1)(2n− 1)

≤ |ϵ1(n)| +
1

2(n− 1)
+

n

2(n− 1)(2n− 1)

≤ C1 log n +
C1

n + 1
≤ C1 log(n + 1).

The inequalities are true whenever C1 has been chosen so that C1
n+1 ≥

1
2(n−1) + n

2(n−1)(2n−1) for all n ≥ 2. We observe that choosing C1 > 2

suffices, as C1
n+1−

1
2(n−1)−

n
2(n−1)(2n−1) = C1

n+1−
3n−1

2(n−1)(2n−1) ≥
2

(n+1)−
2

2n−1 =
2(n−2)

(n+1)(2n−1) > 0. We have also used that log(n+1) ≥ log n+ 1
n+1 . This follows

from the observation that

log(n + 1) =

∫ n+1

1

1

y
dy

=

∫ n

1

1

y
dy +

∫ n+1

n

1

y
dy

≥ log n +
1

n + 1
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This extends the proposition for k = 1. We now consider the case where
k > 1. We first look at the function γk(n). We have,

|γk(n)| = | npk
n− 1

(
1 − k

2n− 1

)
+

(
1

2
− n

n− 1

(
1 − k − 1

2n− 1

))
pk−1|

= | npk
n− 1

− (n + 1)pk−1

2(n− 1)
+

n(k − 1)pk−1

(n− 1)(2n− 1)
− nkpk

(n− 1)(2n− 1)
|

= | npk
n− 1

− (n + 1)pk
(n− 1)

+
n(k − 1)pk−1

(n− 1)(2n− 1)
− nkpk

(n− 1)(2n− 1)
|

= | − pk
n− 1

+
n

(n− 1)(2n− 1)
{(k − 1)pk−1 − kpk}|

≤ 1

n− 1
+

n

(n− 1)(2n− 1)
sup
k

|(k − 1)pk−1 − pk|

≤ ∆

n + 1

The last inequality follows from the observation that |{(k − 1)pk−1 −
kpk}| = |kpk − pk−1| ≤ 2. Now, we have,

|ϵk(n + 1)|

=

(
1 − 1

n− 1

(
1 − k

2n− 1

))
|ϵk(n)| +

1

n− 1

(
1 − k − 1

2n− 1

)
|ϵk−1(n)| + |γk(n)|

≤

(
1 − 1

n− 1

(
1 − k

2n− 1

))
C1 log n +

1

n− 1

(
1 − k − 1

2n− 1

)
C1 log n +

∆

n + 1

≤ C1 log n +
1

(n− 1)(2n− 1)
C1 log n +

∆

n + 1

≤ C1 log n +
C1

n + 1

The inequalities hold as long as C1 is chosen large enough so that C1
n+1 ≥

1
(n−1)(2n−1)C1 log n+ ∆

n+1 for all n ≥ 2. This holds as long as C1 ≥ ∆

1− (n+1) logn
(n−1)(2n−1)

for all n ≥ 2.
So, we select the constant C1 such that it satisfies the requirements outlined
above. This completes the proof by induction. □

We assume, without loss of generality, that C1 in Proposition 3.2 is
chosen to be larger than C in Proposition 3.1. We have established that

P (max
k

|Nk(n) − E[Nk(n)]| > C1

√
n log n) = o(1). Also, max

k
|E[Nk(n)] −

pkn| ≤ C1 log n.
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P (max
k

|Nk(n) − npk| > C1(log n +
√

n log n) ≤

P (max
k

|Nk(n) − E[Nk(n)]| > C1

√
n log n) = o(1)

This implies that

P

max
k

|Pk(n) − pk| > C1

(
log n

n
+

√
log n

n

) = o(1).

This completes the proof.

3.3.1. Proof of Theorem 2.4. We have, by Theorem 2.3,

P (en+1 = {vn+1, v}, dv(n) = k|Fn) = Nk(n)
1

n− 1

(
1 − k

2n− 1

)
d−→

(
1

2

)k

We note that the sequence Nk(n) 1
n−1

(
1 − k

2n−1

)
is uniformly bounded by 2

and hence uniformly integrable. Therefore, by taking expectations, we have,

P (en+1 = {vn+1, v}, dv(n) = k) →
(

1

2

)k

4. Proofs for the Inverse De-Preferential Models

In this section we provide proofs of the main results for the inverse de-
preferential case.

4.1. Embedding. We begin by providing two very natural yet important
embeddings for the inverse de-preferential models, which are namely, Crump-
Mode-Jagers(CMJ) branching process to be used for the m = 1 case and a
sequence of pure birth processes to be used for the m > 1 case. Such natural
couplings will allow us to analyze various properties of the random graph se-
quence. The approach for the m = 1 case will follow the analysis by Rudas,
Tóth and Valko([9]).

4.1.1. CMJ Branching Process. G denotes the space of finite rooted trees.
If T ∈ G and x is a vertex of T , then we define (T )↓x as the sub-tree
consisting of the the descendants of x.
We start with a graph consisting of a vertex with a half edge. Each vertex
reproduces independently according to i.i.d copies of a pure birth process
{ξ(t) : t ≥ 0}. ξ(0) = 1 w.p. 1 and

P (ξ(t + h) = k + 1|ξ(t) = k) =
h

k
+ o(h)
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Let {Υ(t) : t ≥ 0} denote the randomly growing tree. For every t ≥ 0,
Υ(t) ∈ G. We define the following sequence of random times

τ2 := inf{t ≥ 0 : |Υ(t)| = 2}
τ3 := inf{t ≥ τ2 : |Υ(t)| = 3}

...

τn := inf{t ≥ τn−1 : |Υ(t)| = n}
...

We look at the tree Υ(t) at the random times {τn}. Let {Gn}∞n=2 denote the
random graph sequence under the inverse de-preferential attachment case
when m = 1. This gives us the following result.

Theorem 4.1. The sequence of random graphs {Gn}∞n=2 is distributed iden-
tically as {Υ(τn)}∞n=2.

We will find it useful to consider the pure birth process {ξ(t) : t ≥ 0} as
a point process, where the points occur at the birth times {Tn}∞n=1 of the
pure birth process. We define the expected Laplace Transform of the point
process {ξ(t) : t ≥ 0}

ρ̂(λ) = E

(∫ ∞

0
exp(−λt)dξ(t)

)
=

∞∑
n=1

n−1∏
i=0

1

(i + 1)λ + 1

ρ̂(λ) may be calculated easily because {Tn−Tn−1} are independent random
variables with Exp(1/n) distribution, that is, exponential distributions with
mean n. We observe that the equation ρ̂(λ) = 1 has a unique root λ = λ∗.
λ∗ is usually referred to as the Malthusian Parameter in the context of
Crump-Mode-Jagers Branching Processes. The process {Υ(t) : t ≥ 0} is a
supercritical, Malthusian Branching Process. Then using a theorem from
O.Nerman (1981)(Theorem A, [9]), we have the following result.

Theorem 4.2. Consider a bounded function ϕ : G → R. Then the following
limit holds almost surely

lim
t→∞

1

|Υ(t)|
∑

x∈Υ(t)

ϕ(Υ(t)↓x) = λ∗
∫ ∞

0
exp{−λ∗t}E(ϕ(Υ(t)))dt.

4.1.2. Athreya-Karlin Embedding. For m > 1, we will couple our graph pro-
cess with a sequence of Yule processes (i.i.d pure birth processes), with
appropriate birth rates, such that, our degree sequences at each vertex will
have the same distribution as the number of particles in the respective Yule
processes sampled at suitable random times. Similar coupling has been used
in [1, 2] and also in [5], where it is termed as Rubin’s construction in the con-
text of reinforced random walks. The coupling with our specific birthrates,
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namely, λi = 1
i has also appeared in a recent work of Thacker and Volkov

[12].
It is worth mentioning here that unlike in the previous case m = 1, when

the entire graph process can be embedded inside a branching tree, in this
case we are not embedding the entire graph process into the random forest
which can be obtained from the Yule processes. Instead, this coupling is
essentially only for the degree sequences at each vertex. Thus, having self-
loops and multiple edges in our random graphs, which can occur since m > 1,
do not create any contradiction to this coupling.

Let {Z(t) : t ≥ 0} be a pure birth process with Z(0) = m w.p. 1 and
birth rates {λi}∞i=m, λi = 1

i . Let {Zi(t) : t ≥ 0}∞i=1 be i.i.d. copies of the
pure birth process Z(t).

We will define a sequence of random times {τn}∞n=1. Let τ1 = 0 w.p.1.

We start the process Z1(t) at t = 0. Let T
(2)
1 be the time after τ1 when the

first birth takes place in Z1. Let T
(2)
2 be the time after τ1 + T

(2)
1 when the

second birth occurs in Z1. We continue in this manner to get T
(2)
1 , · · · , T (2)

m .
Let τ2 be the time when the mth birth occurs in Z1(t− τ1). We start a new
process Z2(t) at t = τ2. We have,

τ2 − τ1 = T
(2)
1 + · · · + T (2)

m

In general, let T
(n+1)
k denote the time of kth cumulative birth in Z1, · · · , Zn

after τn + T
(n+1)
1 + · · · + T

(n+1)
k−1 . Let τn+1 be the time after τn when the

mth birth takes place in the processes Z1, Z2, · · · , Zn after τn. We start the
process Zn+1(t) at t = τn+1.Therefore, we have,

τn+1 − τn = T
(n+1)
1 + · · · + T (n+1)

m

We define, for j = 1, · · · , n,

d̃j(n + 1, k) = Zj(τn + T
(n+1)
1 + · · · + T

(n+1)
k − τi)

We have the following embedding result.

Theorem 4.3. The sequence {d̃j(n+1, k), k = 0, · · · ,m−1, j = 1, · · · , n, n ≥
2} and {dj(n + 1, k), k = 0, · · · ,m − 1, j = 1, · · · , n, n ≥ 2} are identically
distributed.

It is important to emphasize at this point that the embedding of the
random graph process in the m = 1 case into a CMJ branching process
induces an Athreya-Karlin Embedding of the random graph process in the
same probability space. We will be utilizing both these embeddings for the
m = 1 case to establish certain properties of these random graphs.

We note that the pure birth process Z(t) considered in Section 4.1.2
reduces to the birth process ξ(t) considered in Section 4.1.1 if we fix m = 1.
We will need the following results about the asymptotic properties of these
pure birth processes.
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Theorem 4.4. Let {Z(t) : t ≥ 0} be a pure birth process with Z(0) = m

w.p. 1 and birth rates {λi}∞i=m, λi = 1
i . Then Z(t)√

t

P→
√

2 as t → ∞.

Proof. Let

T1 = 0

T2 = inf{t ≥ T1 : Z(t) = m + 1}
T3 = inf{t ≥ T2 : Z(t) = m + 2}

...

Then we know, T1, T2 − T1, · · · , Tn − Tn−1, · · · are independent exponential
random variables. Therefore, Ln = Tn+1 − Tn are independent and Ln ∼
Exp( 1

m+n−1).Then we have

Tn = L1 + · · · + Ln−1

=⇒ E(Tn) = m + (m + 1) + · · · + (m + n− 2)

=⇒ E(Tn) = (n− 1)m +
(n− 1)(n− 2)

2

Also, Var(Ln) = (m + n− 1)2. Hence we have,
∞∑
k=1

Var

(
Lk

k2

)
=

∞∑
k=1

(m + k − 1)2

k4
< ∞.

Thus,
∑∞

k=1
Lk−E[Lk]

k2
< ∞ w.p. 1. First, this implies that Lk

k2
→ 0 a.s.,

because E(Lk) = (m+k−1). Further, an application of Kronecker’s Lemma

yields that Tn−E[Tn]
n2 → 0 w.p. 1. This allows us to conclude that Tn

n2 → 1
2

a.s.
We observe that Z(t) ↑ ∞ as t → ∞ and TZ(t) ≤ t < TZ(t)+1. Therefore,

TZ(t)

(Z(t))2
≤ t

(Z(t))2
<

TZ(t)

(Z(t))2
+

LZ(t)

(Z(t))2

=⇒ Z(t)√
t

→
√

2 a.s.

This completes the proof. □

4.2. Technical Results on Normalizing Constant. The results estab-
lished below allow us to approximate the normalizing constants for the de-
preferential attachment model.

Let F̃n,k denote the natural filtration associated with the continuous time

embedding d̃j(n + 1, k) described in section 4.1.2. We define

C̃−1
n+1,k = D̃n+1,k =

n∑
j=1

1

d̃j(n + 1, k)
.

The natural filtration {F̃n} and the constants C̃n and D̃n are defined anal-
ogously for the m = 1 case.
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Lemma 4.5. For m = 1, D̃n
n → λ∗ a.s.

Proof. The proof follows from Theorem A, [9] by using the bounded func-
tional ϕ(G) = 1

1+#children(∅) , where ∅ is the root of a finite tree G ∈ G. □

For m > 1, we have the following bounds on the normalizing constants.

Lemma 4.6. ∀n ≥ 2,∀k = 0, 1, · · · ,m− 1, m
n−1 ≤ Cn,k ≤ 2m

n−1 wp 1.

Proof. We note that C−1
n,k = Dn,k =

n−1∑
j=1

1

dj(n, k)
. We observe that dj(n, k) ≥

m for j = 1, · · · , n − 1 and therefore Dn,k ≤ n−1
m . We also observe that

n−1∑
j=1

dj(n, k) = k + m(2n− 3). Therefore, by the A.M.-H.M. inequality,

n−1∑
j=1

1

dj(n, k)
≥ (n− 1)2

k + m(2n− 3)

≥ n− 1

2m

Combining, we get that n−1
2m ≤ Dn,k ≤ n−1

m . Therefore, we have, m
n−1 ≤

Cn,k ≤ 2m
n−1 w.p. 1. □

We use Theorem 4.3 to conclude that D̃n+1,k and Dn+1,k are identically
distributed. Therefore, using the previous lemma, we have,

m

n
≤ C̃n+1,k ≤ 2m

n
(4.1)

Proposition 4.7. ∀i ≥ 1, ∃ a random sequence {cn} ∼ Θ(m2 log n) such
that

τn − τi
cn

→ 1 a.s.

as n → ∞.

Proof. We observe that the random variables T
(n+1)
1 , · · · , T (n+1)

m are inde-
pendent and that

T
(n+1)
1 |F̃n+1,0 ∼ Exp(D̃n+1,0)

T
(n+1)
2 |F̃n+1,1 ∼ Exp(D̃n+1,1)

...

T (n+1)
m |F̃n+1,m−1 ∼ Exp(D̃n+1,m−1)

We define

bn = C̃n+1,0 + E[C̃n+1,1|F̃n+1,0] + · · · + E[C̃n+1,m−1|F̃n+1,0]
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Then, using equation (4.1), we may conclude that,

m2

n
≤bn ≤ 2m2

n
(4.2)

Now, recall that τn+1 − τn =
m∑
k=1

T
(n+1)
k . Thus, {τn+1 − τn − bn, F̃n+1,0}

forms a martingale difference sequence. Further, we have,
∑

b2n < ∞, which
implies that Yn = τn − τi − (bi + · · · + bn) is an L2 bounded martingale.
Therefore, by the Martingale Convergence Theorem, we have, Yn → Y a.s.
as n → ∞. We define,

cn = bi + · · · + bn

Therefore,

τn − τi − cn
a.s.→Y

=⇒ τn − τi
cn

a.s.→1

Again, using equation (4.2), it easily follows that cn ∼ Θ(m2 log n). This
completes the proof. □

Proposition 4.8. For m = 1, the sequence {cn} outlined in Proposition 4.7
satisfies cn

logn → 1
λ∗ as n → ∞.

Proof. From Lemma 4.5, we have nC̃n → 1
λ∗ a.s. as n → ∞. This observa-

tion, along with the form of the sequence cn, help us to conclude the result
sought. □

4.3. Proof of Theorem 2.7. From Theorem 4.3 we have, for j = 1, · · · , n,
dj(n) is distributed identically as Zj(τn− τj). Also, combining Theorem 4.4
and Proposition 4.7 ,we have,

Zi(τn − τi)√
cn

→
√

2 a.s.

=⇒ di(n)
√
cn

→
√

2 a.s.

Finally, we note from Proposition 4.8, that cn
logn → 1

λ∗ a.s. This helps us to

conclude that the result in consideration.

4.4. Proof of Theorem 2.8. We use Theorem A, [9] with ϕ(G) = 1(#children(∅, G) =
k) where ∅ denotes the root of the tree G. Then we have,

lim
t→∞

|{x ∈ Υ(t) : deg(x,Υ(t)) = k + 1}|
|Υ(t)|

= λ∗
∫ ∞

0
exp(−λ∗t)P (#children(∅,Υ(t)) = k)dt
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Now,

P (#children(∅,Υ(t)) = k) = P (Tk < t) − P (Tk+1 < t)

By Fubini’s Theorem, we have,

λ∗
∫ ∞

0
exp(−λ∗t)P (Tk < t)dt = E(e−λ∗Tk)

Tk is the sum of independent exponentially distributed random variables
with parameters 1, 12 ,

1
3 , · · · ,

1
k , this can be easily calculated. This completes

the proof.

4.5. Proof of Corollary. 2.9 We first define

p̃k =
kλ∗

kλ∗ + 1

k−1∏
i=1

1

iλ∗ + 1
, k = 1, 2, · · ·

(i) We observe that λ∗ > 1 and note that
p̃k+1

p̃k
≤ 1 ∀k ≥ 1 . This proves

that the mode of the distribution is at 1.
(ii) We observe that

∞∑
k=n

p̃(k) =

n−1∏
i=1

1

1 + iλ∗

=⇒
∞∑
n=1

∞∑
k=n

p̃(k) = 2.

(iii)

∞∑
k=n

p̃(k) =

n−1∏
i=1

1

1 + iλ∗

=
1

(λ∗)n−1

Γ
(

1 + 1
λ∗

)
Γ
(
n + 1

λ∗

)
The proof may be completed by applying Stirling’s approximation

for the Gamma function, Γ(x + 1) ∼
√

2π exp(−x)x(x+
1
2
).

4.6. Proof of Theorem 2.10. We will use the Athreya-Karlin Embedding.
Let Ñk(n) denote the number of processes with exactly k individuals at time
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τn. Hence, combining Lemma 4.5 and Theorem 2.8 , we have,

P (d̃v(n + 1) − d̃v(n) = 1, d̃v(n) = k|F̃n) = Ñk(n).C̃n
1
k

= Ñk(n)
n .nC̃n

1
k

a.s.−→ 1
kλ∗

kλ∗

kλ∗+1

k−1∏
i=1

1

iλ∗ + 1

=

k∏
i=1

1

1 + iλ∗

We note that the sequence Ñk(n).C̃n
1
k is uniformly bounded and hence uni-

formly integrable. Taking expectations gives us the result sought.

4.6.1. Proof of Theorem 2.11. From Theorem 4.3 we have, for j = 1, · · · , n,
dj(n) is distributed identically as Zj(τn− τj). Also, combining Theorem 4.4
and Proposition 4.7 ,we have,

Zi(τn − τi)√
cn

→
√

2 a.s.

=⇒ di(n)
√
cn

→
√

2 a.s.

Finally, we note from Proposition 4.7, that cn ∼ Θ(m2 log n). This concludes
the proof.
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