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1

Introduction

In this course on game theory, we will be studying a range of mathematical

models of conflict and cooperation between two or more agents. We begin

with an outline of the content of this course.

We begin with the classic two-person zero-sum games. In such games,

both players move simultaneously, and depending on their actions, they each

get a certain payoff. What makes these games “zero-sum” is that each player

benefits only at the expense of the other. We will show how to find optimal

strategies for each player in such games. These strategies will typically turn

out to be a randomized choice of the available options.

For example, inPenalty Kicks, a soccer/football-inspired zero-sum game,

one player, the penalty-taker, chooses to kick the ball either to the left or

to the right of the other player, the goal-keeper. At the same instant as the

kick, the goal-keeper guesses whether to dive left or right.

Fig. 1.1. The game of Penalty Kicks.

The goal-keeper has a chance of saving the goal if he dives in the same

direction as the kick. The penalty-taker, being left-footed, has a greater

likelihood of success if he kicks left. The probabilities that the penalty kick

scores are displayed in the table below:

1
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goal-keeper

L R

p
en

al
ty
-

ta
ke
r L 0.8 1

R 1 0.5

For this set of scoring probabilities, the optimal strategy for the penalty-

taker is to kick left with probability 5/7 and kick right with probability 2/7

— then regardless of what the goal-keeper does, the probability of scoring is

6/7. Similarly, the optimal strategy for the goal-keeper is to dive left with

probability 5/7 and dive right with probability 2/7.

In general-sum games, the topic of Chapter 3, we no longer have op-

timal strategies. Nevertheless, there is still a notion of a “rational choice”

for the players. A Nash equilibrium is a set of strategies, one for each

player, with the property that no player can gain by unilaterally changing

his strategy. It turns out that every general-sum game has at least one Nash

equilibrium. The proof of this fact requires an important geometric tool, the

Brouwer fixed-point theorem.

One interesting class of general-sum games, important in computer sci-

ence, is that of congestion games. In a congestion game, there are two

drivers, I and II, who must navigate as quickly as possible through a con-

gested network of roads. Driver I must travel from city B to city D, and

driver II, from city A to city C.

(3,5) (2,4)

B C

(1,2)

(3,4)

A D

Fig. 1.2. A congestion game. Shown here are the commute times for the
four roads connecting four cities. For each road, the first number is the
commute time when only one driver uses the road, the second number is
the commute time when two drivers use the road.

The travel time for using a road is less when the road is less congested.

In the ordered pair (t1, t2) attached to each road in the diagram below,

t1 represents the travel time when only one driver uses the road, and t2
represents the travel time when the road is shared. For example, if drivers I

and II both use road AB, with I traveling from A to B and II from B to A,

then each must wait 5 units of time. If only one driver uses the road, then

it takes only 3 units of time.
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A development of the last twenty years is the application of general-sum

game theory to evolutionary biology. In economic applications, it is often

assumed that the agents are acting “rationally,” which can be a hazardous

assumption in many economic applications. In some biological applications,

however, Nash equilibria arise as stable points of evolutionary systems com-

posed of agents who are “just doing their own thing.” There is no need for

a notion of rationality.

Chapter 4 considers games with asymmetric information and signaling. If

one player has some information that another does not, that may be to his

advantage. But if he plays differently, might he give away what he knows,

thereby removing this advantage?

The topic of Chapter 8 is cooperative game theory, in which players

form coalitions to work toward a common goal. As an example, suppose

that three people are selling their wares in a market. Two are each selling

a single, left-handed glove, while the third is selling a right-handed one. A

wealthy tourist enters the store in dire need of a pair of gloves. She refuses to

deal with the glove-bearers individually, so that it becomes their job to form

coalitions to make a sale of a left- and right-handed glove to her. The third

player has an advantage, because his commodity is in scarcer supply. This

means that he should be able to obtain a higher fraction of the payment that

the tourist makes than either of the other players. However, if he holds out

for too high a fraction of the earnings, the other players may agree between

them to refuse to deal with him at all, blocking any sale, and thereby risking

his earnings. Finding a solution for such a game involves a mathematical

concept known as the Shapley value.

Another major topic within game theory concerns the design of markets

or schemes (which are themselves games) that achieve desirable outcomes in

equilibrium. This is called mechanism design. Chapter 5 considers social

choice, settings in which we wish to design a mechanism that aggregates

the preferences of a collection of individuals in some socially desirable way.

The most basic example is the design of voting schemes. Unfortunately,

the most important result here, Arrow’s Impossibility Theorem, is negative.

It states, more or less, that if there is an election with more than two can-

didates, then no matter which system one chooses to use for voting, there

is trouble ahead: at least one desirable property that we might wish for the

election will be violated.

Chapter 6 shows how introducing payments into the mechanism design

problem can alleviate some of the difficulties presented in Chapter 5. One

of the most important results here is the famous VCG mechanism which

shows how to use payments to design a mechanism that maximizes social
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welfare, the total happiness of society while incentivizing the participants in

the mechanism to report their private information truthfully. The simplest

example of this is a sealed-bid auction for a single item. In this setting,

there is always a temptation for bidders to bid less than their true value for

an item. But suppose the goal of the auction designer is to ensure that the

item ends up in the hands of the bidder that values it the most. Bandwidth

auctions conducted by governments are an example of a setting where this

is the goal. If bidders are not incentivized to report their value for the item

truthfully, then there is no guarantee that the auction designer’s goal will be

achieved. An elegant solution to this problem is to conduct a second-price

auction, in which the item is sold to the bidder that bid highest, but that

bidder only pays the bid of the second highest bidder. This turns out to

incentivize bidders to bid truthfully.

Another problem in the realm of social choice is the stable matching

problem, the topic of Chapter 7. Suppose that there are nmen and n women,

each man has a sorted list of the women he prefers, and each woman has

a sorted list of the men that she prefers. A matching between them is

stable if there is no man and woman who both prefer one another to their

partners in the matching. Gale and Shapley showed that there always is a

stable matching, and showed how to find one. Stable matchings generalize

to stable assignments, and these are found by centralized clearinghouses for

markets, such as the National Resident Matching Program which each year

matches about 20,000 new doctors to residency programs at hospitals.

Chapter 9 studies a variety of other types of mechanism design problems.

An example is the problem of fairly sharing a resource. Consider the problem

of a pizza with several different toppings, each distributed over portions of

the pizza. The game has two or more players, each of whom prefers certain

toppings. If there are just two players, there is a well-known mechanism for

dividing the pizza: One splits it into two sections, and the other chooses

which section he would like to take. Under this system, each player is at

least as happy with what he receives as he would be with the other player’s

share. What if there are three or more players? We will study this question,

as well as an interesting variant of it.

Finally, we turn to combinatorial games, in which two players take

turns making moves until a winning position for one of the players is reached.

The solution concept for this type of game is a winning strategy — a

collection of moves for one of the players, one for each possible situation,

that guarantees his victory.

A classic example of a combinatorial game is Nim. In Nim, there are

several piles of chips, and the players take turns choosing a pile and removing
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one or more chips from it. The goal for each player is to take the last chip.

We will describe a winning strategy for Nim and show that a large class of

combinatorial games are essentially similar to it.

Chess and Go are examples of popular combinatorial games that are fa-

mously difficult to analyze. We will restrict our attention to simpler exam-

ples, such as the game of Hex, which was invented by Danish mathemati-

cian, Piet Hein, and independently by the famous game theorist John Nash,

while he was a graduate student at Princeton. Hex is played on a rhom-

bus shaped board tiled with small hexagons (see Figure 1.3). Two players,

Blue and Yellow, alternate coloring in hexagons in their assigned color, blue

or yellow, one hexagon per turn. The goal for Blue is to produce a blue

chain crossing between his two sides of the board. The goal for Yellow is to

produce a yellow chain connecting the other two sides.

Fig. 1.3. The board for the game of Hex.

As we will see, it is possible to prove that the player who moves first can

always win. Finding the winning strategy, however, remains an unsolved

problem, except when the size of the board is small.

In an interesting variant of the game, the players, instead of alternating

turns, toss a coin to determine who moves next. In this case, we are able

to give an explicit description of the optimal strategies of the players. Such

random-turn combinatorial games are the subject of Chapter 11.

Game theory and mechanism design remain an active area of research,

and our goal is whet the reader’s appetite by introducing some of its many

facets.
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Two-person zero-sum games

We begin with the theory of two-person zero-sum games, developed in a

seminal paper by John von Neumann and Oskar Morgenstern. Two-person

zero-sum games are perfectly competitive games, in which one player’s loss

is the other player’s gain. The central theorem for two-person zero-sum

games is that even if each player’s strategy is known to the other, there

is an amount that one player can guarantee as her expected gain, and the

other, as his maximum expected loss. This amount is known as the value

of the game.

2.1 Examples

Consider the following game:

Example 2.1.1 (Pick-a-Hand, a betting game). There are two players,

Chooser (player I), and Hider (player II). Hider has two gold coins in his

back pocket. At the beginning of a turn, he† puts his hands behind his back

and either takes out one coin and holds it in his left hand (strategy L1),

or takes out both and holds them in his right hand (strategy R2). Chooser

picks a hand and wins any coins the hider has hidden there. She may get

nothing (if the hand is empty), or she might win one coin, or two.

The following matrix summarizes the payoffs to Chooser in each of the

cases.

Hider

L1 R2

C
h
o
os
er

L 1 0

R 0 2

† In all two-person games, we adopt the convention that player I is female and player II is male.

6



2.1 Examples 7

How should Hider and Chooser play? Imagine that they are conservative

and want to optimize for the worst case scenario. Hider can guarantee

himself a loss of at most 1 by selecting action L1 (whereas if he selects R2,

he has the potential to lose 2). Chooser cannot guarantee herself any positive

gain since if she selects L, in the worst case, Hider selects R2, whereas if she

selects R, in the worst case, Hider selects L1.

Now consider expanding the possibilities available to the players by in-

corporating randomness. Suppose that Hider selects L1 with probability y1
and R2 with probability y2 = 1− y1. Hider’s expected loss is y1 if Chooser

plays L, and 2(1− y1) if Chooser plays R. Thus Hider’s worst-case expected

loss is max(y1, 2(1 − y1)). To minimize this, Hider will choose y1 = 2/3,

guaranteeing himself an expected loss of at most 2/3. See Figure 2.1.

Expected
 gain

of Chooser

Worst-case gain 

1

2

2/3
0

Chooser’s choice of 

 : when Hider 
     plays L1

         : when Hider
             plays R2

 Expected
loss

of Hider Worst-case 
     loss 

Hider’s choice of

 : when Chooser 
plays L

         : when Chooser 
             plays R

1

2

2/3
0

Fig. 2.1. The left side of the figure shows the worst-case expected gain of
Chooser as a function of x1, the probability with which she plays L. The
right side of the figure shows the worst-case expected loss of Hider as a
function of y1, the probability with which he plays L1.

Similarly, suppose that Chooser selects L with probability x1 and R

with probability x2 = 1 − x1. Then Chooser’s worst-case expected gain

is min(x1, 2(1 − x1)). To maximize this, she will choose x1 = 2/3, guaran-

teeing herself an expected gain of at least 2/3.

This example illustrates a striking general feature of zero-sum games.

With randomness, conservative play is optimal: Since Hider can guarantee

himself an expected loss of at most 2/3, Chooser cannot do better than the

strategy that guarantees her an expected gain of 2/3, and vice versa.

Notice that without some extra incentive, it is not in Hider’s interest to

play Pick-a-hand because he can only lose by playing. To be enticed into

joining the game, Hider will need to be paid at least 2/3.



8 Two-person zero-sum games

Exercise 2.1.2 (Another Betting Game). Consider the betting game

with the following payoff matrix:

player II

L R

p
la
ye
r
I

T 0 2

B 5 1

Draw graphs for this game analogous to those shown in Figure 2.1. This

exercise is solved in §Section 2.9.

2.2 Definitions

A two-person zero-sum game can be represented by an m × n payoff pay-

off matrix A = (aij), whose rows are indexed by the m possible actions

of player I, and whose columns are indexed by the n possible actions of

player II. Player I selects an action i and player II selects an action j,

each unaware of the other’s selection. Their selections are then revealed and

player II pays player I the amount aij .

It is elementary to verify that

max
i

min
j
aij ≤ min

j
max

i
aij (2.1)

since player I can guarantee gaining the left hand side and player II can

guarantee not losing more than the right hand side. (For a formal proof, see

Lemma 2.6.3.) Unfortunately, as in Example 2.1.1, without randomness,

the inequality is usually strict. With randomness, the situation is more

promising.

A strategy in which each action is selected with some probability is a

mixed strategy. A mixed strategy for player I is determined by a vector

(x1, . . . , xm)T where xi represents the probability of playing action i. The

set of mixed strategies for player I is denoted by

∆m =

{

x ∈ Rm : xi ≥ 0,

m
∑

i=1

xi = 1

}

.

Similarly, the set of mixed strategies for player II is denoted by

∆n =







y ∈ Rn : yj ≥ 0,

n
∑

j=1

yj = 1







.

A mixed strategy in which a particular action is played with probability

1 is called a pure strategy. Observe that in this vector notation, pure
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strategies are represented by the standard basis vectors, though we often

identify the pure strategy ei with the corresponding action i.

If player I employs strategy x, she can guarantee herself an expected gain

of

min
y∈∆m

xTAy = min
j

(xTA)j (2.2)

(Write z = xTA. Then zTy =
∑

j zjyj is a weighted average of the zj ’s for

y ∈ ∆m, so miny∈∆m zTy = minj zj.)

A conservative player will choose x to maximize (2.2).

Definition 2.2.1. A mixed strategy x∗ ∈ ∆m is a safety strategy for

player I if the maximum over x ∈ ∆m of the function

x 7→ min
y∈∆n

xTAy

is attained at x∗. The value of this function at x∗ is the safety value for

player I . Similarly, a mixed strategy y∗ ∈ ∆n is a safety strategy for

player II if the minimum over y ∈ ∆n of the function

y 7→ max
x∈∆m

xTAy

is attained at y∗. The value of this function at y∗ is the safety value for

player II .

Remark. For the existence of safety strategies see Lemma 2.6.3.

Safety strategies might appear conservative, but the following celebrated

theorem shows that the two players’ safety values coincide.

Theorem 2.2.2. von Neumann’s Minimax Theorem For any finite

two-person zero-sum game, there is a number V , called the value of the

game, satisfying

max
x∈∆m

min
y∈∆n

xTAy = V = min
y∈∆n

max
x∈∆m

xTAy. (2.3)

We will prove the minimax theorem in §Section 2.6.

Remarks:

(i) It is easy to check that the left hand side of equation (2.3) is upper
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bounded by the right hand side, i.e.

max
x∈∆m

min
y∈∆n

xTAy ≤ min
y∈∆n

max
x∈∆m

xTAy. (2.4)

(See the argument for equation 2.1 and Lemma 2.6.3). The magic of

zero-sum games is that, in mixed strategies, this inequality becomes

an equality.

(ii) If x∗ is a safety strategy for player I and y∗ is a safety strategy for

player II, then it follows from Theorem 2.2.2 that:

min
y∈∆n

(x∗)TAy = V = max
x∈∆m

xTAy∗. (2.5)

In words, this means that the mixed strategy x∗ yields player I an

expected gain of at least V , no matter how II plays, and the mixed

strategy y∗ yields player II an expected loss of at most V , no matter

how I plays. Therefore, from now on, we will refer to the safety

strategies as optimal strategies.

2.3 Saddle points and Nash equilibria

A notion of great importance in game theory is the notion of Nash equi-

librium. In this section, we introduce this notion and show that a pair

of strategies in a zero-sum game is optimal if and only if they are in Nash

equilibrium.

Example 2.3.1. In the following game, if both players are playing action

1, then neither has an incentive to switch. Note this game has value 1.

player II

action 1 action 2

p
la
ye
r
I

action 1 1 2

action 2 0 −1

Such an entry, which is the largest in its column and the smallest in its

row, is called a saddle point.

Definition 2.3.2. A saddle point† of a payoff matrix A is a pair (i∗, j∗)
such that

max
i
aij∗ = ai∗j∗ = min

j
ai∗j (2.6)

† The term saddle point comes from the continuous setting where a function f(x, y) of two
variables has a point (x∗, y∗) at which locally maxx f(x, y∗) = f(x∗, y∗) = miny f(x∗, y) .
Thus, the surface resembles a saddle that curves up the the y direction and curves down in the
x direction.
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A saddle point is also known as a pure Nash equilibrium. More gen-

erally we have the following definition:

Definition 2.3.3. A pair of strategies (x∗,y∗) is a Nash equilibrium in

a zero-sum game with payoff matrix A if

min
y∈∆n

(x∗)TAy = (x∗)TAy∗ = max
x∈∆m

xTAy∗. (2.7)

Thus, even if player I when selecting her strategy knows player II is playing

strategy y∗, she has no incentive to switch from x∗ to a different strategy x

(and similarly for player II).

Remark. If x∗ = ei∗ and y∗ = ej∗ , then by Equation (2.2), this definition

coincides with Definition 2.3.2.

Theorem 2.3.4. A pair of strategies (x∗, y∗) is optimal if and only if (x∗,
y∗) is a Nash equilibrium.

Proof. Suppose that x∗ is an optimal strategy for player I and y∗ is an

optimal strategy for player II. Then, by Theorem 2.2.2 and Definition 2.2.1,

we have

(x∗)TAy∗ ≥ min
y∈∆n

(x∗)TAy = V = max
x∈∆m

xTAy∗ ≥ (x∗)TAy∗,

and thus all these inequalities are equalities and 2.7 holds. For the other

direction, observe that for any pair of vectors x∗ and y∗

min
y∈∆n

(x∗)TAy ≤ max
x∈∆m

min
y∈∆n

xTAy ≤ min
y∈∆n

max
x∈∆m

xTAy ≤ max
x∈∆m

xTAy∗.

If (2.7) holds, then all these inequalities become equalities and thus x∗ and

y∗ are optimal.

Remark. It follows that if (i∗, j∗) is a saddle point, then i∗ is an optimal

strategy for player I and j∗ is an optimal strategy for player II.

2.4 Simplifying and solving zero-sum games

In this section, we will discuss techniques that help us understand zero-

sum games and solve them (that is, find their value and determine optimal

strategies for the two players).
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2.4.1 The technique of domination

Domination is a technique for reducing the size of a game’s payoff matrix,

enabling it to be more easily analyzed. Consider the following example.

Example 2.4.1 (Plus One). Each player chooses a number from {1, 2, . . . , n}
and writes it down; then the players compare the two numbers. If the num-

bers differ by one, the player with the higher number wins $1 from the other

player. If the players’ choices differ by two or more, the player with the

higher number pays $2 to the other player. In the event of a tie, no money

changes hands.

The payoff matrix for the game is:

player II

1 2 3 4 5 6 · · · n

p
la
ye
r
I

1 0 −1 2 2 2 2 · · · 2

2 1 0 −1 2 2 2 · · · 2

3 −2 1 0 −1 2 2 · · · 2

4 −2 −2 1 0 −1 2 · · · 2

5 −2 −2 −2 1 0 −1 2 2

6 −2 −2 −2 −2 1 0 2 2
...

...
... −2 −2 . . .

...

n− 1 −2 −2 · · · 0 −1
n −2 −2 · · · 1 0

In this payoff matrix, every entry in row 4 is at most the corresponding

entry in row 1. Thus player I has no incentive to play 4 since it is dominated

by row 1. In fact, rows 4 through n are all dominated by row 1, and hence

player I can ignore those strategies.

By symmetry, we see that player II need never play any of strategies 4

through n. Thus, in Plus One we can search for optimal strategies in the

reduced payoff matrix:

player II

1 2 3

p
la
ye
r
I 1 0 −1 2

2 1 0 −1
3 −2 1 0

To analyze the reduced game, let xT = (x1, x2, x3) be player I’s mixed

strategy. For x to be optimal, each component of

xTA = (x2 − 2x3, − x1 + x3, 2x1 − x2) (2.8)
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must be at least the value of the game. In this game, there is complete

symmetry between the players. This implies that the payoff matrix is anti-

symmetric: the game matrix is square and aij = −aji for every i and

j.

Claim 2.4.2. If the payoff matrix of a zero-sum game is anti-symmetric,

then the game has value 0.

Proof. If V is the safety value for player I, then by symmetry, −V is the

safety value for II, and since these coincide, V = 0.

We conclude that for any optimal strategy x in Plus One

x2 − 2x3 ≥ 0

−x1 + x3 ≥ 0

2x1 − x2 ≥ 0,

Thus x2 ≥ 2x3, x3 ≥ x1, and 2x1 ≥ x2. If one of these inequalities was

strict, then adding the first, twice the second and the third, we could deduce

x2 > x2, so in fact each of them must be an equality. Solving the resulting

system, with the constraint x1 + x2 + x3 = 1, we find that the optimal

strategy for each player is (1/4, 1/2, 1/4).

2.4.2 Summary of Domination

We say a row ℓ of a two-person zero-sum game dominates row i if aℓj ≥ aij
for all j. When row i is dominated, then there is no loss to player I if she

never plays it. More generally, we say that subset I of rows dominates row

i if there is a convex combination βℓ, for ℓ ∈ I (i.e. βℓ ≥ 0 for all ℓ ∈ I and
∑

ℓ∈I βℓ = 1) such that for every j
∑

ℓ∈I
βℓaℓj ≥ aij . (2.9)

In this situation, there is no loss to player I in ignoring row i.

Analogously for columns, we say that subset J of columns dominates

column j if there is a convex combination βℓ, for ℓ ∈ J such that
∑

ℓ∈J
βℓaiℓ ≤ aij

for every i. In this situation, there is no loss to player II in ignoring column

j.
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Exercise 2.4.3. Prove that if equation (2.9) holds, then player I can safely

ignore row i.

Solution: Consider any mixed strategy x for player I, and use it to construct

a new strategy z in which zi = 0, zℓ = xℓ + βℓxi, for ℓ ∈ I, and zk = xk for

k 6∈ I ∪ {i}. Then, against II’s j-th strategy:

(zTA− xTA)j =
∑

ℓ∈I
(xℓ + βℓxi − xℓ)aℓj − xiaij ≥ 0.

2.4.3 The use of symmetry

Another way to simplify the analysis of a game is via the technique of sym-

metry. We illustrate a symmetry argument in the following example:

Example 2.4.4 (Submarine Salvo).

S

B

S

Fig. 2.2.

A submarine is located on two adjacent squares of a three-by-three grid.

A bomber (player I), who cannot see the submerged craft, hovers overhead

and drops a bomb on one of the nine squares. She wins $1 if she hits the

submarine and $0 if she misses it. There are nine pure strategies for the

bomber and twelve for the submarine, so the payoff matrix for the game is

quite large. Symmetry arguments can simplify the analysis.

There are three types of moves that the bomber can make: She can drop

a bomb in the center, in the middle of one of the sides, or in a corner.

Similarly, there are two types of positions that the submarine can assume:

taking up the center square, or taking up a corner square.
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It is intuitive (and true) that both players have optimal strategies that

assign equal probability to actions of the same type. To see this, observe

that in Submarine Salvo a 90 degree rotation describes a permutation π of

the possible submarine positions and a permutation σ of the possible bomber

actions. Clearly π4 (rotating by 90 degrees four times) is the identity and

so is σ4. For any bomber strategy x, let πx be the rotated row strategy.

(Formally (πx)i = xπ(i)). Clearly, the probability that the bomber will hit

the submarine if they play πx and σy is the same as it is when they play x

and y, and therefore

min
y

xTAy = min
y

(πx)TAy.

Thus, if v is the value of the game and x is optimal, then πkx is also optimal

for all k.

Fix any submarine strategy y. Then πkx gains at least v against y, hence

so does

x∗ =
1

4
(x+ πx+ π2x+ π3x).

Therefore x∗ is an optimal rotation-invariant strategy.

Using these equivalences, we may write down a more manageable payoff

matrix:

submarine

center corner

b
om

b
er corner 0 1/4

midside 1/4 1/4

middle 1 0

Note that the values for the new payoff matrix are different from those

in the standard payoff matrix. They incorporate the fact that when the

bomber and submarine are both playing corner there is only a one-in-four

chance that there will be a hit. In fact, the pure strategy of corner for the

bomber in this reduced game corresponds to the mixed strategy of bombing

each corner with probability 1/4 in the original game. Similar reasoning

applies to each of the pure strategies in the reduced game.

We can use domination to simplify the matrix even further. This is be-

cause for the bomber, the strategy midside dominates that of corner (be-

cause the sub, when touching a corner, must also be touching a midside).

This observation reduces the matrix to:
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submarine

center corner

b
om

b
er

midside 1/4 1/4

middle 1 0

Now note that for the submarine, corner dominates center, and thus we

obtain the reduced matrix:

submarine

corner
b
om

b
er

midside 1/4

middle 0

The bomber picks the better alternative — technically, another application

of domination — and picks midside over middle. The value of the game is

1/4; the bomber’s optimal strategy is to hit one of the four mid-sides with

probability 1/4 each, and the optimal submarine strategy is to hide with

probability 1/8 each in one of the eight possible pairs of adjacent squares

that exclude the center.

The symmetry argument is generalized in the following theorem:

Theorem 2.4.5. Suppose that π and σ are permutations of {1, . . . ,m} and
{1, . . . , n} respectively such that

aπ(i)σ(j) = aij (2.10)

for all i and j. Then there exist optimal strategies x∗ and y∗ such that

x∗i = x∗π(i) for all i and y∗j = y∗σ(j) for all j.

Proof. First, observe that there is an ℓ such that πℓ is the identity permu-

tation (since there must be k > r with πk = πr, in which case ℓ = k − r.)
Let (πx)i = xπ(i) and (σy)j = yσ(j).

Let Ψ(x) = miny x
TAy. Since (πx)TA(σy) = xTAy, we have Ψ(x) =

Ψ(πx) for all x ∈ ∆m. Therefore, for all y ∈ ∆n

(

1

ℓ

ℓ−1
∑

k=0

πkx

)T

Ay ≥ 1

ℓ

ℓ−1
∑

k=0

Ψ(πkx) = Ψ(x).

Thus, if x is optimal, so is x∗ = 1
ℓ

∑ℓ−1
k=0 π

kx. Clearly πx∗ = x∗.

Remark. It is perhaps surprising that in Submarine Salvo there also exist

optimal strategies that do not assign equal probability to all actions of the

same type. (See exercise 2.18.)
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2.4.4 Series and Parallel Game Combinations

In this section, we will analyze two ways that zero-sum games can be com-

bined: in series and in parallel.

Definition 2.4.6. Given two zero-sum games G1 and G2 with values v1 and

v2, their series sum-game corresponds to playing G1 and then G2. The

series sum-game has value v1 + v2. In a parallel sum-game, each player

chooses either G1 or G2 to play. If each picks the same game, then it is that

game which is played. If they differ, then no game is played, and the payoff

is zero.

We may write a big payoff matrix for the parallel sum-game, in which

player I’s strategies are the union of her strategies in G1 and her strategies

in G2 as follows:

player II

pure strategies of G1 pure strategies of G2

p
la
ye
r
I

pure strategies of G1 G1 0

pure strategies of G2 0 G2

In this payoff matrix, we have abused notation and written G1 and G2 inside

the matrix to denote the payoff matrix of G1 and G2 respectively. If the two

players play G1 and G2 optimally, the payoff matrix is effectively:

player II

play in G1 play in G2

p
la
ye
r
I

play in G1 v1 0

play in G2 0 v2

Thus to find optimal strategies, the players just need to determine with what

probability they should play G1 and with what probability they should play

G2. If both payoffs v1 and v2 are positive, the optimal strategy for each

player consists of playing G1 with probability v2/(v1 + v2), and G2 with

probability v1/(v1+v2). Assuming both v1 and v2 are positive, the expected

payoff of the parallel sum-game is

v1v2
v1 + v2

=
1

1/v1 + 1/v2
.

For those familiar with electrical networks, it is interesting to observe that

the rules for computing the value of parallel or series games in terms of the

values of the component games are precisely the same as the the rules for

computing the effective resistance of a pair of resistors in series or in parallel.

We will explore some games that exploit this connection in Chapter (??).
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2.5 Games on graphs

2.5.1 Maximum Matchings

Given a set of boys B and a set of girls G, draw an edge between a boy and

a girl if they know each other. The resulting graph is called a bipartite

graph since there are two disjoint sets of nodes, and all edges go between

them. Bipartite graphs are ubiquitous. For instance, there is a natural

bipartite graph where one set of nodes represents workers, the other set

represents jobs, and an edge from worker w to job j means that worker w

can perform job j. Other examples involve customers and suppliers, and

students and colleges.

A matching in a bipartite graph is a collection of disjoint edges, e.g. a

set of boy-girl pairs that know each other, where every individual occurs in

at most one pair. (See figure 2.3.)

Suppose |B| ≤ |G|. Then clearly there cannot be a matching that includes

more than |B| edges. Under what condition is there a matching of this size,

i.e. a matching in which every boy is matched to a girl he knows?

Fig. 2.3. On the left is a bipartite graph where an edge between a boy and
a girl means that they know each other. The edges in a matching are shown
in purple in the figure on the right..

An obvious necessary condition, known as Hall’s condition, is that each

subset B′ of the boys collectively knows enough girls, at least |B′| of them.

What Hall’s theorem says is that this condition is not only necessary, but

sufficient.

Theorem 2.5.1 (Hall’s marriage theorem). Suppose that B is a finite

set of boys and G is a finite set of girls. For any particular boy b ∈ B,

let f(b) denote the set of girls that b knows. For a subset B′ ⊆ B of the

boys, let f(B′) denote the set of girls that boys in B′ collectively know, i.e.,

f(B′) = ∪b∈B′f(b). There is a matching of size |B| if and only Hall’s

condition holds: every subset B′ ⊆ B satisfies |f(B′)| ≥ |B′|.
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Proof. We need only prove that Hall’s condition is sufficient, which we do

by induction on the number of boys.

The base case when |B| = 1 is straightforward. For the induction step,

we consider two cases.

Case 1: |f(B′)| > |B′| for each nonempty B′ ( B. Then we can just

match an arbitrary boy b to any girl he knows. The set of remaining boys

and girls still satisfy Hall’s condition, so by the inductive hypothesis, we can

match them up. (Of course this approach does not work for the example

in Figure 2.3: there are three sets of boys B′ for which |f(B′)| = |B′|, and
indeed, if the third boy is paired with the first girl, there is no way to match

the remaining boys and girls.)

Case 2: There is a nonempty B′ ( B for which |f(B′)| = |B′|. By the

induction hypothesis, there is a matching of size |B′| between B′ and f(B′).
Once we show that Hall’s condition holds for the bipartite graph between

B \B′ and G \ f(B′), another application of the inductive hypothesis yields

the theorem.

Suppose Hall’s condition fails, i.e., there is a set A of boys disjoint from

B′ such that the set S = f(A) \ f(B′) of girls they know outside f(B′) has
|S| < |A|. Then

|f(A ∪B′)| = |S ∪ f(B′)| < |A|+ |B′|

violating Hall’s condition for the full graph, a contradiction.

A useful way to represent a bipartite graph whose edges go between vertex

sets I and J is via its adjacency matrix H. This is a 0/1 matrix where the

rows correspond to vertices in I, the columns to vertices in J , and hij = 1

if and only if there is an edge between i and j. Conversely, any 0/1 matrix

is the adjacency matrix of a bipartite graph. A set of pairs S ⊂ I × J is a

matching for the adjacency matrix H if hij = 1 for all (i, j) ∈ S and no

two elements of S are in the same row or column. This corresponds to a

matching between I and J in the graph represented by H.

For example, the following matrix is the adjacency matrix for the bipartite

graph shown in Figure 2.3, with the edges corresponding to the matching

in bold red. (Rows represent boys from left to right and columns represent

girls from left to right.)
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







1 1 0 0

0 1 0 0

1 0 0 1

0 0 1 0









2.5.2 Hide-and-seek games

Example 2.5.2 (Hide-and-Seek). A robber, player II, hides in one of a set

of safehouses located at certain street/avenue intersections in Manhattan.

A cop, player I, chooses one of the avenues or streets to travel along. The

cop wins a unit payoff if she travels on a road that intersects the robber’s

location.

POLICE

1
0
0

1
0
0

100

Fig. 2.4. The figure shows an example scenario for the Hide-and-Seek game.
In this example, the robber chooses to hide at the safehouse at the inter-
section of 2nd St. and 4th Ave., and the cop chooses to travel along 1st
St. Thus, the payoff to the cop is -1.

We represent this situation with a 0/1 matrix H where rows represent

streets, columns represent avenues, and hij = 1 if there is a safehouse at the

intersection of street i and avenue j, and hij = 0 otherwise. The following

is the matrix H corresponding to the scenario shown in Figure 2.4:




0 1 0 1 0

0 0 0 1 1

0 1 0 1 0





Given a scenario represented by a 0/1 matrix H, the cop’s strategy corre-

sponds to choosing a row or column of this matrix and the robber’s strategy

corresponds to picking a 1 in the matrix.
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Clearly, the cop can restrict attention to roads that contain safehouses;

a natural strategy for her is to find a smallest set of roads that contain all

safehouses, and choose one of these at random. Formally, a line-cover of

the matrix H is a set of lines (rows and columns) that cover all nonzero

entries of H. The proposed cop strategy is to fix a minimum-sized line cover

C and choose one of the lines in C uniformly at random. This guarantees

the cop an expected gain of at least 1/|C| against any robber strategy.

Next we consider robber strategies. A bad strategy would be to choose

from among a set of safehouses that all lie on the same road. The “opposite”

of that is to find a maximum-sized set M of safehouses, where no two lie

on the same road, and choose one of these uniformly at random. This

guarantees that the cop’s expected gain is at most 1/|M|.
Observing that the set M is a matching in the matrix H, the following

lemma implies that |C| = |M|. This means that the proposed pair of strate-

gies is a Nash equilibrium and thus, by Theorem 2.3.4, jointly optimal for

Hide-and-Seek.

Lemma 2.5.3 (König’s lemma). Given an m by n 0/1 matrix H, the size

of the maximum matching is equal to the size of the minimum line-cover.

Proof. Suppose the maximum matching has size k and the minimum line-

cover C has size ℓ. At least one member of each pair in the matching has to

be in C and therefore k ≤ ℓ.
For the other direction, we use Hall’s Theorem. Suppose that there are

r rows and c columns in the C , so r + c = ℓ. We claim that there is a

matching M of size r in the submatrix defined by the rows in C and the

columns outside C, and a matching M ′ of size c in the submatrix defined by

the rows outside C and the columns in C. If so, sinceM and M ′ are disjoint,
there is a matching of size at least ℓ, and hence ℓ ≤ k, completing the proof.

Suppose there is no matching of size r in the submatrix defined by the

rows in C and the columns outside C. View the rows in C as boys, the

columns outside C as girls and a 1 in entry (i, j) as indicating that boy i

and girl j know each other. Then applying Hall’s theorem, we conclude

that there is a subset S of rows in C who collectively know fewer than |S|
columns outside C. But then if we replace S in C by the uncovered columns

that know them, we will reduce the size of the line-cover, contradicting our

assumption that it was minimum. A similar argument shows that there is a

matching of size c in the submatrix defined by the rows outside C and the

columns in C.
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2.5.3 Weighted hide-and-seek games

Example 2.5.4 (Generalized Hide-and-Seek). We generalize the pre-

vious game by allowing H to be a nonnegative matrix. The nonzero entries

still correspond to safehouses, but the value hij > 0 represents the payoff

to the cop if the robber hides at location (i, j) and the cop chooses row i

or column j. (E.g., certain safehouses might be safer than others, and hij
could represent the probability the cop actually catches the robber if she

chooses either i or j when he is hiding at (i, j).)

Suppose that both players have n strategies and consider consider the fol-

lowing class of player II strategies: Player II first chooses a fixed permutation

π of the set {1, . . . , n} and then hides at location (i, πi) with a probability

pi that he chooses. For example, if n = 5, and the fixed permutation π is

3, 1, 4, 2, 5, then the following matrix gives the probability of player II hiding

in different places:

0 0 p1 0 0

p2 0 0 0 0

0 0 0 p3 0

0 p4 0 0 0

0 0 0 0 p5

Given a permutation π, the optimal choice for pi is pi = di,πi
/Dπ , where

dij =
1

hij ,

if hij > 0, and 0 otherwise. and

Dπ =

n
∑

i=1

di,πi
.

This choice equalizes the expected payments to player I no matter what row

or column she chooses. To see this, observe that if player I selects row i,

she obtains an expected payoff of pihi,π(i) = 1/Dπ , whereas if she chooses

column j, she obtains an expected payoff of pjhπ−1(j),j = 1/Dπ . Thus, if

player II is going to use this type of strategy, the right permutation to pick

is one that maximizes Dπ. We will in fact show that doing this is an optimal

strategy, not just in this restricted class of strategies, but in general.

To find an optimal strategy for player I, we need an analogue of König’s

lemma. In this context, a covering of the matrix D = (dij)n×n will be a

pair of vectors u = (u1, . . . , un) and w = (w1, . . . , wn), with non-negative

components, such that ui + wj ≥ dij for each pair (i, j). The analogue of

König’s lemma is:
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Lemma 2.5.5. Consider a minimum covering (u∗,w∗) of D = (dij)n×n

(i.e., one for which
∑n

i=1

(

ui + wi

)

is minimum). Then

n
∑

i=1

(

u∗i + w∗
i

)

= max
π

Dπ. (2.11)

Remark. Note that a minimum covering exists, because the continuous map

(u,w) 7→
n
∑

i=1

(

ui + wi

)

,

defined on the closed and bounded set
{

(u,w) : 0 ≤ ui, wi ≤M, and ui + wj ≥ dij
}

,

where M = maxi,j dij , does indeed attain its infimum. Note also that we

may assume that mini u
∗
i > 0.

Proof. We first show that
∑n

i=1

(

u∗i + w∗
i

)

≥ maxπDπ. This is straightfor-

ward, since for any π, u∗i +w
∗
πi
≥ di,πi

. Summing over i yields the inequality.

Showing the other inequality is harder; we will use Hall’s marriage theorem

(Theorem 2.5.1). To this end, we need a definition of “knowing”: We say

that row i knows column j if

u∗i + w∗
j = dij .

We first show that every subset of k rows know at least k columns. For

contradiction, suppose that the k rows i1, . . . , ik know between them only

ℓ < k columns j1, . . . , jℓ. We claim that this contradicts the minimality of

(u∗,w∗).
To see this, define ũ from u∗ by reducing u∗i on these k rows by a small

amount ε > 0 leaving the other rows unchanged, in such a way that all ũi’s

remain positive, and we do not violate the constraints that ũi + w̃j ≥ dij
for any j 6∈ {j1, . . . , jℓ}. (Thus, we must have 0 < ε ≤ mini u

∗
i and ε ≤

min
{

u∗i + w∗
j − dij : (i, j) such that u∗i +w∗

j > dij
}

.)

Similarly, define w̃ from w∗ by adding ε to the ℓ columns known by the

k rows. Leave the other columns unchanged. That is

w̃ji = w∗
ji + ε for i ∈ {1, . . . , ℓ}.

Clearly, by construction, (ũ, w̃) is a covering of the matrix.

Moreover, the covering (ũ, w̃) has a strictly smaller sum of components

than does (u∗,w∗), contradicting the fact that this latter covering is mini-

mum

Thus, Hall’s condition holds, and there is a perfect matching between rows
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and columns that “know” each other. This is a permutation π∗ such that,

for each i:

u∗i + w∗
π∗

i
= di,π∗

i
,

from which it follows that
n
∑

i=1

u∗i +
n
∑

i=1

w∗
i = Dπ∗ ≤ max

π
Dπ.

This proves that
∑n

i=1

(

u∗i + w∗
i

)

≤ maxπDπ, and completes the proof of

the theorem.

The lemma and the proof give us a pair of optimal strategies for the

players. Player I chooses row i with probability u∗i /Dπ∗ , and column j with

probability w∗
j/Dπ∗ . Against this strategy, if player II chooses some (i, j),

then the payoff will be

(u∗i + v∗j )

Dπ∗

hij ≥
dijhij
Dπ∗

=
1

Dπ∗

.

We deduce that the permutation strategy for player II described before the

lemma is indeed optimal.

Example 2.5.6. Consider the Generalized Hide-and-Seek game with prob-

abilities given by the following matrix:
[

1 1/2

1/3 1/5

]

.

This means that the matrix D is equal to
[

1 2

3 5

]

.

To determine a minimum cover of the matrix D, consider first a cover

that has all of its mass on the rows: u = (2, 5) and v = (0, 0). Note that

rows 1 and 2 know only column 2, according to the definition of “knowing”

introduced in the analysis of this game. Modifying the vectors u and v

according to the rule given in this analysis, we obtain updated vectors,

u = (1, 4) and v = (0, 1), whose sum is 6, equal to the expression maxπDπ

(obtained by choosing the identity permutation).

Thus, an optimal strategy for the robber is to hide at location (1, 1) with

probability 1/6 and location (2, 2) with probability 5/6. An optimal strategy

for the cop is to choose avenue (row) 1 with probability 1/6, avenue 2 with

probability 2/3 and street 2 with probability 1/6. The value of the game is

1/6.
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2.5.4 The bomber and battleship game

Example 2.5.7 (Bomber and Battleship). In this family of games, a bat-

tleship is initially located at the origin in Z. At each time step in {0, 1, . . .},
the ship moves either left or right to a new site where it remains until the

next time step. The bomber (player I), who can see the current location of

the battleship (player II), drops one bomb at some time j over some site in

Z. The bomb arrives at time j + 2, and destroys the battleship if it hits

it. (The battleship cannot see the bomber or its bomb in time to change

course.) For the game Gn, the bomber has enough fuel to drop its bomb at

any time j ∈ {0, 1, . . . , n}. What is the value of the game?

Exercise 2.5.8. (i) Show that the value of G0 is 1/3. (ii) Show that the

value of G1 is also 1/3. (ii) Show that the value of G2 is greater than 1/3.

Fig. 2.5. The bomber drops its bomb where it hopes the battleship will be
two time units later. The battleship does not see the bomb coming, and
randomizes its path to avoid the bomb. (The length of each arrow is 2.)

Consider the following strategy for Gn. On the first move, go left with

probability a and right with probability 1 − a. From then on, at each step

turn with probability of 1− a, and keep going with probability of a.

We choose a to optimize the probability of evasion for the battleship. Its

probabilities of arrival at sites −2, 0, or 2 at time 2 are a2, 1−a and a(1−a).
We have to choose a so that max{a2, 1−a} is minimal. This value is achieved

when a2 = 1− a, whose solution in (0, 1) is given by a = 2/(1 +
√
5). Since

at any time j that the bomber chooses to drop a bomb, the battleship’s

position two time steps later has the same distribution, the payoff for the
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bomber against this strategy is at most 1− a. Thus, v(Gn) is at most 1− a
for each n. While this strategy is not optimal for any Gn, it has the merit

of converging to optimal play, as n → ∞. See the notes for a discussion of

the result.

2.6 Von Neumann’s minimax theorem

We now prove the von Neumann Minimax Theorem. The proof will rely on

a basic theorem from convex geometry.

Definition 2.6.1. A set K ⊆ Rd is convex if, for any two points a,b ∈ K,

the line segment that connects them,

{p a+ (1− p)b : p ∈ [0, 1]},

also lies in K.

Theorem 2.6.2 (The Separating Hyperplane Theorem). Suppose that

K ⊆ Rd is closed and convex. If 0 /∈ K, then there exists z ∈ Rd and c ∈ R
such that

0 < c < zTv

for all v ∈ K.

Here 0 denotes the vector of all 0’s, and zTv is the usual dot product
∑

i zivi. The theorem says that there is a hyperplane (a line in two di-

mensions, a plane in three dimensions, or, more generally, an affine Rd−1-

subspace in Rd) that separates 0 from K. In particular, on any continuous

path from 0 to K, there is some point that lies on this hyperplane. The

separating hyperplane is given by
{

x ∈ Rd : zTx = c
}

. The point 0 lies

in the half-space
{

x ∈ Rd : zTx < c
}

, while the convex body K lies in the

complementary half-space
{

x ∈ Rd : zTx > c
}

.

Recall first that the (Euclidean) norm of v is the (Euclidean) distance

between 0 and v, and is denoted by ‖v‖. Thus ‖v‖ =
√
vTv. A subset of a

metric space is closed if it contains all its limit points, and bounded if it is

contained inside a ball of some finite radius R. In what follows, the metric

is the Euclidean metric.

Proof of Theorem 2.6.2. If we pick R so that the ball of radius R centered at

0 intersects K, the function w 7→ ‖w‖, considered as a map from K ∩ {x ∈
Rd : ‖x‖ ≤ R} to [0,∞), is continuous, with a domain that is nonempty,
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{x
: z T

x
=
c}

K

0

Fig. 2.6. Hyperplane separating the closed convex body K from 0.

closed and bounded (see Figure 2.7). Thus the map attains its infimum at

some point z in K. For this z ∈ K we have

‖z‖ = inf
w∈K

‖w‖.

K

0

R z

v

Fig. 2.7. Intersecting K with a ball to get a nonempty closed bounded
domain.

Let v ∈ K. Because K is convex, for any ε ∈ (0, 1), we have that εv +

(1 − ε)z = z − ε(z − v) ∈ K. Since z has the minimum norm of any point

in K,

‖z‖2 ≤ ‖z− ε(z− v)‖2.

Multiplying this out, we get

‖z‖2 ≤ ‖z‖2 − 2εzT (z− v) + ε2‖z− v‖2
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Cancelling ‖z‖2 and rearranging terms we get

2εzT (z− v) ≤ ε2‖z− v‖2

or

zT (z− v) ≤ ε

2
‖z− v‖2.

Letting ε approach 0, we find

zT (z− v) ≤ 0 (2.12)

which means that

‖z‖2 ≤ zTv.

Since z ∈ K and 0 /∈ K, the norm ‖z‖ > 0. Choosing c = 1
2‖z‖2, we get

0 < c < zTv for each v ∈ K.

We will also need the following simple lemma:

Lemma 2.6.3. Let X and Y be closed and bounded sets in Rd. Let f :

X × Y → R be continuous. Then

max
x∈X

min
y∈Y

f(x,y) ≤ min
y∈Y

max
x∈X

f(x,y).

Proof. We first prove the lemma for the case where X and Y are finite

sets. Let (x̃, ỹ) ∈ X × Y . Clearly we have f(x̃, ỹ) ≤ maxx∈X f(x, ỹ) and

miny∈Y f(x̃,y) ≤ f(x̃, ỹ), which gives us

min
y∈Y

f(x̃,y) ≤ max
x∈X

f(x, ỹ).

Because the inequality holds for any x̃ ∈ X, it holds for maxx∈X of the

quantity on the left. Similarly, because the inequality holds for all ỹ ∈ Y ,

it must hold for the miny∈Y of the quantity on the right. We thus have:

max
x∈X

min
y∈Y

f(x,y) ≤ min
y∈Y

max
x∈X

f(x,y).

To prove the lemma in the general case, we just need to verify the existence

of the relevant maxima and minima. Since continuous functions achieve their
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minimum on compact sets, g(x) = miny∈Y f(x,y) is well-defined. The con-

tinuity of f and compactness of X×Y imply that f is uniformly continuous

on X × Y . In particular,

∀ǫ ∃δ : |x1 − x2| < δ =⇒ |f(x1,y)− f(x2,y)| ≤ ǫ
and hence |g(x1) − g(x2)| ≤ ǫ. Thus, g : X → R is continuous and

maxx∈X g(x) exists.

We can now prove:

Theorem 2.6.4 (Von Neumann’s Minimax Theorem). Let A be an

m × n payoff matrix, and let ∆m = {x ∈ Rm : x ≥ 0,
∑

i xi = 1} and

∆n = {y ∈ Rn : y ≥ 0,
∑

j yj = 1}. Then

max
x∈∆m

min
y∈∆n

xTAy = min
y∈∆n

max
x∈∆m

xTAy.

This quantity is called the value of the two-person zero-sum game with

payoff matrix A.

Proof. The inequality

max
x∈∆m

min
y∈∆n

xTAy ≤ min
y∈∆n

max
x∈∆m

xTAy

follows immediately from the Lemma 2.6.3 because f(x,y) = xTAy is a

continuous function in both variables and ∆m ⊂ Rm, ∆n ⊂ Rn are closed

and bounded.

For the other inequality, suppose towards a contradiction that

max
x∈∆m

min
y∈∆n

xTAy < λ < min
y∈∆n

max
x∈∆m

xTAy.

Define a new game with payoff matrix Â given by âi,j = aij − λ. For this

new game, since each payoff in the matrix is reduced by λ, the expected

payoffs for every pair of mixed strategies are also reduced by λ and hence:

max
x∈∆m

min
y∈∆n

xT Ây < 0 < min
y∈∆n

max
x∈∆m

xT Ây. (2.13)

Each mixed strategy y ∈ ∆n for player II yields a gain vector Ây ∈ Rm.

Let K denote the set of all vectors which dominate the gain vectors Ây,

that is,

K =
{

Ây + v : y ∈ ∆n, v ∈ Rm,v ≥ 0
}

.

See Figure 2.8.
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Fig. 2.8. The figure shows the set K for an example where Â has two rows.
Here Â(i) represents the ith row of Â.

It is easy to see that K is convex and closed: this follows immediately

from the fact that ∆n, the set of probability vectors corresponding to mixed

strategies y for player II, is closed, bounded and convex, and the set {v ∈
Rm,v ≥ 0} is closed and convex. Also, K cannot contain the 0 vector,

because if 0 were in K, there would be some mixed strategy y ∈ ∆n such

that Ây ≤ 0, whence for any x ∈ ∆m we have xT Ây ≤ 0, contradicting the

right-hand side of (2.13).

Thus K satisfies the conditions of the separating hyperplane theorem

(Theorem 2.6.2), which gives us z ∈ Rm and c > 0 such that zTw > c > 0

for all w ∈ K. That is,

zT (Ây+ v) > c > 0 for all y ∈ ∆n and v ≥ 0. (2.14)

We claim also that z ≥ 0. If not, say zj < 0 for some j, then for v ∈ Rm

with vj sufficiently large and vi = 0 for all i 6= j, we would have zT (Ây+v) =

zT Ây + zjvj < 0 for some y ∈ ∆n which would contradict (2.14).

The same condition (2.14) shows that not all of the zi’s can be zero. Thus

s =
∑m

i=1 zi is strictly positive, so that x̃ = 1
s (z1, . . . , zm)T = z/s ∈ ∆m,

with x̃T Ây > c/s > 0 for all y ∈ ∆n.

In other words, x̃ is a mixed strategy for player I that gives a positive

expected payoff against any mixed strategy of player II. This contradicts

the left hand inequality of (2.13).

Note that the above proof merely shows that the value always exists; it

doesn’t give a way of finding it. In fact, there are efficient algorithms for

finding the value and the optimal strategies in a 2-person zero-sum game

and we discuss those in the next section.
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2.7 Linear Programming and the Minimax Theorem

Suppose that we want to determine if player I in a two-person zero-sum

game with m by n payoff matrix A = (aij) can guarantee an expected gain

of at least v. It suffices for her to find a mixed strategy x which guarantees

her an expected gain of at least v for each possible pure strategy j player

II might play. These conditions are captured by the following system of

inequalities:

x1a1j + x2a2j + . . .+ xmamj ≥ v for 1 ≤ j ≤ n.

In matrix-vector notation, this system of inequalities becomes:

xTA ≥ veT ,

where e is an all-1’s vector. (Its length will be clear from context.)

Thus, to maximize her guaranteed expected gain, player I should

maximize v

subject to xTA ≥ veT (2.15)
∑

1≤i≤m

xi = 1

xi ≥ 0 for all 1 ≤ i ≤ m.

This is an example of a linear programming problem. Linear program-

ming is the process of minimizing or maximizing a linear function of a finite

set of real-valued variables, subject to linear equality and inequality con-

straints on those variables. In the linear program 2.15, the variables are v

and x1, . . . , xm.

The problem of finding the optimal strategy for player II can similarly be

formulated as a linear program:

minimize v

subject to Ay ≤ ve (2.16)
∑

1≤j≤n

yj = 1

yj ≥ 0 for all 1 ≤ j ≤ n.

As many fundamental problems can be formulated as linear programs, this

is a tremendously important class of problems. Conveniently, there are well-

known efficient (polynomial time) algorithms for solving linear programs

(see notes) and, thus, we can use these algorithms to solve for optimal
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strategies in large zero-sum games. In the rest of the chapter, we give a

brief introduction to the theory of linear programming.

2.7.1 Linear Programming Basics

Example 2.7.1. (The protein problem). Consider the dilemma faced by

a student-athlete interested in maximizing her protein consumption, while

consuming no more than 5 units of fat per day and spending no more than

$6 a day. She considers two alternatives: steak, which costs $4 per pound,

and contains 2 units of protein and 1 unit of fat per pound; and peanut

butter, which costs $1 per pound and contains 1 unit of protein and 2 units

of fat per pound.

Let x1 be the number of pounds of steak she buys per day, and let x2 be

the number of pounds of peanut butter she buys per day. Then her goal is

to

max 2x1 + x2

subject to 4x1 + x2 ≤ 6 (2.17)

x1 + 2x2 ≤ 5

x1, x2 ≥ 0

The feasible region for the LP and its optimal solution are shown in

Figure 2.9.

21 1

Fig. 2.9. This figure shows the feasible region for LP 2.17 and illustrates
its solution. The arrow from the origin on the right is perpendicular to all
the lines 2x1 + x2 = c for any c.

The objective function of a linear program is the linear function being

optimized, in this case 2x1+x2. The feasible set of a linear program is the
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set of feasible vectors (x1, x2) that satisfy the constraints of the program,

in this case, all nonnegative vectors (x1, x2) such that 4x1 + x2 ≤ 6 and

x1 + 2x2 ≤ 5.

The left hand side of Figure 2.9 shows this set. A linear program is said

to be feasible if the feasible set is non-empty. The question then becomes:

which point in this feasible set maximizes 2x1 + x2? In this example, this

point is (x1, x2) = (1, 2), and at this point 2x1 + x2 = 4. Thus, the optimal

solution to the linear program is 4.

2.7.2 Linear Programming Duality

The minimax theorem that we proved earlier shows that for any zero-sum

game, the two linear programs (2.15) and (2.16) have the same optimal

value V ∗. This is a special case of the most important theorem of linear

programming, the duality theorem.

To motivate this theorem, let’s consider the LP from the previous section

more analytically. The first constraint of (2.17) immediately implies that

the objective function is upper bounded by 6 on the feasible set. Doubling

the second constraint gives a worse bound of 10. But combining them we

can do better.

Multiplying the first constraint by y1 ≥ 0, the second by y2 ≥ 0, and

adding the results yields

y1(4x1 + x2) + y2(x1 + 2x2) ≤ 6y1 + 5y2 (2.18)

The left hand side of equation (2.18) dominates the objective function 2x1+

x2 as long as

4y1 + y2 ≥ 2 (2.19)

y1 + 2y2 ≥ 1

y1, y2 ≥ 0

So for any (y1, y2) that satisfy inequalities in (2.19), we have 2x1 + x2 ≤
6y1 + 5y2 for all feasible (x1, x2). The best upper bound we can obtain this

way on the optimal value of (2.17) is the solution to the linear program

min 6y1 + 5y2 subject to (2.19). (2.20)

This minimization problem is called the dual of LP (2.17). Observing that

(y1, y2) = (3/7, 2/7) is feasible for LP (2.20) with objective value 4, we

can conclude that (x1, x2) = (1, 2), which attains objective value 4 for the

original problem, must be optimal.
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2.7.3 Duality, more formally

Consider a maximization linear program in so-called standard form†. We

will call such a linear program the primal LP (P):

max cTx

subject to

Ax ≤ b

x ≥ 0























(P)

where A ∈ Rm×n, x ∈ Rn, c ∈ Rn, and b ∈ Rm. We say the primal LP is

feasible if the feasible set F(P ) = {x | Ax ≤ b, x ≥ 0} is nonempty.

As in the example at the beginning of this section, if y ≥ 0 ∈ Rm satisfies

yTA ≥ cT , then

∀x ∈ F(P ), yTb ≥ yTAx ≥ cTx. (2.21)

This motivates the general definition of the dual LP:

min bTy

such that

yTA ≥ cT

y ≥ 0























(D)

where y ∈ Rm. As with the primal LP, we say the dual LP is feasible if the

set F(D) = {y | yTA ≥ cT ; y ≥ 0} is nonempty.

It is easy to check that the dual of the dual LP is the primal LP.†

Theorem 2.7.2 (The Duality Theorem of Linear Programming). Suppose

A ∈ Rm×n, x, c ∈ Rn, and y,b ∈ Rm. Suppose F(P ) and F(D) are

nonempty. Then:

• bTy ≥ cTx for all x ∈ F(P ) and y ∈ F(D). (This is called weak

duality.)

• (P) has an optimal solution x∗, (D) has an optimal solution y∗ and

cTx∗ = bTy∗.

† It is a simple exercise to convert from non-standard form (such as a game LP) to standard form.
For example, an equality constraint such as a1x1 + a2x2 + . . . + anxn = b can be converted
to two inequalities: a1x1 + a2x2 + . . . + anxn ≥ b and a1x1 + a2x2 + . . . + anxn ≤ b. A ≥
inequality can be converted to a ≤ inequality and vice versa by multiplying by -1. A variable
x that is not constrained to be nonnegative, can be replaced by the difference x′ − x′′ of two
nonnegative variables, and so on.

† A standard form minimization LP can be converted to a maximization LP (and vice versa) by
observing that minimizing bTy is the same as maximizing −bTy, and ≥ inequalities can be
converted to ≤ inequalities by multiplying the inequality by -1.
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Remark. The proof of the duality theorem is similar to the proof of the

minimax theorem. This is not accidental; see the chapter notes.

Corollary 2.7.3 (Complementary Slackness). Let x∗ be feasible for (P) and

let y∗ be feasible for (D). Then the following two statements are equivalent:

(i) x∗ is optimal for (P) and y∗ is optimal for (D).

(ii) For all i,
∑

1≤j≤n aijx
∗
j < bi if and only if y∗i = 0, and for all j,

cj <
∑

1≤i≤m y
∗
i aij if and only if x∗j = 0.

Proof. We have
∑

j

cjx
∗
j ≤

∑

j

x∗j
∑

i

y∗i aij =
∑

i

y∗i
∑

j

aijx
∗
j ≤

∑

i

biy
∗
i . (2.22)

Optimality of x∗ and y∗ implies that both of the above inequalities are

equalities. Moreover by feasibility, for each j we have cjx
∗
j ≤ x∗j

∑

i y
∗
i aij ,

and for each i we have y∗i
∑

j aijx
∗
j ≤ biy

∗
i . Thus equality holds in (2.22) if

and only if (ii) holds.

2.7.4 The proof of the duality theorem

Weak duality follows from (2.21). We complete the proof of the duality

theorem in two steps. First, we will use the separating hyperplane theorem

to show that supx∈F(P ) c
Tx = infy∈F(D) b

Ty, and then we will show that

the sup and inf above are attained. For the first step, it will be convenient to

establish the following “alternative” theorem known as Farkas’ Lemma,

from which the proof of duality will follow.

Lemma 2.7.4 (Farkas’ Lemma – 2 versions). Let A ∈ Rm×n and x ∈ Rn.

Then

(i) Exactly one of the following holds:

(a) There exists a x ∈ Rn such that Ax = b and x ≥ 0; or

(b) there exists a y ∈ Rm such that yTA ≥ 0 and yTb < 0.

(ii) Exactly one of the following holds:

(a) There exists a x ∈ Rn such that Ax ≤ b and x ≥ 0; or

(b) there exists a y ∈ Rm such that yTA ≥ 0, yTb < 0 and y ≥ 0.

Proof. Proof of Part (i): (See Figure 2.10 for a visualization of Part (i).)

We first show by contradiction that (a) and (b) can’t hold simultaneously:

Suppose that x satisfies (a) and y satisfies (b). Then

0 > yTb = yTAx ≥ 0,
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Fig. 2.10. The figure illustrates the two cases (i)a and (i)b of the Farkas’
Lemma

a contradiction.

We next show that if (a) is infeasible, then (b) is feasible: Let S =

{Ax | x ≥ 0}. It is easy to check that S is closed and convex. In addi-

tion, b 6∈ S, since (a) is infeasible. Therefore, by the separating hyperplane

theorem, there is a hyperplane that separates b from S, i.e. yTb < a and

yT z ≥ a for all z ∈ S. Since 0 is in S, a ≤ 0 and therefore yTb < 0. More-

over, all entries of yTA are nonnegative. If not, say the kth entry is negative,

by taking xk arbitrarily large and xi = 0 for i 6= k, the inequality yTAx ≥ a
would be violated for some x ≥ 0. Thus, it must be that yTA ≥ 0.

Proof of Part (ii): We apply part (i) to an equivalent pair of systems.

The existence of an x ∈ Rn such that Ax ≤ b and x ≥ 0 is equivalent to

the existence of an x ≥ 0 ∈ Rn and v ≥ 0 ∈ Rm such that

Ax+ Iv = b

where I is the m by m identity matrix. Applying part 1 to this system

means that either it is feasible or there is a y ∈ Rm such that

yTA ≥ 0

Iy ≥ 0

yT b < 0,

which is precisely equivalent to (b).

Corollary 2.7.5. Under the assumptions of Theorem 2.7.2

sup
x∈F(P )

cTx = inf
y∈F(D)

bTy.
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Proof. Suppose that supx∈F(P ) c
Tx < γ. Then {Ax ≤ b; −cTx ≤ −γ;

x ≥ 0} is infeasible, and therefore by the second part of the Farkas lemma

there is (y, λ) ≥ 0 in Rm+1 such that yTA ≥ 0, −λcT ≥ 0 and yTb−λγ < 0.

Since there is an x ∈ F(P ), we have yTb ≥ yTAx ≥ 0 and therefore λ > 0.

We conclude that y/λ is feasible for (D) with objective value less than γ.

To complete the proof of the duality theorem, we need to show that the

sup and inf in Corollary 2.7.5 are achieved. This will follow from the next

theorem.

Theorem 2.7.6. Let A ∈ Rm×n and x ∈ Rn.

(i) Let F(P=) = {x ∈ Rn : x ≥ 0 and Ax = b}. If F(P=) 6= ∅ and

sup{cTx|x ∈ F(P=)} <∞, then this sup is achieved.

(ii) If F(P ) 6= ∅ and sup{cTx|x ∈ F(P )} <∞, then this sup is achieved.

The proof of (i) will show that the sup is attained at one of a distinguished,

finite set of points in F(P=) known as extreme points or vertices.

Definition 2.7.7. (i) Let S be a convex set. A point x ∈ S is an

extreme point of S if whenever x = αu+ (1 − α)v with u,v ∈ S
and 0 < α < 1, we must have x = u = v.

(ii) If S is the feasible set of a linear program, then S is convex; an

extreme point of S is called a vertex.

We will need the following lemma.

Lemma 2.7.8. Let x ∈ F(P=). Then x is a vertex of F(P=) if and only if

the columns {A(j) | xj > 0} are linearly independent.

Proof. Suppose x is not extreme, i.e., x = αv + (1 − α)w, where v 6= w,

0 < α < 1, and v,w ∈ F(P=). Thus, A(v − w) = 0, and v − w 6= 0.

Observe that vj = wj = 0 for all j 6∈ S, where S = {j | xj > 0}; otherwise,
one of wj or vj is negative. We conclude that the columns {A(j) | xj > 0}
are linearly dependent.

For the other direction, suppose that the vectors {A(j) | xj > 0} are

linearly dependent. Then there is w 6= 0 such that Aw = 0 and wj = 0 for

all j 6∈ S. Then for ǫ sufficiently small x ± ǫw ∈ F(P=) and therefore x is

not extreme.

Lemma 2.7.9. For any x ∈ F(P=), there is a vertex x̃ ∈ F(P=) with

cT x̃ ≥ cTx.
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Proof. We show that if x is not a vertex, then there is x′ ∈ F(P=) with a

strictly larger number of zero entries than x such that cTx′ ≥ cTx. This

step can be applied only a finite number of times before we reach a vertex

that satisfies the conditions of the lemma.

Let S = {j|xj > 0}. If x is not a vertex, then the columns {A(j)|j ∈ S}
are linearly dependent and there is a vector λ 6= 0 such that

∑

j λjA
(j) =

Aλ = 0 and λj = 0 for j 6∈ S.
Without loss of generality, cTλ ≥ 0 (if not, negate λ.). Consider the

vector x̂(t) = x+ tλ. For t ≥ 0, we have cT x̂(t) ≥ cTx and Ax̂(t) = b. For

t sufficiently small, x̂(t) is also nonnegative and thus feasible.

If there is j ∈ S such that λj < 0, then there is a positive t such that x̂(t)

is feasible with strictly more zeros than x, so we can take x′ = x̂(t).

The same conclusion holds if λj ≥ 0 for all j and cTλ = 0; simply negate

λ and apply the previous argument.

To complete the argument, we show that the previous two cases are ex-

haustive: if λj ≥ 0 for all j and cTλ > 0, then x̂(t) ≥ 0 for all t ≥ 0 and

limt→∞ cT x̂(t) = ∞, contradicting the assumption that the objective value

is bounded on F(P=).

Proof of Theorem 2.7.6:

Part (i): Lemma 2.7.9 shows that if the linear program

maximize cTx subject to x ∈ F(P=)

is feasible and bounded, then for every feasible solution, there is a vertex

with at least that objective value. Thus, we can search for the optimum of

the linear program by considering only vertices of F(P=). Since there are

only finitely many, the optimum is achieved.

Part (ii): We apply the reduction from part (ii) of the Farkas’ Lemma

to show that linear program (P) is equivalent to a program of the type

considered in part (i) with a matrix (A; I) in place of A.

2.7.5 An interpretation of a primal/dual pair

Consider an advertiser about to purchase advertising space in a set of n

newspapers, and suppose that cj is the price of placing an ad in newspaper

j. The advertiser is targeting m different kinds of users, for example, based

on geographic location, interests, age and gender, and wants to ensure that,

on average, bi users of type i will see the ad over the course of each month.
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Denote by aij the number of type i users expected to see each ad in newspa-

per j. The advertiser is deciding how many ads to place in each newspaper

per month in order to meet his various demographic targets at minimum

cost. To this end, the advertiser solves the following linear program, where

xj is the number of ad slots from newspaper j that she will purchase.

min
∑

1≤j≤n

cjxj

subject to
∑

1≤j≤n

aijxj ≥ bi for all 1 ≤ i ≤ m (2.23)

x1, x2 . . . , xn ≥ 0.

The dual program is:

min
∑

1≤i≤m

biyi

subject to
∑

1≤i≤m

yiaij ≤ cj for all 1 ≤ j ≤ n (2.24)

y1, y2 . . . , ym ≥ 0.

This dual program has a nice interpretation: Consider an advertising

exchange that matches advertisers with display ad slots. The exchange

needs to determine yi, how much to charge the advertiser for each impression

(displayed ad) shown to a user of type i. Observing that yiaij is the expected

cost of reaching the same number of type i users online that would be reached

by placing a single ad in newspaper j, we see that if the prices yi are set so

that
∑

1≤i≤m yiaij ≤ cj , then the advertiser can switch from advertising in

newspaper j to advertising online, reaching the same combination of user

types without increasing her cost. If the advertiser switches entirely from

advertising in newspapers to advertising online, the exchange’s revenue will

be
∑

1≤i≤m

biyi.

The duality theorem says that the exchange can price the impressions so as

to satisfy (2.24) and incentivize the advertiser to switch while still ensuring

that its revenue
∑

i biyi matches the total revenue of the newspapers.

Moreover, Theorem 2.7.3 implies that that whenever inequality (2.23) is

not tight, say
∑

1≤j≤n aijxj > bi for user type i, in the optimal solution

of the dual, yi = 0. In other words, if the optimal combination of ads
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the advertiser buys from the newspapers results in the advertisement being

shown to more users of type i than necessary, then in the optimal pricing

for the exchange, impressions shown to users of type i will be provided to

the advertiser for free. In other words, the exchange concentrates its fixed

total charges on the user types which correspond to tight constraints in the

primal. Thus, the advertiser can switch to advertising exclusively on the

exchange without paying more, and without sacrificing any of the “bonus”

advertising the newspapers were providing.

(The fact that some impressions are free may seem counterintuitive, but

it is a consequence of the assumption that the exchange maximizes revenue

from this advertiser. In reality, the exchange would maximize profit, and

these goals are equivalent only when the cost of production is zero.)

Finally, the other consequence of Theorem 2.7.3 is that if xj > 0, i.e.,

some ads were purchased from newspaper j, then the corresponding dual

constraint must be tight, i.e.,
∑

1≤i≤m yiaij = cj .

2.8 Zero-Sum Games With Infinite Action Spaces∗

Theorem 2.8.1. Consider a zero-sum game in which the players’ action

spaces are [0, 1] and the payoff A(x, y) when player I chooses action x and

player II chooses action y is continuous on [0, 1]2. Let ∆ = ∆[0,1] be the

space of probability distributions on [0, 1]. Then

max
F∈∆

min
G∈∆

∫ ∫

A(x, y)dF (x)dG(y) = min
G∈∆

max
F∈∆

∫ ∫

A(x, y)dF (x)dG(y)

(2.25)

Proof. If there is a matrix (aij) for which

A(x, y) = a⌈nx⌉,⌈ny⌉ (2.26)

then (2.25) reduces to the finite case. If A is continuous, there are functions

A0 and A1 of the form (2.26) so that A0 ≤ A ≤ A1 and |A1 −A0| ≤ ǫ. This
implies (2.25) with infs and sups in place of min and max. The existence of

the maxima and minima follows from compactness of ∆[0,1] as in the proof

of Lemma 2.6.3.

Next, we show how a theorem in geometry due to Berge[] can be deduced

from the minimax theorem.

Theorem 2.8.2. Let S1, . . . , Sn ⊂ Rℓ compact, convex sets such that every

subset of n − 1 of them intersects and S = ∪ni=1Si is convex. Then S =

∩ni=1Si 6= ∅.
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We prove the theorem by considering the following zero-sum game G:

Player I chooses i ∈ [n], and player II chooses z ∈ S. The payoff to player I

is the distance d(z, Si) from z to Si.

Lemma 2.8.3. The game G has a value with a mixed optimal strategy for

player I and a pure optimal strategy for player II.

Proof. For each positive integer k, let Si(k) = Si ∩ 2−kZℓ, and let S(k) =

∪ni=1Si(k).

Define a sequence of games Gk in which Player I chooses i ∈ [n], and player

II chooses z ∈ S(k), where the payoff to player I is d(z, Si(k)). Since Gk is

a finite game, it has a value vk, and each player has an optimal strategy,

say x(k) for player I and y(k) for player II. Thus, for all s ∈ S(k), we have
∑

i x
(k)
i d(s, Si(k)) ≥ vk and for all i ∈ [n], we have

∑

s∈S(k) y
(k)
s d(s, Si(k)) ≤

vk. The vk’s are decreasing and bounded so they converge to a limit, say v.

We now claim that

sup
x∈∆n

inf
s∈S

∑

i

xid(s, Si) = v = inf
s∈S

sup
x∈∆n

∑

i

xid(s, Si). (2.27)

From Lemma 2.6.3 we know that the left-hand side of equation (2.27) is

at most the right-hand side. We now show that the left-hand side is greater

than or equal to the right-hand side. We have

∀s′ ∈ S(k)
∑

i

x
(k)
i d(s′, Si(k)) ≥ vk ≥ v,

and thus

∀s ∈ S
∑

i

x
(k)
i d(s, Si) ≥ v − 2ℓ2−k.

This proves that the left-hand size of (2.27) is at least v.

Also, since
∑

s∈S(k) y
(k)
s d(s, Si(k)) ≤ vk for any i, we have

∑

s∈S(k)
y(k)s d(s, Si) ≤ vk + ℓ2−k.

Let zk =
∑

s∈S(k) y
(k)
s s. Then by Exercise 2.8.6 and Jensen’s Inequality

(Exercise 2.8.5),

d(zk, Si) ≤
∑

s∈S(k)
y(k)s d(s, Si) ≤ vk + ℓ2−k.

Hence

∀x ∈ ∆n

∑

i

xid(zk, Si) ≤ vk + ℓ2−k.
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This proves that the right-hand side of (2.27) is at most v.

Definition 2.8.4. Let D be a convex set in Rℓ. Then f : D → R is a convex

function if for any two points z and w in D, and 0 ≤ α ≤ 1,

f(αz + (1− α)w) ≤ αf(z) + (1− α)f(w).

Exercise 2.8.5 (Jensen’s Inequality for Finite Sets). Let f : D → R
be convex. Let z1, . . . , zm ∈ D, and α ∈ ∆m. Show that

f

(

∑

i

αizi

)

≤
∑

i

αif(zi).

Exercise 2.8.6. Let S be a convex set in Rℓ. Show that the function

f(z) = d(z, S) is convex on Rℓ.

Proof of Theorem 2.8.2: Let x be I’s optimal strategy and let z ∈ S be

player II’s optimal strategy in the game G of Lemma 2.8.3. We will show

that v = 0. If so, we have d(z, Si) = 0 for all i, and thus z ∈ ∩ni=1Si,

completing the proof.

Suppose that
∑

i xid(z, Si) = v > 0. We have that z ∈ Sj for some j,

and thus d(z, Sj) = 0. Since d(z, Si) ≤ v for all i, it must be that xj = 0.

But then, since there is a point w ∈ ∩i 6=jSi, we have
∑

i xid(w,Si) = 0,

contradicting the assumption that v > 0.

Exercise 2.8.7. Two players each choose a positive integer. The player

that chose the lower number pays $1 to the player who chose the higher

number (with no payment in case of a tie). Show that this game has no

Nash equilibrium. Show that the safety values for players I and II are -1

and 1 respectively.

Exercises

2.1 Show that all saddle points in a zero-sum game (assuming there is

at least one) result in the same payoff to player I.

2.2 Find the value of the following zero-sum game. Find some optimal

strategies for each of the players.

player II

p
la
ye
r
I 8 3 4 1

4 7 1 6

0 3 8 5
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2.3 Find the value of the zero-sum game given by the following payoff

matrix, and determine optimal strategies for both players.





0 9 1 1

5 0 6 7

2 4 3 3





2.4 Find the value of the zero-sum game given by the following payoff

matrix and determine all optimal strategies for both players.





3 0

0 3

2 2





2.5 Define a zero-sum game in which one player’s optimal strategy is

pure and the other player’s optimal strategy is mixed.

2.6 Prove that the value of any antisymmetric zero-sum game is zero.

2.7 Player II is moving an important item in one of three cars, labeled 1,

2, and 3. Player I will drop a bomb on one of the cars of his choosing.

He has no chance of destroying the item if he bombs the wrong car.

If he chooses the right car, then his probability of destroying the

item depends on that car. The probabilities for cars 1, 2, and 3 are

equal to 3/4, 1/4, and 1/2.

Write the 3×3 payoff matrix for the game, and find some optimal

winning strategies for each of the players.

2.8 Verify the following two facts: Every strategy that has positive prob-

ability of being played in an optimal strategy for one of the players

results in the same expected payoff against an optimal opponent (one

playing an optimal strategy).A strategy that is not played in an op-

timal strategy can’t have higher expected payoff than a strategy that

is played against an optimal opponent.

2.9 Let x and y be mixed strategies for the two players in a zero-sum.

Prove that this pair of strategies is optimal if and only if there is a
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number V such that:

V =
∑

j

aijyj for every i such that xi > 0.

V ≤
∑

j

aijyj for every i such that xi = 0.

V =
∑

i

xiaij for every j such that yj > 0

V ≥
∑

i

xiaij for every j such that yj = 0.

2.10 Using the result of the previous exercise, give an exponential time

algorithm to solve an n by m two-person zero-sum game. Hint:

Consider each possibility for which subset S of player I strategies

have xi > 0 and which subset of player II strategies T have yj > 0.

2.11 Consider a two-person zero-sum game in which there are two maps,

π1, a permutation (a relabelling) of the possible moves of player I,

and π2 a permutation of the possible moves of player II, for which

the payoffs aij satisfy

aπ1(i),π2(j) = aij .

Prove that there is an optimal mixed strategy for player I that gives

equal probability to π1(i) and i for each i and that there is an optimal

mixed strategy for player II that gives equal probability to the moves

π2(j) and j for each j.

2.12 Recall the bomber and battleship game from section 2.5.4. Set up

the payoff matrix and find the value of the game G2.

2.13 Consider the following two-person zero-sum game. Both players si-

multaneously call out one of the numbers {2, 3}. Player 1 wins if

the sum of the numbers called is odd and player 2 wins if their sum

is even. The loser pays the winner the product of the two numbers

called (in dollars). Find the payoff matrix, the value of the game,

and an optimal strategy for each player.

2.14 There are two roads that leave city A and head towards city B. One

goes there directly. The other branches into two new roads, each of

which arrives in city B. A traveler and a troll each choose paths

from city A to city B. The traveler will pay the troll a toll equal to
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the number of common roads that they traverse. Set up the payoff

matrix, find the value of the game, and find some optimal mixed

strategies.

2.15 Company I opens one restaurant and company II opens two. Each

company decides in which of three locations each of its restaurants

will be opened. The three locations are on the line, at Central and

at Left and Right, with the distance between Left and Central, and

between Central and Right, equal to half a mile. A customer is

located at an unknown location according to a uniform random vari-

able within one mile each way of Central (so that he is within one

mile of Central, and has an even probability of appearing in any part

of this two-mile stretch). He walks to whichever of Left, Central, or

Right is the nearest, and then into one of the restaurants there, cho-

sen uniformly at random. The payoff to company I is the probability

that the customer visits a company I restaurant.

Solve the game: that is, find its value, and some optimal mixed

strategies for the companies.

2.16 Bob has a concession at Yankee Stadium. He can sell 500 umbrellas

at $10 each if it rains. (The umbrellas cost him $5 each.) If it shines,

he can sell only 100 umbrellas at $10 each and 1000 sunglasses at $5

each. (The sunglasses cost him $2 each.) He has $2500 to invest in

one day, but everything that isn’t sold is trampled by the fans and

is a total loss.

This is a game against nature. Nature has two strategies: rain and

shine. Bob also has two strategies: buy for rain or buy for shine.

Find the optimal strategy for Bob assuming that the probability

for rain is 50%.

2.17 The number picking game. Two players I and II pick a positive

integer each. If the two numbers are the same, no money changes

hands. If the players’ choices differ by 1 the player with the lower

number pays $1 to the opponent. If the difference is at least 2 the

player with the higher number pays $2 to the opponent. Find the

value of this zero-sum game and determine optimal strategies for

both players. (Hint: use domination.)

2.18 Show that in Submarine Salvo the submarine has an optimal strat-
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egy hwere all choices containing a corner and a clockwise adjacent

site are excluded. PICTURE??

2.19 A zebra has four possible locations to cross the Zambezi river, call

them a, b, c, and d, arranged from north to south. A crocodile can

wait (undetected) at one of these locations. If the zebra and the

crocodile choose the same location, the payoff to the crocodile (that

is, the chance it will catch the zebra) is 1. The payoff to the crocodile

is 1/2 if they choose adjacent locations, and 0 in the remaining cases,

when the locations chosen are distinct and non-adjacent.

(a) Write the payoff matrix for this zero-sum game in normal form.

(b) Can you reduce this game to a 2× 2 game?

(c) Find the value of the game (to the crocodile) and optimal strate-

gies for both.

For the following two exercises, see the definition of effective re-

sistance in the notes at the end of the chapter.

2.20 FIX FIX FIX The troll-and-traveler game can be played on an arbi-

trary (not necessarily series-parallel) network with two distinguished

points A and B. On general networks, we get a similarly elegant so-

lution for the game defined as follows: If the troll and the traveler

traverse an edge in the same direction, the traveler pays the cost of

the road to the troll, whereas if they traverse a road in opposite di-

rections, then the troll pays the cost of the road to the traveler. The

value of the game turns out to be the effective resistance between

A and B. PROBLEM 1: the simple non series-parallel network.

PROBLEM 2: the general case.

2.21 A recursive zero-sum game. An inspector can inspect a facility

on just one occasion, on one of the days 1, . . . , n. The worker at the

facility can cheat or be honest on any given day. The payoff to the

inspector is 1 if he inspects while the worker is cheating. The payoff

is −1 if the worker cheats and is not caught. The payoff is also −1
if the inspector inspects but the worker did not cheat, and there is

at least one day left. This leads to the following matrices Γn for

the game with n days: the matrix Γ1 is shown on the left, and the

matrix Γn is shown on the right.

worker

cheat honest

in
sp
ec
to
r

inspect 1 0

wait −1 0

worker

cheat honest

in
sp
ec
to
r

inspect 1 −1
wait −1 Γn−1
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Find the optimal strategies and the value of Γn.

2.22 Prove that every k-regular bipartite graph has a perfect matching.

2.23 FIX Prove that every bistochastic n by n matrix is a convex combi-

nation of permutation matrices.

2.24 • Prove that if set G ⊆ Rd is compact and H ⊆ Rd is closed, then

G + H is closed. (This fact is used in the proof of the minimax

theorem to show that that the set K is closed.)

Proof: xn+ yn → z. xn from G, xnk
→ x ∈ G ynk

→ z−x implies

z − x ∈ H.

• Find F1, F2 ⊂ R2 closed such that F1 − F2 is not cloed.

Solution: F1 = {xy ≥ 1}, F2 = {x = 0}, F1 + F2 = {x > 0}.
2.25 Prove that linear programs (2.15) and (2.16) are dual to each other.

2.9 Solved Exercises

2.9.1 Another Betting Game

Consider the betting game with the following payoff matrix:

player II

L R

p
la
ye
r
I

T 0 2

B 5 1

Draw graphs for this game analogous to those shown in Figure 2.1.

Solution:

Suppose player I plays T with probability x1 and B with probability 1−x1,
and player II plays L with probability y1 and R with probability 1−y1. (We

note that in this game, there is no saddle point.)

Reasoning from player I’s perspective, her expected gain is 2(1 − y2) for
playing the pure strategy T , and 4y2 + 1 for playing the pure strategy B.

Thus, if she knows y2, she will pick the strategy corresponding to the max-

imum of 2(1− y2) and 4y2 +1. Player II can choose y2 = 1/6 so as to mini-

mize this maximum, and the expected amount player II will pay player I is

5/3. This is the player II strategy that minimizes his worst-case loss. See

Figure 2.11 for an illustration.

From player II’s perspective, his expected loss is 5(1− x1) if he plays the

pure strategy L and 1 + x1 if he plays the pure strategy R, and he will
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0 1

2

5

1

1/6

Player II’s mixed strategy

Expected
loss

of player II
: when player I         
  plays B 

 : when player I
   plays T

Worst-case
     loss

0 1

2

5

1

Player I’s mixed strategy

Expected
gain

of player I

: when player II   
  plays L

Worst-case
     gain

2/3

: when player II
  plays R

Fig. 2.11. The left side of the figure shows the worst-case expected gain
of player I as a function of her mixed strategy (where she plays T with
probability x1 and B with probability 1 − x1). This worst case expected
gain is maximized when she plays T with probability 2/3 and B with
probability 1/3. The right side of the figure shows the worst-case expected
loss of player II as a function of his mixed strategy (where he plays L with
probability y1 and R with probability 1− y1. The worst case expected loss
is minimized when he plays L with probability 1/6 and R with probability
5/6.

aim to minimize this expected payout. In order to maximize this minimum,

player I will choose x1 = 2/3, which again yields an expected gain of 5/3.
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General-sum games

We now turn to the theory of general-sum games. Such a game is given

by two matrices A and B, whose entries give the payoffs to the two players

for each pair of pure strategies that they might play. Usually there is no joint

optimal strategy for the players, but the notion of Nash equilibrium remains

relevant. These equilibria give the strategies that “rational” players might

choose. However, there are often several Nash equilibria, and in choosing one

of them, some degree of cooperation between the players may be desirable.

Moreover, a pair of strategies based on cooperation might be better for both

players than any of the Nash equilibria. We begin with two examples.

3.1 Some examples

Example 3.1.1 (The prisoner’s dilemma). Two suspects are held and

questioned by police who ask each of them to confess. The charge is serious,

but the police don’t have enough evidence to convict. Separately, each

suspect is offered the following plea deal. If he confesses and the other

prisoner remains silent, the confessor goes free, and his confession is used

to sentence the other prisoner to ten years in prison. If both confess, they

will both spend eight years in prison. If both remain silent, the sentence is

one year to each for the minor crime that can be proved without additional

evidence. The following matrix summarizes the payoffs, where negative

numbers represent years in prison.

prisoner II

silent confess

p
ri
so
n
er

I

silent (−1,−1) (−10, 0)
confess (0,−10) (−8,−8)

49
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Fig. 3.1. Two prisoners considering whether to confess or remain silent.

If the players are playing this game once, the payoff a player secures by

confessing is always greater than the payoff a player will get by remaining

silent, no matter how the other player behaves. However, if both follow this

reasoning, then both will confess and each of them will be worse off than

they would have been had they both remained silent. Unfortunately, to

achieve this latter, mutually preferable outcome, each player must supress

his or her natural desire to act selfishly. As we know from real life, this is

nontrivial!

The same phenomenon occurs even if the players were to play this same

game a fixed number of times. This can be shown by a backwards induction

argument. However, as we shall see in §Section ??, if the game is played

repeatedly, but ends at a random time, the mutually preferable solution may

arise even with selfish play.

Example 3.1.2 (Investing in comunication infrastructure). Two firms

are interested in setting up infrastructure that will enable them to commu-

nicate with each other. Each of the firms decides independently whether

to buy high bandwidth equipment (H) or low bandwidth equipment (L).

High bandwidth equipment is more expensive than low bandwidth equip-

ment, but more than pays for itself in communication quality as long as

both firms employ it. Low bandwidth equipment yields a payoff of 1 to the

firm employing it regardless of the equipment employed by the other firm.

This leads to the following payoff matrix:



3.1 Some examples 51

Firm II

high (H) low (L)

F
ir
m

I

high (H) (2, 2) (0, 1)

low (L) (1, 0) (1, 1)

What are good strategies for the firms? We begin by considering safety

strategies. L is the unique safety strategy for each player, and results in

a payoff of 1 to each player. The strategy pair (L, L) is also a pure Nash

equilibrium, since given the choice of low bandwidth by the other firm,

neither firm has an incentive to switch to high bandwidth. There is another

pure Nash equilibrium in this game, (H, H), which yields both players a

payoff of 2. Finally, there is a mixed Nash equilibrium in this game, in which

both players choose each action with probability 1/2. This also results in

an expected payoff of 1 to both players.

This example illustrates one of the new phenomena that arise in general

sum games: multiplicity of equilibria with different expected payoffs to the

players.

Example 3.1.3 (Driver and parking inspector game). Player I is

choosing between parking in a convenient but illegal parking spot (payoff

10 if she’s not caught), and parking in a legal but inconvenient spot (payoff

0). If she parks illegally and is caught, she will pay a hefty fine (payoff

-90). Player II, the inspector representing the city, needs to decide whether

to check for illegal parking. There is a small cost (payoff -1) to inspecting.

However, there is a greater cost to the city if player I has parked illegally

since that can disrupt traffic (payoff -10). This cost is partially mitigated if

the inspector catches the offender (payoff -6).

The resulting payoff matrix is the following:

Inspector

Don’t Inspect Inspect

D
ri
ve
r Legal (0, 0) (0, -1)

Illegal (10, -10) (-90, -6)

In this game, the safety strategy for the driver is to park legally (guar-

anteeing her a payoff of 0), and the safety strategy for the inspector is to

inspect (guaranteeing him/the city a payoff of -6). However, the strategy

pair (legal, inspect) is not a Nash equilibrium. Indeed, knowing the driver

is parking legally, the inspector’s best response is not to inspect. It is easy
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to check that this game has no Nash equilibrium in which either player uses

a pure strategy.

There is, however, a mixed Nash equilibrium. Suppose the strategy pair

(x, 1−x) for the driver and (y, 1−y) for the inspector are a Nash equilibrium.

Since 0 < y < 1, both possible actions of the inspector yield the same payoff

and thus −10(1−x) = −x− 6(1−x). Similarly, 0 = 10y− 90(1− y). These
equations yield x = 0.8 (the driver parks legally with probability 0.8 and

obtains an expected payoff of 0) and y = 0.9 (the inspector inspects with

probability 0.1 and obtains an expected payoff of -2).

3.2 Nash equilibria

A two-person general-sum game can be represented by a pair ofm×n payoff

matrices A = (aij) and B = (bij), whose rows are indexed by them possible

actions of player I, and whose columns are indexed by the n possible actions

of player II. (In the examples, we represent the payoffs by an m× n matrix

of pairs (aij , bij).) Player I selects an action i and player II selects an action

j, each unaware of the other’s selection. Their selections are then revealed

and player I receives a payoff of aij and player II a payoff of bij .

A mixed strategy for player I is determined by a vector (x1, . . . , xm)T

where xi represents the probability that player I plays action i and a mixed

strategy for player II is determined by a vector (y1, . . . , yn)
T where yj is

the probability that player II plays action j. A mixed strategy in which a

particular action is played with probability 1 is called a pure strategy.

Definition 3.2.1 (Nash equilibrium). A pair of mixed strategy vectors

(x∗,y∗) with x∗ ∈ ∆m (where ∆m = {x ∈ Rm : xi ≥ 0,
∑m

i=1 xi = 1}), and
y∗ ∈ ∆n (where ∆n = {y ∈ Rn : yj ≥ 0,

∑n
j=1 yj = 1}) is a Nash equilib-

rium if no player gains by unilaterally deviating from it. That is,

(x∗)TAy∗ ≥ xTAy∗

for all x ∈ ∆m and

(x∗)TBy∗ ≥ (x∗)TBy

for all y ∈ ∆n.

The game is called symmetric if m = n and ai,j = bj,i for all i, j ∈
{1, 2, . . . , n}. A pair (x,y) of strategies is called symmetric if xi = yi for

all i = 1, . . . , n.

We will see that there always exists a Nash equilibrium; however, there

can be many of them, and they may yield different payoffs to the players.
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Thus, Nash equilibria do not have the predictive power in general sum games

that safety strategies have in zero-sum games. We discuss in the notes to

what extent Nash equilibria are a reasonable model for rational behavior.

Example 3.2.2 (Cheetahs and antelopes). Consider a simple model,

where two cheetahs are giving chase to two antelopes, one large and one

small. Each cheetah has two possible strategies: chase the large cheetah

(L) or chase the small cheetah (S). The cheetahs will catch any antelope

they choose, but if they choose the same one, they must share the spoils.

Otherwise, the catch is unshared. The large antelope is worth ℓ and the

small one is worth s. Here is the payoff matrix:

cheetah II

L S

ch
ee
ta
h
I

L (ℓ/2, ℓ/2) (ℓ, s)

S (s, ℓ) (s/2, s/2)

Fig. 3.2. Cheetahs deciding whether to chase the large or the small ante-
lope.

If the larger antelope is worth at least twice as much as the smaller (ℓ ≥
2s), then strategy L dominates strategy S. Hence each cheetah should just

chase the larger antelope. If s < ℓ < 2s, then there are two pure Nash

equilibria, (L, S) and (S, L). These pay off quite well for both cheetahs —

but how would two healthy cheetahs agree which should chase the smaller

antelope? Therefore it makes sense to look for symmetric mixed equilibria.

If the first cheetah chases the large antelope with probability x, then the

expected payoff to the second cheetah by chasing the larger antelope is

L(x) =
ℓ

2
x+ (1− x)ℓ,
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and the expected payoff arising from chasing the smaller antelope is

S(x) = xs+ (1− x)s
2
.

These expected payoffs are equal when

x =
2ℓ− s
ℓ+ s

.

For any other value of x, the second cheetah would prefer either the pure

strategy L or the pure strategy S, and then the first cheetah would do better

by simply playing pure strategy S or pure strategy L. But if both cheetahs

chase the large antelope with probability

x∗ =
2ℓ− s
ℓ+ s

,

then neither one has an incentive to deviate from this strategy, so this a

Nash equilibrium, in fact a symmetric Nash equilibrium.

ADD A GRAPH OF L(p) and S(p)

There is a fascinating connection between symmetric mixed Nash equilib-

ria in games such as this and equilibria in biological populations. Consider

a population of cheetahs, and suppose a fraction x of them are greedy (i.e.,

play strategy L). Each time a cheetah plays this game, he plays it against

a random cheetah in the population. Then a greedy cheetah obtains an

expected payoff of L(x), whereas a non-greedy cheetah obtains an expected

payoff of S(x). If x > x∗, then S(x) > L(x) and non-greedy cheetahs have

an advantage over greedy cheetahs. On the other hand, if x < x∗, greedy
cheetahs have an advantage. Altogether, the population seems to be pushed

by evolution towards the symmetric mixed Nash equilibrium (x∗, 1 − x∗).
Indeed, such phenomena have been observed in real biological systems. The

related notion of an evolutionarily stable strategy is formalized in sec-

tion 3.5.

Example 3.2.3 (The game of chicken). Two drivers speed head-on to-

ward each other and a collision is bound to occur unless one of them chickens

out at the last minute. If both chicken out, everything is OK (we’ll say that

in this case, they both get a payoff of 1). If one chickens out and the other

does not, then it is a great success for the player with iron nerves (payoff = 2)

and a great disgrace for the chicken (payoff = −1). If both players have iron

nerves, disaster strikes (both incur a large penalty M).
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player II

Chicken (C) Drive (D)

p
la
ye
r
I

Chicken (C) (1, 1) (−1, 2)
Drive (D) (2, −1) (−M , −M)

Fig. 3.3. The game of chicken.

Let’s determine its Nash equilibria. First, we see that there are two pure

Nash equilibria (C,D) and (D,C): if one player knows with certainty that

the other will drive on (resp. chicken out), that player is better off chickening

out (resp. driving on).

To determine the mixed equilibria, suppose that player I plays C with

probability x and D with probability 1 − x. This presents player II with

expected payoffs of x × 1 + (1 − x) × (−1) = 2x − 1 if she plays C, and

x × 2 + (1 − x) × (−M) = (M + 2)x − M if she plays D. We seek an

equilibrium where player II has positive probability on each of C and D.

Thus,

2x− 1 = (M + 2)x−M.

That is, x = 1 − 1/M . The payoff for player II is 2x − 1, which equals

1− 2/M .

Remarks:
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(i) Notice that even though both payoff matrices decrease as M in-

creases, the equilibrium payoffs become larger. This contrasts with

the situation in zero sum games where decreasing a player’s payoff

matrix can only lower her expected payoff in equilibrium.

(ii) The payoff for a player is lower in the symmetric Nash equilibrium

than it is in the pure equilibrium where that player plays D and the

other plays C. One way for a player to ensure that the higher payoff

asymmetric Nash equilibrium is reached is to irrevocably commit to

the strategy D, for example, by ripping out the steering wheel and

throwing it out of the car. In this way, it becomes impossible for

him to chicken out, and if the other player sees this and believes her

eyes, then she has no other choice but to chicken out.

In a number of games, making this kind of binding commitment

pushes the game into a pure Nash equilibrium, and the nature of

that equilibrium strongly depends on who managed to commit first.

Here, the payoff for the player who did not make the commitment is

lower than the payoff in the unique mixed Nash equilibrium, while in

some games it is higher (e.g., see Battle of the Sexes in §Section 3.7).

(iii) An amusing real-life example of commitments arises in a certain

narrow two-way street in Jerusalem. Only one car at a time can

pass. If two cars headed in opposite directions meet in the street,

the driver that can signal to the opponent that he “has time for a

face-off” will be able to force the other to back out. Some drivers

carry a newspaper with them which they can strategically pull out

to signal that they are not in any particular rush.

3.3 General-sum games with more than two players

We now consider general sum games with more than two players and gen-

eralize the notion of Nash equilibrium to this setting. Each player i has

a set Si of pure strategies. We are given payoff or utility functions ui :

S1 × S2 × · · · × Sk → R, for each player i, where i ∈ {1, . . . , k}. If player j

plays strategy sj ∈ Sj for each j ∈ {1, . . . , k}, then player i has a payoff or

utility of ui(s1, . . . , sk).

Example 3.3.1 (An ecology game). Three firms will either pollute a lake

in the following year, or purify it. They pay 1 unit to purify, but it is free

to pollute. If two or more pollute, then the water in the lake is useless,

and each firm must pay 3 units to obtain the water that they need from
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elsewhere. If at most one firm pollutes, then the water is usable, and the

firms incur no further costs.

Assuming that firm III purifies, the cost matrix (cost=-payoff) is:

firm II

purify pollute

fi
rm

I
purify (1,1,1) (1,0,1)

pollute (0,1,1) (3,3,3+1)

If firm III pollutes, then it is:

firm II

purify pollute

fi
rm

I

purify (1,1,0) (3+1,3,3)

pollute (3,3+1,3) (3,3,3)

Fig. 3.4.

To discuss the game, we generalize the notion of Nash equilibrium to

games with more players.

Definition 3.3.2. For a vector s = (s1, . . . , sn), we use s−i to denote the

vector obtained by excluding si, i.e.,

s−i = (s1, . . . , si−1, si+1, . . . , sn).

We interchangeably refer to the full vector (s1, . . . , sn) as either s or, slightly

abusing notation, (si, s−i).
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Definition 3.3.3. A pure Nash equilibrium in a k-player game is a

sequence of pure strategies

(s∗1, . . . , s
∗
k) ∈ S1 × · · · × Sk

such that for each player j ∈ {1, . . . , k} and each sj ∈ Sj, we have

uj(s
∗
j , s

∗
−j) ≥ uj(sj, s∗−j).

In other words, for each player j, his selected strategy s∗j is a best response

to the selected strategies s∗−j of the other players.

A mixed Nash equilibrium is a sequence of k mixed strategies, with

x∗
i ∈ ∆|Si| the mixed strategy of player i, such that for each player j ∈
{1, . . . , k} and each probability vector xj ∈ ∆|Sj |, we have

ūj(x
∗
j ,x

∗
−j) ≥ ūj(xj ,x

∗
−j).

Here,

ūj(x1,x2, . . . ,xk) :=
∑

s1∈S1,...,sk∈Sk

x1(s1) . . .xk(sk)uj(s1, . . . , sk),

where xi(s) is the probability with which player i plays pure strategy s in

the mixed strategy xi.

Definition 3.3.4. A game is symmetric if the players strategies and pay-

offs are identical, up to relabelling, i.e., for every i0, j0 ∈ {1, . . . , k}, there is

a permutation π of the set {1, . . . , k} such that π(i0) = j0 and

uπ(i)(ℓπ(1), . . . , ℓπ(k)) = ui(ℓ1, . . . , ℓk).

(For this definition to make sense, we require that the strategy sets of the

players coincide.)

We will prove the following result in §Section 3.8.

Theorem 3.3.5 (Nash’s theorem). Every finite general sum game has

a Nash equilibrium. Moreover, in a symmetric game, there is a symmetric

Nash equilibrium.

For determining Nash equilibria in (small) games, the following lemma

(which we have already applied several times for 2-player games) is useful.

Lemma 3.3.6. Consider a k-player game with xi the mixed strategy of
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player i. For each i, let Ti = {s ∈ Si | xi(s) > 0}. Then (x1, . . . ,xk) is a

Nash equilibrium if and only if for each i, there is a constant ci such that†

∀si ∈ Ti ui(si,x−i) = ci

and

∀si 6∈ Ti ui(si,x−i) ≤ ci.

Exercise:

• Prove Lemma 3.3.6.

• Use Lemma 3.3.6 to derive an exponential time algorithm for finding

a Nash equilibrium in two-player general sum games using linear

programming (Section 2.7).

Returning to the ecology game, it is easy to check that the pure equilibria

consist of all three firms polluting, or one of the three firms polluting, and

the remaining two purifying.

Next we consider mixed strategies. Suppose that player i’s strategy is

xi = (pi, 1 − pi) (i.e. i purifies with probability pi). It follows from lemma

3.3.6 these strategies are a Nash equilibrium with 0 < pi < 1 if and only if:

ui(purify ,x−i) = ui(pollute ,x−i).

Thus, if player 1 plays a mixed strategy, then

p2p3 + p2(1− p3)+p3(1− p2) + 4(1− p2)(1 − p3)
= 3p2(1− p3) + 3p3(1− p2) + 3(1− p2)(1 − p3),

or, equivalently,

1 = 3(p2 + p3 − 2p2p3). (3.1)

Similarly, if player 2 plays a mixed strategy, then

1 = 3(p1 + p3 − 2p1p3), (3.2)

and if player 3 plays a mixed strategy, then

1 = 3(p1 + p2 − 2p1p2). (3.3)

Subtracting (3.2) from (3.3), we get 0 = 3(p2 − p3)(1 − 2p1). This means

that if all three firms use mixed strategies, then either p2 = p3 or p1 = 1/2.

In the first case (p2 = p3), equation (3.1) becomes quadratic in p2, with two

† The notation (si,x−i) is an abbreviation where we identify the pure strategy si with the
probability vector 1si that assigns si probability 1.
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solutions p2 = p3 = (3 ±
√
3)/6, both in (0, 1). Substituting these solutions

into the first equation, yields p1 = p2 = p3, resulting in two symmetric

mixed equilibria. If, instead of p2 = p3, we let p1 = 1/2, then the first

equation becomes 1 = 3/2, which is nonsense. This means that there is no

asymmetric equilibrium with at least two mixed strategies. It is easy to check

that there is no equilibrium with two pure and one mixed strategy. Thus we

have found all Nash equilibria: one symmetric and three asymmetric pure

equilibria, and two symmetric mixed ones.

3.4 Games with Infinite Strategy Spaces

In some cases, an agent’s strategy space Si is unbounded.

Example 3.4.1 (Tragedy of the commons). Consider a set of k players

that each want to send information along a shared channel of maximum

capacity 1. Each player decides how much information to send along the

channel, measured as a fraction of the capacity. Ideally, a player would like

to send as much information as possible. The problem is that the quality of

the channel degrades as a larger and larger fraction of it is utilitized, and if

it is over-utilized, no information gets through. In this setting, each agent’s

strategy space Si = [0, 1]. The utility function of each player i is

ui(si, s−i) = si



1−
∑

j 6=i

sj



 ,

if
∑

j sj ≤ 1 and 0 otherwise.

We check that there is a pure Nash equilibrium in this game. Fix a player

i and suppose that the other player’s select strategies s−i. Then player i’s

best response consists of choosing that si ∈ [0, 1] so that si(1 −
∑

j 6=i sj) is

maximized, which occurs at

si =



1−
∑

j 6=i

sj



 /2. (3.4)

To be in Nash equilibrium, (3.4) must hold for all i. The unique solution to

this system of equations has si = 1/(k + 1) for all i.

This is a “tragedy” because the resulting sum of utilities is

∑

1≤i≤k

ui(si, s−i) =
k

(k + 1)2
= O

(

1

k

)

.

However, if the players acted globally, rather than optimizing just their own
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utility, and chose, for example si = 1/2k, then each player would have utility

approximately 1/4k (instead of 1/(k + 1)2), and the sum of utilities would

be constant.

Example 3.4.2 (A pricing game). Consider a setting with two sellers

selling the same product and three buyers each interested in buying one

unit of the product. Seller I can be assured that buyer A will buy the

product from her, and seller II can be assured that buyer C will buy the

product from him. However, the two sellers compete to sell the product to

buyer B. The strategy space for each of the sellers is their choice of price

in [0, 1]. (We assume neither buyer is willing to spend more than 1 on the

product.) Buyer B will buy from the seller with the lower priced offer, unless

their prices are the same, in which case he buys from seller I.

Thus, if seller I sets her price at p1 and seller II sets his price at p2, with

p1 ≤ p2, then seller I’s utility is 2p1, and seller II’s utility is p2, whereas if

p1 > p2, then seller I’s utility is p1, and seller II’s utility is 2p2.

In this game, there is no pure Nash equilibrium. To see this, suppose that

seller II chooses a price x2 > 1/2. Then seller I’s best response is to choose

x1 = x2. But then x2 is no longer a best response to x1. If x2 = 1/2, then

player I’s best response is either x1 = 1/2 or x1 = 1, but in either case,

x2 = 1/2 is not a best response. Finally, we observe that seller II will never

set x2 < 1/2, since this ensures a payoff less than 1, whereas a payoff of 1 is

always achievable.

There is, however, a symmetric mixed Nash equilibrium. Any pure strat-

egy with x < 1/2 is dominated by the strategy x = 1, and thus we can

restrict attention to mixed strategies supported on [1/2, 1]. Suppose that

both sellers choose their prices X and Y from distributions F and G sup-

ported on all of [1/2, 1]. Then the expected payoff to seller II for any price

y he might choose is yF (y) + 2y(1 − F (y)) = y(2 − F (y)), which must be

equal for all y in [1/2, 1]. This holds when F (x) = 2− 1/x in [1/2, 1] (corre-

sponding to density f(x) = 1/x2 on that interval). Setting G = F yields a

Nash equilibrium. Note that the continuous distributions ensure the chance

of a tie is zero.

Exercise 3.4.3. Consider the pricing game with two sellers and one buyer

who buys at the lower price, however prices are required to be strictly pos-

itive. Thus, if the prices selected are x and y then payoffs will be (x, 0) if

x ≤ y and (0, y) if x > y. Show that for any c > 0, there is a mixed Nash

equilibrium that yields expected payoff c for both players.
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3.5 Evolutionary game theory

Evolutionary biology is based on the principle that the genetic makeup of

an organism determines many of its behaviors and characteristics. These

behaviors and characteristics in turn determine how successful that organ-

ism is in life and, therefore, at reproducing. Thus, genes that give rise to

behaviors and characteristics that promote reproduction tend to increase in

frequency in the population.

One major factor in the reproductive success of an organism is how it

interacts with other organisms, and this is where evolutionary game theory

comes in. Think of these interactions as a series of encounters between

random organisms in a population. An organisms’ genes determine how it

behaves in each of these encounters, and depending on what happens in

these encounters, each participant obtains a certain reward. The greater

the reward, the greater the reproductive success that organism has.

We model each encounter between two organisms as a game. The type of

an organism, which determines how they behave in the game, corresponds

to a pure strategy. The rewards from the encounter as a function of the

types are the payoffs, and, finally, the population frequencies of each type

of organism correspond to mixed strategies in the game. This is because we

think of the encounter or game as transpiring between two random members

of the overall population.

One of the fundamental questions we then ask is: what population fre-

quencies are stable? The answer we will consider in this section is the notion

of an evolutionary stable strategy (ESS). We will see that every ESS

in a game is a symmetric mixed Nash equilibrium, but not vice versa.

We begin with an example, a variant of our old friend, the game of

Chicken:

3.5.1 Hawks and Doves

The game described in Figure 3.5 is a simple model for two behaviors — one

bellicose, the other pacifistic — within the population of a single species.

This game has the following payoff matrix:

player II

H D

p
la
ye
r
I

H (v2 − c, v2 − c) (v, 0)

D (0, v) (v2 ,
v
2 )

Now imagine a large population, each of whose members are hardwired

genetically either as hawks or as doves, and assume that the payoffs in
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0

v/2 v/2

v

v/2− c v/2− c

Fig. 3.5. Two players play this game, for a prize of value v > 0. They
confront each other, and each chooses (simultaneously) to fight or to flee;
these two strategies are called the “hawk” (H) and the “dove” (D) strate-
gies, respectively. If they both choose to fight (two hawks), then each pays
a cost c to fight, and the winner (either is equally likely) takes the prize.
If a hawk faces a dove, the dove flees, and the hawk takes the prize. If two
doves meet, they split the prize equally.

the game translate directly into reproductive success, so that those who do

better at this game have more offspring. We will argue that if (x, 1−x) is a
symmetric Nash equilibrium in this game, then these will also be equilibrium

proportions in the population.

Let’s see what the Nash equilibria are. If c < v
2 , the game is a version

of Prisoner’s Dilemma and (H,H) is the only equilibrium. When c > v
2 ,

there are two pure Nash equilibria: (H,D) and (D,H); and since the game

is symmetric, there is a symmetric mixed Nash equilibrium. Suppose I plays

H with probability x. To be a Nash equilibrium, we need the payoffs for

player II to play H and D to be equal:

(L) x(
v

2
− c) + (1− x)v = (1− x)v

2
(R). (3.5)

For this to be true, we need x = v
2c , which by the assumption, is less than

one. By symmetry, player II will do the same thing.

Population Dynamics for Hawks and Doves: Now suppose we have
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the following dynamics in the population: throughout their lives, random

members of the population pair off and play Hawks and Doves; at the end

of each generation, members reproduce in numbers proportional to their

winnings. Let x denote the fraction of hawks in the population. If the

population is large, then by the Law of Large Numbers, the total payoff

accumulated by the hawks in the population, properly normalized, will be

the expected payoff of a hawk playing against an opponent whose mixed

strategy is to play H with probability x and D with probability (1− x) —
and so also will go the proportion of hawks and doves in the next generation.

If x < v
2c , then in equation (3.5), (L) > (R) — the expected payoff for a

hawk is greater than that for a dove, and so in the next generation, x, the

fraction of hawks, will increase.

On the other hand, if x > v
2c , then (L) < (R) – the expected payoff for

a dove is higher than that of a hawk, and so, in the next generation, x will

decrease.

Example 3.5.1 (Sex Ratios). Evolutionary stability can be used to ex-

plain sex ratios in nature. In mostly monogomous species, it seems nat-

ural that the birth rate of males and females should be roughly equal.

But what about sea lions, in which a single male gathers a large harem

of females, while many males never reproduce? Game theory helps ex-

plain why reproducing at a 1:1 ratio remains stable. To illustrate this,

consider the following highly simplified model. Suppose that each harem

consists of one male and ten females. If M is the number of males in

the population and F the number of females, then the number of “lucky”

males, that is, males with a harem, is ML = min(M,F/10). Suppose also

that each mating pair has b offspring on average. A random male has a

harem with probability ML/M , and if he does, he has 10b offspring on

average. Thus, the expected number of offspring a random male has is

E [Cm] = 10bML/M = bmin(10, F/M). On the other hand, the number of

females that belong to a harem is FL = min(F, 10M), and thus the expected

number of offspring a female has is E [Cf ] = bFL/F = bmin(1, 10M/F ).

IfM < F , then E [Cm] > E [Cf ], and individuals with a higher propensity

to have male offspring than females will tend to have more grandchildren,

resulting in a higher proportion of genes in the population with a propensity

for male offspring. In other words, the relative birthrate of males increases.

On the other hand, if M > F , then E [Cm] < E [Cf ], and the relative

birthrate of females increases. (Of course, when M = F , we have E [Cm] =

E [Cf ], and the sex ratio is stable.)
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3.5.2 Evolutionarily stable strategies

Consider a symmetric, two-player game with n pure strategies each, and

payoff matrices A and B for players I and II, with Ai,j = Bj,i.

We take the point of view that a symmetric mixed strategy in this game

corresponds to the proportions of each type within the population.

To motivate the formalism, suppose a population with strategy x is in-

vaded by a small population of mutants of type z (that is, playing strategy

z), so the new composition is εz+(1−ε)x, where ε is small. The new payoffs

will be:

εxTAz+ (1− ε)xTAx (for x’s) (3.6)

εzTAz+ (1− ε)zTAx (for z’s). (3.7)

The criteria for x to be an evolutionary stable strategy will imply that,

for small enough ε, the average payoff for x’s will be strictly greater than

that for z’s, so the invaders will disappear. Formally:

Definition 3.5.2. A mixed strategy x in ∆n is an evolutionarily stable

strategy (ESS) if for any pure “mutant” strategy z:

(i) zTAx ≤ xTAx.

(ii) if zTAx = xTAx, then zTAz < xTAz.

Observe that criterion (i) is equivalent to saying that x is a Nash equilib-

rium. Thus, if x is a Nash equilibrium, criterion (i) holds with equality for

any z in the support of x.

Example 3.5.3 (Hawks and Doves). We will verify that the mixed Nash

equilibrium x =
(

v
2c , 1− v

2c

)

(i.e., H is played with probability v
2c) is an ESS

when c > v
2 . First, we observe that both pure strategies satisfy constraint

(i) with equality, so we check (ii).

• If z = (1, 0) (“H”) then zTAz = v
2 − c, which is strictly less than

xTAz = x(v2 − c) + (1− x)0.
• If z = (0, 1) (“D”) then zTAz = v

2 < xTAz = xv + (1− x)v2 .

Thus, the mixed Nash equilibrium for Hawks and Doves is an ESS.

Example 3.5.4 (Rock-Paper-Scissors). The unique Nash equilibrium in

Rock-Paper-Scissors, x = (13 ,
1
3 ,

1
3), is not evolutionarily stable. This is

because the payoff of x against any strategy is 0, and the payoff of any

pure strategy against itself is also 0, and thus, the expected payoff of x and
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z will be equal. This means that under appropriate notions of population

dynamics, cycling will occur: a population with many Rocks will be taken

over by Paper, which in turn will be invaded (bloodily, no doubt) by Scissors,

and so forth. These dynamics have been observed in actual populations of

organisms — in particular, in a California lizard.

The side-blotched lizard Uta stansburiana has three distinct types of male:

orange-throats, blue-throats and yellow-striped. The orange-throats are vi-

olently aggressive, keep large harems of females and defend large territories.

The blue-throats are less aggressive, keep smaller harems and defend small

territories. The yellow-striped are very docile and look like receptive fe-

males. They do not defend territory or keep harems. Instead, they sneak

into another male’s territory and secretly copulate with the females. In 1996,

B. Sinervo and C. M. Lively published the first article in Nature describing

the regular succession in the frequencies of different types of males from

generation to generation [SL96].

The researchers observed a six-year cycle which started with a domina-

tion by the orange-throats. Eventually, the orange-throats have amassed

territories and harems large enough so they could no longer be guarded

effectively against the sneaky yellow-striped males, who were able to se-

cure a majority of copulations and produce the largest number of offspring.

When the yellow-striped have become very common, however, the males

of the blue-throated variety got an edge, since they could detect and ward

off the yellow-striped, as the blue-throats have smaller territories and fewer

females to monitor. So a period when the blue-throats became dominant fol-

lowed. However, the vigorous orange-throats do comparatively well against

blue-throats, since they can challenge them and acquire their harems and

territories, thus propagating themselves. In this manner, the population

frequencies eventually returned to the original ones, and the cycle began

anew.

Example 3.5.5 (Unstable mixed Nash equilibrium). In this game,

player II

A B

p
la
ye
r
I

A (10, 10) (0, 0)

B (0, 0) (5, 5)

both pure strategies (A,A) and (B,B) are evolutionarily stable, while the

mixed Nash equilibrium is not.
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Fig. 3.6. The three types of male of the lizard Uta stansburiana. Pic-
ture courtesy of Barry Sinervo; see http://bio.research.ucsc.edu/

~barrylab.

Notice that although (B,B) is evolutionarily stable, if a sufficiently large

population of A’s invades, then the “stable” population will in fact shift to

being entirely composed of A’s. Specifically, if after the A’s invade the new

composition is ε fraction As and 1 − ε fraction B’s, then using (3.6), the

payoffs for each type are

(1− ε)5 (for Bs)

ε10 (for As).

Thus if ε > 1/3, the payoffs of the As will be higher and they will “take

over”.

Exercise 3.5.6 (Mixed population invasion). Consider the following

game:

player II

A B C

p
la
ye
r
I

A (0, 0) (6, 2) (−1,−1)
B (2, 6) (0, 0) (3, 9)

C (−1,−1) (9, 3) (0, 0)

http://bio.research.ucsc.edu/~barrylab
http://bio.research.ucsc.edu/~barrylab
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Find two mixed Nash equilibria, one supported on {A,B}, the other sup-

ported on {B,C}. Show they are both ESS, but the {A,B} equilibrium is

not stable when invaded by an arbitrarily small population composed of half

B’s and half C’s.

3.6 Potential games

Consider a set of k players repeatedly playing a finite game. Suppose that in

each round, some player who can improve his payoff chooses a best response

to the actions of the other players and switches to that action, while the

other players repeat their action from the previous round. There are two

possibilities for what can happen. The first is that eventually nobody has

an improving move, in which case, the set of strategies being played is a

Nash equilibrium. The second possibility is that the process cycles.

The most natural way to prove that a Nash equilibrium is reached is to

construct a potential function ψ(·) mapping strategy profiles to R with the

property that each time a player improves his payoff, the potential function

value increases by a positive amount. Since these improvements cannot

continue indefinitely, the process must reach a pure Nash equilibrium. A

game for which there exists such a potential function is called a potential

game.

Formally, consider k-player games, in which player j’s strategy space is

the finite set Sj. Let ui(s1, s2, . . . , sk) denote the payoff to player i when

player j plays strategy sj for each j. In a potential game, there is a function

ψ : S1 × · · · × Sk → R such that for each i, si, s̃i ∈ Si and s−i ∈ S−i

ui
(

s̃i, s−i

)

− ui
(

si, s−i

)

= ψ
(

s̃i, s−i

)

− ψ
(

si, s−i

)

. (3.8)

We call the function ψ the potential function associated with the game.

Claim 3.6.1. Every potential game has a Nash equilibrium in pure strate-

gies.

Proof. The set S1 × · · · × Sk is finite so there exists some s that maxi-

mizes ψ(s). Note that for this s the expression on the right hand side in

Equation (3.8) is at most zero for any i ∈ {1, . . . , k} and any choice of s̃i.

This implies that s is a Nash equilibrium.

Example 3.6.2 (A congestion game). There is a road network with R

roads and k drivers, where the jth driver wishes to drive from point sj to

point tj . Each driver, say the j-th, chooses a path γj from sj to tj and

incurs a cost or latency due to the congestion on the path selected.
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This cost is determined as follows. Suppose that the choices made by

the k drivers are γ = (γ1, γ2, . . . , γk). This determines the total number of

drivers on each road, say r, as

nr(γ) =
∣

∣

∣

{

j ∈ {1, . . . , k} : driver j uses road r when he drives on path γj

}∣

∣

∣
.

In addition, there is a real valued cost function Cr for each road such that

Cr(n) is the cost incurred by any driver using road r when the total number

of drivers using road r is n. The total cost Costi(γ) experienced by a driver

is the sum of the costs on each road the driver uses, i.e. for driver i it is

Costi(γ) =
∑

r∈γi
Cr(nr(γ)).

(Note that the utility of the driver is then ui(γ) = −Costi(γ).
Claim 3.6.3. The function ψ defined on strategy tuples γ = (γ1, . . . , γk) as

ψ(γ) = −
R
∑

r=1

nr(γ)
∑

ℓ=1

Cr(ℓ).

is a potential function for this congestion game.

To get some intuition for this potential function and why it satisfies

Equation (3.8), imagine adding the players one at a time, and looking at

the cost each player incurs at the moment he’s added. The sum of these

quantities is the potential function value. If we remove the last player, say

on path P , and add him back in, say on path P ′, then the change in poten-

tial is equal to the change in the cost he incurs when he switches from P to

P ′. Since the potential function value doesn’t depend on the order in which

the players are added, any player can be viewed as the last player.

Formally, the observation in the previous paragraph is that, for any i,

ψ(γ) = ψ(γ−i)− Costi(γ).

Thus,

ψ(γ′i,γ−i)− ψ(γi,γ−i) = −Costi(γ′i,γ−i) + Costi(γi,γ−i)

= ui(γ
′
i,γ−i)− ui(γi,γ−i).

An example illustrating this argument is shown in Figure ??.

Example 3.6.4 (Graph Coloring Game). Consider an arbitrary undi-

rected graph G = (V,E). In this game, each vertex {v1, . . . , vn} ∈ V is a
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player, and their action consists of choosing a color from the set [n]. We

represent vertex i’s color choice by si ∈ [n] for each i, and, for any color c,

define

nc(s) = number of vertices with color c when players color according to s.

The payoff of a vertex vj (with color sj) is then

uj(s) =

{

nsj(s) if no neighbor of vj has the same color as vj

0 otherwise.

Consider a series of moves in which one player at a time makes a best

response move. Then as soon as every player who has an improving move to

make has done so, the graph will be properly colored, that is, no neighbors

will have the same color. This is because a node’s payoff is positive if it

doesn’t share its color with any neighbor and 0 otherwise. Moreover, once

the graph is properly colored, it will never become improperly colored by a

best reponse move. Thus, we can restrict attention to strategy profiles s in

which the graph is properly colored.

Lemma 3.6.5. The graph coloring game has a pure Nash equilibrium.

Proof. We claim that, restricted to proper colorings, this game is a potential

game with potential function

ψ(s) =

n
∑

c=1

nc(s)
∑

ℓ=1

ℓ,

i.e., that for any i, (si, s−i) and (s̃i, s−i) that are proper colorings,

ui
(

s̃i, s−i

)

− ui
(

si, s−i

)

= ψ
(

s̃i, s−i

)

− ψ
(

si, s−i

)

.

This follows from the same line of reasoning as the congestion game example:

ψ(s) is obtained by coloring the nodes one at a time, adding in the payoff

of the new node relative to the nodes that have already been colored. Thus,

for any s that is a proper coloring, and any player i,

ψ(s) = ψ(s−i) + ui(s) = ψ(s−i) + nsi(s).

The rest of the argument follows as in the previous example.

Corollary 3.6.6. Let χ(G) be the chromatic number of the graph G, that

is, the minimum number of colors in any proper coloring of G. Then the

graph coloring game has a pure Nash equilibrium with χ(G) colors.
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Proof. Suppose that s is the coloring corresponding to χ(G). Then in a

series of single-player best response moves, no player will ever introduce an

additional color, and the coloring will remain proper always. In addition,

since the game is a potential game, the series of moves will end in a pure

Nash equilibrium. Thus, this Nash equilibrium will have χ(G) colors.

3.7 Correlated equilibria

Example 3.7.1 (The battle of the sexes). The wife wants to head to

the opera, but the husband yearns instead to spend an evening watching

baseball. Neither is satisfied by an evening without the other. In numbers,

player I being the wife and II the husband, here is the scenario:

husband

opera baseball

w
if
e opera (4,1) (0,0)

baseball (0,0) (1,4)

How do we expect a rational couple to work this dilemma out?

In this game there are two pure Nash equilibria: both go the opera or both

watch baseball. There is also a mixed Nash equilibrium which yields each

player an expected payoff of 4/5 (when the wife plays (4/5, 1/5) and the

husband plays (1/5, 4/5)). This mixed equilibrium hardly seems rational:

the payoff a player gets is lower than what they would obtain by agreeing

to go along with what their spouse wants. How might this couple decide

between the two pure Nash equilibria?

One way to do this would be to pick a joint action based on a flip of a

single coin. For example, the two players could agree that if the coin lands

heads then both go to the opera, otherwise both watch baseball. Observe

that even after the coin toss, neither player has an incentive to unilaterally

deviate from the agreement.

This idea was introduced in 1974 by Aumann ([Aum87]) and is called a

correlated equilibrium. To motivate the formal definition, observe that a

mixed strategy pair in a two-player general-sum game with action spaces [m]

and [n] can be described by a random pair of actions, R with distribution

x ∈ ∆m, and C with distribution y ∈ ∆n, picked independently by player I

and II. Thus,

P [R = i, C = j] = xiyj.
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It follows from Lemma 3.3.6 that x,y is a Nash equilibrium if and only if

P [R = i] > 0 =⇒ E [ai,C ] ≥ E [aℓ,C]

for all i and ℓ in [n], and

P [C = j] > 0 =⇒ E [bR,j] ≥ E [bR,k].

for all j and k in [m].

Definition 3.7.2. A correlated strategy pair is a pair of random actions

(R, C) with an arbitrary joint distribution

zij = P [R = i, C = j].

The next definition formalizes the idea that, in a correlated equilibrium,

if player I knows that the players’ actions (R, C) are picked according to the

joint distribution z and player I is informed only that R = i, then she has

no incentive to switch to some other action ℓ.

Definition 3.7.3. A correlated strategy pair in a two-player game with

payoff matrices A and B is a correlated equilibrium if

P [R = i] > 0 =⇒ E [ai,C | R = i] ≥ E [aℓ,C | R = i] (3.9)

for all i and ℓ in [n], and

P [C = j] > 0 =⇒ E [bR,j | C = j] ≥ E [bR,k | C = j].

for all j and k in [m].

Remark. In terms of the distribution z, the inequality in condition (3.9) is

∑

j

(

zij
∑

k zik

)

aij ≥
∑

j

(

zij
∑

k zik

)

aℓj.

Thus, z is a correlated equilibrium iff for all i and ℓ,
∑

j

zijaij ≥
∑

j

zijaℓj,

and for all j and k,
∑

i

zijaij ≥
∑

i

zijaik.

The next example illustrates a more sophisticated correlated equilibrium

that is not simply a mixture of Nash equilibria.

Example 3.7.4. A Game of Chicken:
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player II

Chicken (C) Drive (D)

p
la
ye
r
I

Chicken (C) (6, 6) (2, 7)

Drive (D) (7, 2) (0, 0)

In this game, (C,D) and (D,C) are Nash equilibria with payoffs of (2, 7)

and (7, 2) respectively. There is also a mixed Nash equilibrium in which each

player plays C with probability 2/3 and D with probability 1/3 resulting in

an expected payoff of 42
3 .

The following probability distribution z is a correlated equilibrium which

results in an expected payoff of 41
2 to each player, worse than the mixed

Nash equilibrium.

player II

Chicken (C) Drive (D)

p
la
ye
r
I

Chicken (C) 0 1/2

Drive (D) 1/2 0

A more interesting correlated equilibrium that yields a payoff outside the

convex hull of the Nash equilibrium payoffs is the following:

player II

Chicken (C) Drive (D)

p
la
ye
r
I

Chicken (C) 1/3 1/3

Drive (D) 1/3 0

For this correlated equilibrium, it is crucial that the row player only know R
and the column player only know C. Otherwise, in the case that the outcome

is (C,C), both players would have an incentive to deviate (unilaterally).

Thus, to implement a correlated equilibrium, an external mediator is typ-

ically needed. Here, the external mediator chooses the strategy pair accord-

ing to this distribution ((C,D), (D,C), (C,C) with probability 1
3 each), and

then discloses to each player which strategy he or she should use (but not

the strategy of the opponent). At this point, the players are free to follow

or to reject the suggested strategy. We claim that is in their best interest to

follow the mediator’s suggestion, and thus this distribution is a correlated

equilibrium.

To see this, suppose the mediator tells player I to play D. In this case, she

knows that player II was told to play C and player I does best by complying

to collect the payoff of 7. She has no incentive to deviate.

On the other hand, if the mediator tells her to play C, she is uncertain

about what player II is told, but conditioned on what she is told, she knows
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that (C,C) and (C,D) are equally likely. If she follows the mediator’s sug-

gestion and plays C, her payoff will be of 6 × 1
2 + 2 × 1

2 = 4, while her

expected payoff from switching is 7 × 1
2 = 3.5, so the player is better off

following the suggestion.

We emphasize that the mixed strategies used (z1,1 = z1,2 = z2,1 = 1/3 and

z1,4 = 0) in the correlated equilibrium are dependent, so this is not a Nash

equilibrium. Moreover, the expected payoff to player I when both follow the

suggestion is 2 × 1
3 + 6 × 1

3 + 7 × 1
3 = 5. This is better than they could do

by following an uncorrelated (or regular) mixed Nash equilibrium.

Surprisingly, finding a correlated equilibrium in large scale problems is

computationally easier than finding a Nash equilibrium. In fact, there are no

computationally efficient algorithms known for finding Nash equilibria, even

in two player games. However, correlated equilibria computation reduces to

linear programming (see Exercise ??).

Exercise 3.7.5. Occasionally, two parties resolve a dispute (pick a “win-

ner”) by playing a variant of Rock-Paper-Scissors. In this version, the parties

are penalized if there is a delay before a winner is declared; a delay occurs

when both players choose the same strategy. The resulting payoff matrix is

the following:

Player II

Rock Paper Scissors

P
la
ye
r
I

Rock (-1, -1) (0, 1) (1, 0)

Paper (1, 0) (-1, -1) (0, 1)

Scissors (0, 1) (1, 0) (-1, -1)

Show that this game has a unique Nash equilibrium that is fully mixed,

and results in expected payoffs of 0 to both players. Then show that the

following probability distribution is a correlated equilibrium in which the

players obtain expected payoffs of 1/2.

Player II

Rock Paper Scissors

P
la
ye
r
I

Rock 0 1/6 1/6

Paper 1/6 0 1/6

Scissors 1/6 1/6 0
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3.8 The proof of Nash’s theorem

Recall Nash’s theorem:

Theorem 3.8.1. For any general-sum game with k ≥ 2 players, there exists

at least one Nash equilibrium.

To prove this theorem, we use the following theorem that will be proved

in the next section.

Theorem 3.8.2. [Brouwer’s fixed-point theorem] If K ⊆ Rd is closed,

convex and bounded, and T : K → K is continuous, then there exists x ∈ K
such that T (x) = x.

Proof of Nash’s theorem using Brouwer’s theorem. Suppose that there are

two players and the game is specified by payoff matrices Am×n and Bm×n

for players I and II. Let K = ∆m ×∆n. We will define a continuous map

T : K → K that takes a pair of strategies (x, y) to a new pair (x̂, ŷ) with

the following properties:

(i) x̂ is a better response to y than x is, if there is one; otherwise x̂ = x.

(ii) ŷ is a better response to x than y is, if there is one; otherwise, ŷ = y.

A fixed point of T will then be a Nash equilibrium.

Define ci to be the gain player I obtains by switching from strategy x

to pure strategy i, when playing against y if this gain is positive, and zero

otherwise. Formally, for x ∈ ∆m

ci = ci(x,y) = max
{

A(i)y − xTAy , 0
}

,

where Ai denotes the i
th row of the matrix A. Define x̂ ∈ ∆m by

x̂i =
xi + ci

1 +
∑m

k=1 ck
,

i.e., the weight of each action for player I is increased according to its per-

formance against the mixed strategy y.

Similarly, define dj to be the gain player II obtains by switching from

strategy y to pure strategy j when playing against x, if positive. Formally,

dj = dj(x,y) = max
{

xTB(j) − xTBy , 0
}

,

where B(j) denotes the jth column of B, and define ŷ ∈ ∆n by

ŷj =
yj + dj

1 +
∑n

k=1 dk
.
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Finally, define T (x,y) =
(

x̂, ŷ
)

.

We now prove that property (i) holds for this mapping. If ci = 0 for all i,

(i.e. xTAy ≥ Aiy), then x̂ = x is a best response to y. Otherwise, if there

is a better response to y than x, then there must be some cℓ > 0. We need

to show that

m
∑

i=1

x̂iAiy > xTAy. (3.10)

Multiplying both sides by 1 + S where S =
∑

k ck, this is equivalent to

m
∑

i=1

(xi + ci)Aiy > (1 + S)xTAy,

which holds since

m
∑

i=1

ci
S
Aiy > xTAy.

Similarly property (ii) is satisfied.

Finally, we observe that K is convex, closed and bounded, and that T is

continuous, since ci and dj are. Thus, an application of Brouwer’s theorem

shows that there exists (x,y) ∈ K for which T (x,y) = (x,y); by properties

(i) and (ii), (x,y) is a Nash equilibrium.

For k > 2 players, we define for each player j and pure strategy ℓ of that

player, the quantity c
(j)
ℓ which is the gain player j gets by switching from

their current strategy x(j) to pure strategy ℓ, if positive, given the current

strategies of all the other players. The rest of the argument follows as before.

We also stated that in a symmetric game, there is always a symmetric

Nash equilibrium. This also follows from the above proof, by noting that

the map T , defined from the k-fold product ∆n × · · · ×∆n to itself, can be

restricted to the diagonal

D = {(x, . . . ,x) ∈ ∆k
n : x ∈ ∆n}.

The image of D under T is again in D, because, in a symmetric game,

c
(1)
i (x, . . . ,x) = · · · = c

(k)
i (x, . . . ,x) for all pure strategies i and x ∈ ∆n.

Then, Brouwer’s fixed-point theorem gives us a fixed point within D, which

is a symmetric Nash equilibrium.
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3.9 Fixed-point theorems*

Brouwer’s theorem is straightforward in one dimension d = 1. Given T :

[a, b] → [a, b], define f(x) = T (x) − x. Clearly, f(a) ≥ 0, while f(b) ≤ 0.

By the intermediate value theorem, there is x ∈ [a, b] for which f(x) = 0, so

T (x) = x.

In higher dimensions, Brouwer’s theorem is rather subtle; in particular,

there is no generally applicable recipe to find or approximate a fixed point,

and there may be many fixed points. Thus, before we turn to a proof of

Theorem 3.8.2, we discuss some easier fixed point theorems, where iteration

of the mapping from any starting point converges to the fixed point.

3.9.1 Easier fixed-point theorems

Banach’s fixed-point theorem applies when the mapping T contracts dis-

tances, as in the following figure.

Fig. 3.7. Under the transformation T a square is mapped to a smaller
square, rotated with respect to the original. When iterated repeatedly, the
map produces a sequence of nested squares. If we were to continue this
process indefinitely, a single point (fixed by T ) would emerge.

Theorem 3.9.1 (Banach’s fixed-point theorem). Let K be a complete

metric space. Suppose that T : K → K satisfies d(Tx, Ty) ≤ λd(x,y) for

all x,y ∈ K, with 0 < λ < 1 fixed. Then T has a unique fixed point z ∈ K.

Moreover, for any x ∈ K, we have

d(T nx, z) ≤ d(x, Tx)λn

1− λ .

Remark. Recall that a metric space is complete if each Cauchy sequence

therein converges to a point in the space. For example, any closed subset

of Rn endowed with the Euclidean metric is complete. See [Rud64] for a

discussion of general metric spaces.

Proof. Uniqueness of the fixed point: if Tx = x and Ty = y, then

d(x,y) = d(Tx, Ty) ≤ λd(x,y).
Thus, d(x,y) = 0, so x = y.
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As for existence, given any x ∈ K, we define xn = Txn−1 for each n ≥ 1,

setting x0 = x. Set a = d(x0,x1), and note that d(xn,xn+1) ≤ λna. If

k > n, then by triangle inequality,

d(xn,xk) ≤ d(xn,xn+1) + · · ·+ d(xk−1,xk)

≤ a
(

λn + · · ·+ λk−1
)

≤ aλn

1− λ. (3.11)

This implies that
{

xn : n ∈ N
}

is a Cauchy sequence. The metric space K

is complete, whence xn → z as n→∞. Note that

d(z, Tz) ≤ d(z,xn)+ d(xn,xn+1)+ d(xn+1, Tz) ≤ (1+λ)d(z,xn)+λ
na→ 0

as n→∞. Hence, d(Tz, z) = 0, and Tz = z.

Thus, letting k →∞ in (3.11) yields

d(T nx, z) = d(xn, z) ≤
aλn

1− λ.

It is not sufficient, however, for distances to decrease in order for there to

be a fixed point, as the following example shows.

Example 3.9.2 (A map that decreases distances but has no fixed

points). Consider the map T : R→ R given by

T (x) = x+
1

1 + exp(x)
.

Note that, if x < y, then

T (x)− x =
1

1 + exp(x)
>

1

1 + exp(y)
= T (y)− y,

implying that T (y)− T (x) < y − x. Note also that

T ′(x) = 1− exp(x)
(

1 + exp(x)
)2 > 0,

so that T (y) − T (x) > 0. Thus, T decreases distances, but it has no fixed

points. This is not a counterexample to Banach’s fixed-point theorem, how-

ever, because there does not exist any λ ∈ (0, 1) for which |T (x) − T (y)| <
λ|x− y| for all x, y ∈ R.

This requirement can sometimes be relaxed, in particular for compact

metric spaces.
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Remark. Recall that a metric space is compact if each sequence therein

has a subsequence that converges to a point in the space. A subset of the

Euclidean space Rd is compact if and only if it is closed and bounded. See

[Rud64].

Theorem 3.9.3 (Compact fixed-point theorem). If K is a compact

metric space and T : K → K satisfies d(T (x), T (y)) < d(x,y) for all x 6=
y ∈ K, then T has a fixed point z ∈ K. Moreover, for any x ∈ K, we have

T n(x)→ z.

Proof. Let f : K → R be given by f(x) = d (x, Tx). We first show that f

is continuous. By triangle inequality we have:

d (x, Tx) ≤ d(x,y) + d (y, Ty) + d (Ty, Tx) ,

so

f(x)− f(y) ≤ d(x,y) + d (Ty, Tx) ≤ 2d(x,y).

By symmetry, we also have: f(y)− f(x) ≤ 2d(x,y) and hence

|f(x)− f(y)| ≤ 2d(x,y),

which implies that f is continuous.

Since f is a continuous function and K is compact, there exists z ∈ K

such that

f(z) = min
x∈K

f(x). (3.12)

If Tz 6= z, then f(T (z)) = d(Tz, T 2z) < d(z, Tz) = f(z), and we have

a contradiction to the minimizing property (3.12) of z. This implies that

Tz = z.

Finally, we observe that iteration converges from any starting point x.

Let xn = T nx, and suppose that xn does not converge to z. Then for some

ǫ > 0, the set S = {n|d(xn, z) ≥ ǫ} is infinite. Let {nk} ⊂ S be an increasing

sequence such that yk = xnk
→ y 6= z. Now

d(Tyk, z)→ d(Ty, z) < d(y, z). (3.13)

But T nk+1−nk−1(Tyk) = yk+1, so

d(Tyk, z) ≥ d(yk+1, z)→ d(y, z)

contradicting (3.13).

Exercise 3.9.4. Show that the convergence in the compact fixed point

theorem can be arbitrarily slow by showing that for any decreasing sequence



80 General-sum games

{an} ↓n≥0 0, there is a distance decreasing T : [0, a0] → [0, a0] such that

T (0) = 0 and d(T na0, 0) ≥ an.

3.9.2 Sperner’s lemma

In this section, we state and prove a combinatorial lemma that is key to

proving Brouwer’s fixed-point theorem.

Definition 3.9.5 (Simplex). An n-simplex ∆(v0, v1, . . . , vn) is the convex

hull of a set of n+1 points v0, v1, . . . , vn ∈ Rd that are affinely independent,

i.e. the n vectors vi − v0, for 1 ≤ i ≤ n, are linearly independent.

Definition 3.9.6 (Face). A k-face of an n-simplex ∆(v0, v1, . . . , vn) is the

convex hull of any k + 1 of the points v0, v1, . . . , vn.

Exercise 3.9.7. (1) Show that n+ 1 points v0, v1, . . . , vn ∈ Rd are affinely

independent if and only if for every non-zero vector (α0, . . . , αn) for which
∑

0≤i≤n αi = 0, it must be that
∑

0≤i≤n αivi 6= 0. Thus, affine independence

is a symmetric notion.

(2) Show that a k-face of an n-simplex is a k-simplex.

Definition 3.9.8 (Subdivision of a simplex). A subdivision of a simplex

∆(v0, v1, . . . , vn) is a collection Γ of n-simplices such that any two simplices

in Γ are disjoint or their intersection is a face of both.

Remark. Call an n− 1-face of ∆1 ∈ Γ an outer face if it lies on an n− 1-

face of ∆(v0, v1, . . . , vn); otherwise, call it an inner face. It follows from

the definition of subdivision that each inner face of ∆1 ∈ Γ is an n − 1-

face of exactly one other simplex in Γ. Moreover, if F is an n − 1-face of

∆(v0, v1, . . . , vn) then

Γ(F ) := {∆1 ∩ F}∆1∈Γ

is a subdivision of F .

Lemma 3.9.9. For any simplex ∆(v0, v1, . . . , vn) and ǫ > 0, there is a

subdivision Γ such that all simplices in Γ have diameter less than ǫ.

Proof. We will use the barycentric subdivision

Γ1 = {∆π | π a permutation of {0, . . . , n}},

where

∆π = {
∑

0≤i≤n

αivi | απ(0) ≥ . . . ≥ απ(n) ≥ 0 and
∑

0≤i≤n

αi = 1}.
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Let wi = vπ(i). Then the vertices of ∆π are

w0,
w0 + w1

2
,
w0 + w1 + w2

3
, . . . ,

1

n+ 1

n
∑

i=0

wi.

Finally, the diameter of each simplex in Γ1 is the maximum distance between

any two vertices of the sub-simplex.

See Exercise 3.9.10 below for the verification that this subdivision has the

required intersection property.
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∣
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∣
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k−1
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r

r−1
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wj

∣

∣

∣

∣

∣

∣

=
1

kr

∣

∣

∣

∣

∣

∣

k−1
∑

i=0

r−1
∑

j=0

(wi − wj)

∣

∣

∣

∣

∣

∣

≤ kr − r
kr

D

=

(

k − 1

k

)

D,

where D is the diameter of ∆(v0, . . . , vn).

Iterating the barycentric subdivision m times yields a subdivision Γm in

which the maximum diameter of any simplex is at most
(

n
n+1

)m
D.

Exercise 3.9.10. (1) Verify that ∆π has one outer face determined by the

equation απ(n) = 0 and n inner faces determined by the equations απ(k) =

απ(k+1) for 0 ≤ k ≤ n − 1. (2) Verify that Γ1 is indeed a subdivision. (3)

Verify that for any n− 1-face F of ∆(v0, v1, . . . , vn), the subdivision Γ1(F )

is the barycentric subdivision of F .

Definition 3.9.11 (Proper Labeling of a Simplex). A labeling ℓ of the

vertices of an n-simplex ∆(v0, v1, . . . , vn) is proper if ℓ(v0), ℓ(v1), . . . , ℓ(vn)

are all different.

Definition 3.9.12 (Sperner Labeling of a Subdivision). A Sperner

Labeling ℓ of the vertices in a subdivision Γ of an n-simplex ∆(v0, v1, . . . , vn)

is a labeling in which

• ∆(v0, v1, . . . , vn) is properly labeled,

• All vertices in Γ are assigned labels in {ℓ(v0), ℓ(v1), . . . , ℓ(vn)}, and
• The labeling restricted to each face of ∆(v0, . . . , vn) is a Sperner

labeling there.

Lemma 3.9.13 (Sperner). Let ℓ be a Sperner labeling of the vertices in Γ,



82 General-sum games

1

1

1

1

1 1

0

0

0

0

2

2

2
2

2

2

2

0

Fig. 3.8. Sperner’s lemma when d = 2.

where Γ is a subdivision of the n-simplex ∆(v0, v1, . . . , vn). Then the number

of properly labeled simplices in Γ is odd.

Proof. We prove the lemma by induction on n. For n = 1, this is obvious:

In a string of bits that starts with 0 (the label of v0) and ends with 1 (the

label of v1), the number of bit flips is odd.

For n = 2, the simplex ∆ is a triangle, and the subdivision is a triangu-

lation of the triangle. We think of the three labels as colors: red (R), blue

(B) and yellow (Y). (See Figure 3.8.) We say a 1-face, i.e. an edge, in this

triangulation is good if its two endpoints are colored red and blue. By the

inductive hypothesis, on the red/blue side of ∆, there are an odd number of

good edges.

Construct a graph with a node for each triangle in the subdivision (call

these inner nodes), and a node for each good edge on the red/blue side of ∆

(call these outer nodes). Two inner nodes are adjacent if the corresponding

triangles share a red/blue edge. An outer node and an inner node are

adjacent if the corresponding outer red/blue edge is one of the sides of the

inner triangle. Observe that each outer node has degree 1, and each inner

node either has degree 2, if the corresponding triangle has vertex labels RBB

or RRB, degree 1, if it is properly labeled RGB, and degree 0 otherwise.

Thus, the graph consists of a collection of isolated nodes, paths, and cycles.

Since there are an odd number of outer nodes, an odd number of them are

endpoints of a path whose other endpoint is an inner node, i.e. properly

labeled.

The proof of the previous paragraph can be generalized to higher dimen-

sions. (See exercise ??) Here we give a slightly different proof based on
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direct counting. For n ≥ 2, consider a Sperner labeling of Γ. Call an (n−1)

face good if its vertex labels are ℓ(v0), . . . , ℓ(vn−1).

Let g = ♯ of good inner faces; let g∂ = ♯ of good outer faces on ∆(v0, . . . , vn−1),

and let Nj = ♯ of simplices in Γ with labels {ℓ(vi)}n−1
i=0 and ℓ(vj). Counting

pairs

(simplex in Γ, good face of that simplex),

by Remark 3.9.2 we obtain

2

n−1
∑

j=0

Nj +Nn = 2g + g∂ .

Since g∂ is odd by the inductive hypothesis, so is Nn.

Exercise 3.9.14. Extend the proof above for n = 2 to give an alternative

proof of the induction step.

Solution: By hypothesis, each n − 1-face of ∆(v0, . . . , vn−1) has an odd

number of properly labeled simplices. Call an (n− 1) face good if its vertex

labels are ℓ(v0), . . . , ℓ(vn−1). Define a graph, with a node for each simplex

in Γ (call these inner nodes), and a node for each good outer face (call these

outer nodes). Two nodes in the graph are adjacent if the corresponding

simplices share a good face. Observe that every outer node has degree 1,

and each inner node either has degree 2 (if the corresponding simplex has

vertices with labels ℓ(v0), ℓ(v1), . . . , ℓ(vn−1), ℓ(vi) for some i with 0 ≤ i ≤
n−1), degree 1 (if the corresponding simplex is properly labeled), or degree

0. Thus, the graph consists of a collection of cycles and paths, where the

endpoints of the paths are either outer nodes or properly labeled inner nodes.

Since the number of degree one nodes is even, and the number of outer nodes

is odd, the number of properly labeled simplices in Γ must be odd.

3.9.3 Brouwer’s fixed-point theorem

Definition 3.9.15. A set S ⊆ Rd has the fixed point property (abbre-

viated f.p.p.) if for any continuous function T : S → S, there exists x ∈ S
such that T (x) = x.

Brouwer’s Theorem asserts that every closed, bounded, convex setK ⊂ Rd

has the f.p.p. Each of the hypotheses on K in the theorem is needed, as the

following examples show:

(i) K = R (closed, convex, not bounded) with T (x) = x+ 1.

(ii) K = (0, 1) (bounded, convex, not closed) with T (x) = x/2.
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(iii) K =
{

x ∈ R : |x| ∈ [1, 2]
}

(bounded, closed, not convex) with

T (x) = −x.
Theorem 3.9.16. Brouwer’s fixed-point theorem for the simplex

The standard n-simplex ∆ = {x | ∑n
i=0 xi = 1,∀i xi ≥ 0} has the fixed

point property.

Proof. Let Γ be a subdivision of ∆ with maximal diameter ǫ and let T (x) =

(T0(x), . . . , Tn(x)). For any vertex x of Γ, let

ℓ(x) = min{i : Ti(x) < xi}.
(Note that since

∑n
i=0 xi = 1 and

∑n
i=0 Ti(x) = 1, if there is no i with

Ti(x) < xi, then x is a fixed point.)

By Sperner’s Lemma, there is a properly labeled simplex ∆1 in Γ, and

this can already be used to produce an approximate fixed point of T ; see

the remark below.

To get a fixed point, find, for each k, a simplex with vertices {zi(k)}ni=0

in ∆ and diameter at most 1
k satisfying

Ti(z
i(k)) < zii(k) for all i ∈ [0, n]. (3.14)

Find a convergent subsequence z0(kj) → z and observe that zi(kj) → z

for all i. Thus, Ti(z) ≤ zi for all i, so T (z) = z.

Remark. Let ∆1 be a properly labeled simplex of diameter at most ǫ as in

the proof above. Denote by z0, z1, . . . , zn the vertices of ∆1, where ℓ(z
i) = i.

Then

Ti(z
0) ≤ Ti(zi) + ω(ǫ) < zii + ω(ǫ) ≤ z0i + ǫ+ ω(ǫ),

where ω(ǫ) = max|x−y|≤ǫ |T (x)− T (y)|. On the other hand,

Ti(z
0) = 1−

∑

j 6=i

Tj(z
0) ≥ 1−

∑

j 6=i

(z0j + ǫ+ ω(ǫ)) = z0i − n(ǫ+ ω(ǫ)).

Thus,

|T (z0)− z0| ≤ n(n+ 1)(ǫ+ ω(ǫ)),

so z0 is an approximate fixed point.

Definition 3.9.17. Let S ⊆ Rd and S̃ ⊆ Rn. A homeomorphism h :

S → S̃ is a one-to-one continuous map with a continuous inverse.

Definition 3.9.18. Let S ⊆ A ⊆ Rd. A retraction g : A → S is a

continuous map where g restricted to S is the identity map.
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Lemma 3.9.19. Let A ⊆ S ⊆ Rd and S̃ ⊆ Rn.

(i) If S has the f.p.p. and h : S → S̃ is a homeomorphism, then S̃ has the

f.p.p.

(ii) If g : A→ S is a retraction and A has the f.p.p., then S has the f.p.p.

Proof. (i): Given T : S̃ → S̃ continuous, let x ∈ S be a fixed point of

h−1 ◦ T ◦ h : S → S. Then h(x) is a fixed point of T .

(ii): Given T : S → S, any fixed point of T ◦ g : A → S is a fixed point of

T .

Lemma 3.9.20. For K ⊂ Rd closed and convex, the nearest point map

Ψ : Rd → K where

‖x−Ψ(x)‖ = d(x,K) := min
y∈K
‖x− y‖

is uniquely defined and continuous.

Proof. For uniqueness, suppose that ‖x − y‖ = ‖x − z‖ = d(x,K) with

y, z ∈ K. Assume by translation that x = 0. Then

d(0,K)2 +
‖y − z‖2

2
≤ ‖y + z‖2

2
+
‖y − z‖2

2
=
‖y‖2 + ‖z‖2

2
= d(0,K)2,

so y = z.

First proof of continuity: Suppose xk → x, but yk := Ψ(xk) 6→ Ψ(x).

Then

{k : ‖yk −Ψ(x)‖ ≥ ǫ}

is infinite for some ǫ > 0. Passing to a subsequence, we have yk(j) → y ∈ K
with ‖y −Ψ(x)‖ ≥ ǫ. Finally,

‖x− y‖ = lim
j
‖xk(j) − yk(j)‖ = lim

j
d(xk(j),K) = d(x,K),

contradicting the uniqueness of Ψ(x).

Second proof of continuity: Let Ψ(x) = y and Ψ(x + u) = y + v. PIC-

TURE!!! We show that that ‖v‖ ≤ ‖u‖. We know from (??) in the proof

of the separating hyperplane theorem that

vT (y − x) ≥ 0

and

vT (x+ u− y − v) ≥ 0.

Adding these gives vT (u− v) ≥ 0, so

‖v‖2 = vTv ≤ vTu ≤ ‖v‖ · ‖u‖



86 General-sum games

by Cauchy-Schwarz. Thus ‖v‖ ≤ ‖u‖.

Proof of Brouwer’s theorem. LetK ⊂ Rd be compact and convex. There

is a simplex ∆0 that contains K. Clearly ∆0 is homeomorphic to a standard

simplex, so it has the f.p.p. by Lemma 3.9.19(i). Then by Lemma 3.9.20,

the nearest point map Ψ : ∆0 → K is a retraction. Thus, Lemma 3.9.19(ii)

implies that K has the f.p.p.

The next corollary follows immediately from Brouwer’s Theorem, but is

perhaps more intuitively obvious.

Corollary 3.9.21 (No-Retraction Theorem). Let B = B(0, 1) be the closed

ball in Rd. There is no retraction from B to its boundary ∂B.

Remark. Exercise 3.9.23 below shows that all truly d-dimensional compact,

convex sets are homeomorphic to each other. This yields another poof of

Brouwer’s theorem from the special case of the simplex which avoids retrac-

tions.

Exercise 3.9.22. Show that any d-simplex in Rd contains a ball.

Solution: The d-simplex ∆0 with vertices the origin and the standard basis

e1, . . . , ed in Rd, contains the ball B(y, 1
2d ) where y := 1

2d(e1 + · · · + ed).

Given an arbitrary d-simplex ∆, by translation we may assume its vertices

are 0,v1, . . . ,vd. Let A be the square matrix with columns vi for i ≤ d. Since
these columns are linearly independent, A is invertible. Then ∆ contains

B(Ay, ε) where ε := min{‖Ax‖ such that ‖x‖ = 1} > 0.

Exercise 3.9.23. Let K ⊂ Rd be a compact convex set which contains a

d-simplex. Show that K is homeomorphic to a closed ball.

Suggested steps:

(i) Show that K contains a d-simplex and hence contains a ball B(z, ǫ).

By translation, assume without loss of generality that B(0, ǫ) ⊂ K.

(ii) Show that ρ : Rd → R defined by

ρ(x) = inf{r > 0 :
x

r
∈ K}

is subadditive (i.e., ρ(x+ y) ≤ ρ(x) + ρ(y)) and satisfies

‖x‖
diam(K)

≤ ρ(x) ≤ ‖x‖
ǫ

for all x. Deduce that ρ is continuous.
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(iii) Define

h(x) =
ρ(x)

‖x‖ x

for x 6= 0 and h(0) = 0 and show that h : K → B(0, 1) is a homeo-

morphism.

Solution to (ii): Suppose x
r ∈ K and y

s ∈ K, where r, s ≥ 0. Then

x+ y

r + s
=

r

r + s
· x
r
+

s

r + s
· y
s
∈ K

so ρ(x+ y) ≤ r + s. Therefore ρ(x+ y) ≤ ρ(x) + ρ(y), whence

ρ(x+ y)− ρ(x) ≤ ‖y‖
ǫ
.

Similarly,

ρ(x)− ρ(x+ y) ≤ ρ(x+ y − y)− ρ(x+ y) ≤ ‖y‖
ǫ
.

Exercises

3.1 The game of chicken. Two drivers are headed for a collision. If

both swerve, or Chicken Out, then the payoff to each is 1. If one

swerves, and the other displays Iron Will, then the payoffs are −1
and 2 respectively to the players. If both display Iron Will, then a

collision occurs, and the payoff is −a to each of them, where a > 2.

This makes the payoff matrix

driver II

CO IW

d
ri
ve
r
I

CO (1, 1) (−1, 2)
IW (2,−1) (−a,−a)

Find all the pure and mixed Nash equilibria.

3.2 Modify the game of chicken as follows. There is p ∈ (0, 1) such that,

when a player plays CO, the move is changed to IW with probability

p. Write the matrix for the modified game, and show that, in this

case, the effect of increasing the value of a changes from the original

version.
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3.3 Two smart students form a study group in some Math Class where

homeworks are handed in jointly by each study group. In the last

homework of the semester, each of the two students can choose to

either work (“W”) or defect (“D”). If at least one of them solves the

homework that week (chooses “W”), then they will both receive 10

points. But solving the homework incurs an effort worth −7 points

for a student doing it alone and an effort worth −2 points for each

student if both students work together. Assume that the students do

not communicate prior to deciding whether they will work or defect.

Write this situation as a matrix game and determine all Nash equi-

libria.

3.4 Find all Nash equilibria and determine which of the symmetric equi-

libria are evolutionarily stable in the following games.

player II

A B

p
la
ye
r
I

A (4, 4) (2, 5)

B (5, 2) (3, 3)

player II

A B
p
la
ye
r
I

A (4, 4) (3, 2)

B (2, 3) (5, 5)

3.5 Give an example of a two-player zero-sum game where there are no

pure Nash equilibria. Can you give an example where all the entries

of the payoff matrix are different?

3.6 A recursive zero-sum game. Player I, the Inspector, can inspect

a facility on just one occasion, on one of the days 1, . . . , N . Player II

can cheat, or wait, on any given day. The payoff to I if 1 if I inspects

while II is cheating. On any given day, the payoff is −1 if II cheats

and is not caught. It is also −1 if I inspects but II did not cheat, and

there is at least one day left. This leads to the following matrices Γn

for the game with n days: the matrix Γ1 is given by

player II

Ch Wa

p
la
ye
r
I

In 1 0

Wa −1 0

The matrix Γn is given by

player II

Ch Wa

p
la
ye
r
I

In 1 −1
Wa −1 Γn−1
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Final optimal strategies, and the value of Γn.

3.7 Consider the following game:

player II

C D

p
la
ye
r
I

A (6,−10) (0, 10)

B (4, 1) (1, 0)

• Show that this game has a unique mixed Nash equilibrium.

• Show that if player I can commit to playing strategy A with prob-

ability slightly more than x∗ (the probability she plays A in the

mixed Nash equilibrium), then (a) player I can increase her payoff,

and (b) player II also benefits, obtaining a greater payoff than he

did in the Nash equilibrium.

• Show similarly that if player II can commit to playing strategy C

with probability slightly less than y∗ (the probability he plays C

in the mixed Nash equilibrium), then (a) player II can increase his

payoff, and (b) player I also benefits, obtaining a greater payoff

than she did in the Nash equilibrium.

3.8 Two cheetahs and three antelopes: Two cheetahs each chase

one of three antelopes. If they catch the same one, they have to

share. The antelopes are Large, Small and Tiny, and their values to

the cheetahs are ℓ, s and t. Write the 3 × 3 matrix for this game.

Assume that t < s < ℓ < 2s, and that

ℓ

2

(2l − s
s+ ℓ

)

+ s
(2s− ℓ
s+ ℓ

)

< t.

Find the pure equilibria, and the symmetric mixed equilibria.

3.9 Three firms (players I, II, and III) put three items on the market

and advertise them either on morning or evening TV. A firm ad-

vertises exactly once per day. If more than one firm advertises at

the same time, their profits are zero. If exactly one firm advertises

in the morning, its profit is $200K. If exactly one firm advertises in

the evening, its profit is $300K. Firms must make their advertising

decisions simultaneously. Find a symmetric mixed Nash equilibrium.

3.10 CHECK Consider any two-player game of the following type.
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player II

A B

p
la
ye
r
I

A (a, a) (b, c)

B (c, b) (d, d)

• Compute optimal safety strategies and show that they are not a

Nash equilibrium.

• Compute the mixed Nash equilibrium and show that it results in

the same player payoffs as the optimal safety strategies.

3.11 Consider the following symmetric game as played by two drivers,

both trying to get from Here to There (or, two computers routing

messages along cables of different bandwidths). There are two routes

from Here to There; one is wider, and therefore faster, but congestion

will slow them down if both take the same route. Denote the wide

route W and the narrower route N . The payoff matrix is:

Payoffs: Payoffs:Payoffs:

3 4522 3

Fig. 3.9. The leftmost image shows the payoffs when both drivers drive on
the narrower route, the middle image shows the payoffs when both drivers
drive on the wider route and the rightmost image shows what happens
when the red driver (player I) chooses the wide route and the yellow driver
(Player II) chooses the narrow route.

player II (yellow)

W N

p
la
ye
r
I
(r
ed

)

W (3, 3) (5, 4)

N (4, 5) (2, 2)

Find all Nash equilibria and determine which ones are evolutionarily

stable.

3.12 Argue that in a symmetric game, if aii > bi,j(= aj,i) for all j 6= i,

then pure strategy i is an evolutionarily stable strategy.

3.13 The fish-selling game revisited: A seller sells fish. The fish is

fresh with a probability of 2/3. Whether a given piece of fish is fresh

is known to the seller, but the customer knows only the probability.

The customer asks, “is this fish fresh?”, and the seller answers, yes
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or no. The customer then buys the fish, or leaves the store, without

buying it. The payoff to the seller is 6 for selling the fish, and 6 for

being truthful. The payoff to the customer is 3 for buying fresh fish,

−1 for leaving if the fish is fresh, 0 for leaving is the fish is old, and

−8 for buying an old fish.

3.14 The welfare game: John has no job and might try to get one.

Or, he may prefer to take it easy. The government would like to aid

John if he is looking for a job, but not if he stays idle. Denoting by

T , trying to find work, and by NT , not doing so, and by A, aiding

John, and by NA, not doing so, the payoff for each of the parties is

given by:

jobless John

try not try

go
ve
rn
m
en
t

aid (3,2) (−1, 3)
no aid (−1, 1) (0,0)

Find the Nash equilibria.

3.15 Show that, in a symmetric game, with A = BT , there is a symmetric

Nash equilibrium. One approach is to use the set D =
{

(x, x) : x ∈
∆n

}

in place of K in the proof of Nash’s theorem.

3.16 The game of Hawks and Doves. Find the Nash equilibria in the

game of Hawks and Doves whose payoffs are given by the matrix:

player II

D H

p
la
ye
r
I

D (1,1) (0,3)

H (3,0) (−4,−4)

3.17 A sequential congestion game: Six drivers will travel from A to

D, each going via either B or C. The cost in traveling a given road

depends on the number of drivers k that have gone before (including

the current driver). These costs are displayed in the figure. Each

driver moves fromA toD in a way that minimizes his or her own cost.

Find the total cost. Then consider the variant where a superhighway

that leads from A to C is built, whose cost for any driver is 1. Find

the total cost in this case also.
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A C

B D
k + 12

k + 12

5k + 1 5k + 1

3.18 A simultaneous congestion game: There are two drivers, one

who will travel from A to C, the other, from B to D. Each road in

the second figure has been marked (x, y), where x is the cost to any

driver who travels the road alone, and y is the cost to each driver

who travels the road along with the other. Note that the roads are

traveled simultaneously, in the sense that a road is traveled by both

drivers if they each use it at some time during their journey. Write

the game in matrix form, and find all of the pure Nash equilibria.

A D

B C
(1,2)

(1,5)

(3,6) (2,4)

3.19 Sperner’s lemma may be generalized to higher dimensions. In the

case of d = 3, a simplex with four vertices (think of a pyramid) may

be divided up into smaller ones. We insist that on each face of one of

the small simplices, there are no edges or vertices of another. Label

the four vertices of the big simplex 1, 2, 3, 4. Label those vertices of

the small simplices on the boundary of the big one in such a way

that each such vertex receives a label of one of the vertices of the

big simplex that lies on the same face of the big simplex. Prove that

there is a small simplex whose vertices receive distinct labels.

3.20 Prove the No-Retraction Theorem directly from Sperner’s Lemma

and use it to give an alternative proof of Brouwer’s Theorem.
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Notes

• Discuss to what extent Nash equilibria are a reasonable model for rational
behavior.

• Solving polynomial equations Bernd Sturmfels.
• Tragedy of commons and pricing games from AGT chapter 1, example 1.4
• Examples: Investing in communication infrastructure, inspection game

from Game Theory chapter, Encyclopedia of Information Systems by Tur-
ocy and von Stengel.

• Regarding ESS definition: In the definition, we only allow the mutant
strategies z to be pure strategies. This definition is sometimes extended
to allow any nearby (in some sense) strategy that doesn’t differ too much
from the population strategy x, e.g., if the population only uses strategies
1, 3, and 5, then the mutants can introduce no more than one new strategy
besides 1, 3, and 5.

• More general definition of what it means for a game to be symmetric.
• Example right before signaling:

Remark. Another situation that would remove the stability of (B,B) is if
mutants were allowed to preferentially self-interact.

• potential games: Now, we have the following result due to Monderer and
Shapley ([MS96]) and Rosenthal [Ros73]:

• In the absence of a mediator, the players could follow some external signal,
like the weather.

• Coloring game from AMS
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Signaling and asymmetric games

Example 4.0.24 (The car mechanic). A consumer (player I) takes her car

to an expert car mechanic (player II) because it is making unusual noises. It

is common knowledge that half the time these noises indicate a major repair

is required, at a cost of 18 to the consumer, and half the time a minor repair

at a cost of 10 suffices. In both cases, the mechanic’s profit for doing the job

is 8. After examining the car, the mechanic reports that the problem is major

or minor. We assume that he always reports the problem truthfully when

it is major. When it is minor, he could go either way. Unfortunately, the

consumer is not sufficiently knowledgeable to tell whether the mechanic is

honest. We assume that she always accepts his advice when he recommends

a minor repair, but when he recommends a major repair, she either accepts

his advice and pays him accordingly, or rejects his advice and takes the car

to a different mechanic at an additional cost of 2.

Thus if the mechanic is honest, and the consumer accepts the advice, then

he makes a profit of 8 and she incurs an expected loss of 1
218 + 1

210 = 14,

whereas if she rejects a major repair, then his expected profit is 1
28 = 4 and

she incurs an expected loss of 1
220 + 1

210 = 15. On the other hand, if the

mechanic is dishonest (i.e., always reports that a major repair is necessary),

and the consumer accepts, then he makes an expected profit of 1
2(8)+

1
2 (18−

10 + 8) = 12 and she incurs a loss of 18. If he is dishonest and she rejects,

then his profit is 0 and she incurs an expected loss of 1
220 +

1
212 = 16.

This leads to the following payoff matrix:

mechanic

honest dishonest

co
n
su
m
er accept (-14, 8) (-18, 12)

reject (-15, 4) (-16, 0)

94
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What are good strategies for the consumer and mechanic? We begin by

considering safety strategies which, we recall, were optimal for zero-sum

games. Since the consumer’s payoffs are both lower when the mechanic is

dishonest, her safety strategy is to always reject, yielding her a guaranteed

payoff of at least -16. Similarly, the mechanic’s payoffs are both lower when

the consumer rejects, and thus his safety strategy is to always be honest,

yielding him a guaranteed payoff of at least 4. However, the safety strategy

pair (reject, honest) is not a Nash equilibrium. Indeed, knowing the me-

chanic is being honest, the consumer has an incentive to switch to accepting

and would probably do so if the two players were to play the game again.

But then, if in the next round they played (accept, honest), knowing that

the consumer is accepting, the mechanic would have an incentive to switch

to being dishonest in the subsequent round. This cycle would continue if in

each round of game-playing, each player were to play a best response to the

action of the other in the previous round. Indeed, this argument shows that

this game has no pure Nash equilibrium.

There is, however, a mixed Nash equilibrium. Suppose the strategy (x, 1−
x) for the consumer and (y, 1− y) for the mechanic are a Nash equilibrium.

Then each ensures that both possible actions of the opponent yield the same

payoff to the opponent and thus 8x+4(1−x) = 12x and −14y−18(1−y) =
−15y−16(1−y). These equations yield x = 1/2 (the consumer rejects with

probability 1/2) and y = 2/3 (the mechanic is honest with probability 2/3).

This equilibrium yields expected payoffs (−151
3 , 6).

We interpret the (23 ,
1
3) mixed strategy of the mechanic to mean the chance

a randomly chosen mechanic will be honest is q = 2/3. This could arise

from 2/3 of the mechanics being always honest, or from random choices by

individual mechanics.

4.1 Signaling and asymmetric information

Example 4.1.1 (Lions and antelopes). In the games we have considered

so far, both players are assumed to have access to the same information

about the rules of the game. This is not always a valid assumption.

Antelopes have been observed to jump energetically when a lion nearby

seems liable to hunt them. Why do they expend energy in this way? One

theory was that the antelopes are signaling danger to others at some dis-

tance, in a community-spirited gesture. However, the antelopes have been

observed doing this all alone. The currently accepted theory is that the

signal is intended for the lion, to indicate that the antelope is in good health

and is unlikely to be caught in a chase. This is the idea behind signaling.
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Fig. 4.1. Lone antelope stotting to indicate its good health.

Consider the situation of an antelope catching sight of a lion in the dis-

tance. Suppose there are two kinds of antelope, healthy (H) and weak (W );

and that a lion has no chance of catching a healthy antelope — but will

expend a lot of energy trying — and will be able to catch a weak one. This

can be modelled as a combination of two simple games (AH and AW ), de-

pending on whether the antelope is healthy or weak, in which the antelope

has only one strategy (to run if pursued), but the lion has the choice of

chasing (C) or ignoring (I).

AH =

antelope

run-if-chased

li
on chase (−1,−1)

ignore (0, 0)

AW =

antelope

run-if-chased

li
on chase (5,−1000)

ignore (0, 0)

The lion does not know which game they are playing — and if 20% of the

antelopes are weak, then the lion can expect a payoff of (.8)(−1)+(.2)(5) = .2

by chasing. However, the antelope does know, and if a healthy antelope can

convey that information to the lion by jumping very high, both will be better

off — the antelope much more than the lion!

Remark. In this, and many other cases, the act of signaling itself costs

something, but less than the expected gain, and there are many examples

proposed in biology of such costly signaling.

4.1.1 Examples of signaling (and not)

Example 4.1.2 (A randomized game). For another example, consider

the zero-sum two-player game in which the game to be played is randomized
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by a fair coin toss. If heads is tossed, the payoff matrix is given by AH , and

if tails is tossed, it is given by AT .

AH =

player II

L R
p
la
ye
r
I

L 4 1

R 3 0

AT =

player II

L R

p
la
ye
r
I

L 1 3

R 2 5

If the players don’t know the outcome of the coin flip before playing, they

are merely playing the game given by the average matrix, 1
2A

H+ 1
2A

T , which

has a value of 2.5. If both players know the outcome of the coin flip, then

(since AH has a value of 1 and AT has a value of 2) the value is 1.5 —

player II is able to use the additional information to reduce her losses.

But now suppose that only I is told the result of the coin toss, but I must

reveal her move first. If I goes with the simple strategy of picking the best

row in whichever game is being played, and II realizes this and counters,

then I has a payoff of only 1.5, less than the payoff if she ignores the extra

information!

This demonstrates that sometimes the best strategy is to ignore the extra

information, and play as if it were unknown. This is illustrated by the

following (not entirely verified) story. During World War II, the English had

used the Enigma machine to decode the German’s communications. They

intercepted the information that the Germans planned to bomb Coventry,

a smallish city without many military targets. Since Coventry was such

a strange target, the English realized that to prepare Coventry for attack

would reveal that they had broken the German code, information which they

valued more than the higher casualties in Coventry, and chose to not warn

Coventry of the impending attack.

Example 4.1.3 (A simultaneous randomized game). Again, the game

is chosen by a fair coin toss, the result of which is told to player I, but the

players now make simultaneous moves, and a second game, with the same

matrix, is played before any payoffs are revealed.

AH =

player II

L R

p
la
ye
r
I

L −1 0

R 0 0

AT =

player II

L R

p
la
ye
r
I

L 0 0

R 0 −1

Without the extra information, each player will play (L,R) with proba-

bilities (12 ,
1
2 ), and the value of the game to I (for the two rounds) is −1

2 .

However, once I knows which game is being played, she can simply choose
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the row with all zeros, and lose nothing, regardless of whether II knows the

coin toss as well.

Now consider the same story, but with matrices

AH =

player II

L R
p
la
ye
r
I

L 1 0

R 0 0

AT =

player II

L R

p
la
ye
r
I

L 0 0

R 0 1

Again, without information the value to I is 1
2 . In the second round, I will

clearly play the optimal row. The question remains of what I should do in

the first round.

Player I has a simple strategy that will get her 3
4 — this is to ignore the

coin flip on the first round (and choose L with probability 1
2 ), but then on

the second round to choose the row with a 1 in it. In fact, this is the value

of the game. If II chooses L with probability 1
2 on the first round, but on

the second round does the following: If I played L on the first round, then

choose L or R with probability 1
2 each; and if I played R on the first round,

choose R, then I is restricted to a win of at most 3
4 . This can be shown by

checking each of I’s four pure strategies (recalling that I will always play the

optimal row on the second round).

4.1.2 The collapsing used car market

Economist George Akerlof won the Nobel prize for analyzing how a used car

market can break down in the presence of asymmetric information. Here is

an extremely simplified version of his model. Suppose that there are cars

of only two types: good cars (G) and lemons (L), and that both are at

first indistinguishable to the buyer, who only discovers what kind of car

he bought after a few weeks, when the lemons break down. Suppose that a

good car is worth $9000 to all sellers and $12000 to all buyers, while a lemon

is worth only $3000 to sellers, and $6000 to buyers. The fraction p of cars

on the market that are lemons is known to all, as are the above values, but

only the seller knows whether the car being sold is a lemon. The maximum

amount that a rational buyer will pay for a car is 6000p+12000(1−p) = f(p),

and a seller who advertises a car at f(p)− ε will sell it.

However, if p > 1
2 , then f(p) < $9000, and sellers with good cars won’t sell

them — the market is not good, and they’ll keep driving them — and p will

increase, f(p) will decrease, and soon only lemons are left on the market. In

this case, asymmetric information hurts everyone.
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Fig. 4.2. The seller, who knows the type of the car, may misrepresent it to
the buyer, who doesn’t know the type. (Drawing courtesy of Ranjit Samra.)

4.2 Some further examples

Example 4.2.1 (The fish-selling game).

Fig. 4.3. The seller knows whether the fish is fresh, the customer only
knows the probability.

Fish being sold at the market is fresh with probability 2/3 and old other-

http://rojaysoriginalart.com
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wise, and the customer knows this. The seller knows whether the particular

fish on sale now is fresh or old. The customer asks the fish-seller whether

the fish is fresh, the seller answers, and then the customer decides to buy

the fish, or to leave without buying it. The price asked for the fish is $12.

It is worth $15 to the customer if fresh, and nothing if it is old. The seller

bought the fish for $6, and if it remains unsold, then he can sell it to another

seller for the same $6 if it is fresh, and he has to throw it out if it is old.

On the other hand, if the fish is old, the seller claims it to be fresh, and the

customer buys it, then the seller loses $R in reputation.

The tree of all possible scenarios, with the net payoffs shown as (seller,

customer), is depicted in the figure. This is called the Kuhn tree of the

game.

(6−R, −12)

F O

"F" "F" "O"

B L B L B L

(6, 3) (−6, 0) (6, −12)(0, 0) (−6, 0)

Fig. 4.4. The Kuhn tree for the fish-selling game.

The seller clearly should not say “old” if the fish is fresh, hence we should

examine two possible pure strategies for him: “FF” means he always says

“fresh”; “FO” means he always tells the truth. For the customer, there are

four ways to react to what he might hear. Hearing “old” means that the

fish is indeed old, so it is clear that he should leave in this case. Thus two

rational strategies remain: BL means he buys the fish if he hears “fresh”

and leaves if he hears “old”; LL means he just always leaves. Here are

the expected payoffs for the two players, with randomness coming from the

actual condition of the fish. (Recall that the fish is fresh with probability

2/3 and old otherwise.)

customer

BL LL

se
ll
er “FF” (6−R/3,−2) (−2, 0)

“FO” (2, 2) (−2, 0)
We see that if losing reputation does not cost too much in dollars, i.e.,

if R < 12, then there is only one pure Nash equilibrium: “FF” against
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LL. However, if R ≥ 12, then the (“FO”, BL) pair also becomes a pure

equilibrium, and the payoff for this pair is much higher than the payoff for

the other equilibrium.
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Social choice

As social beings, we frequently find ourselves in situations where a group

decision has to be made. Examples range from a simple decision a group of

friends makes about picking a movie for the evening, to complex and crucial

ones such as electing the president of a nation. Suppose that the individuals

in a society are presented with a list of alternatives and have to choose one

of them. Can a selection be made so as to truly reflect the preferences of

the individuals? What does it mean for a social choice to be fair?

When there are only two options to choose from, majority rule can

be applied to yield an outcome that more than half of the individuals find

satisfactory. When the number of options is three or more, the majority

preferences may be inconsistent, i.e. pairwise contests might yield a non-

transitive (cyclic) outcome of the obtained by running pairwise contests can

be in conflict with each other. This paradox, shown in the following figure,

was first discovered by the Marquis de Condorcet in the late 18th century.

ScoringPairwise Contests
B

A

C

C

A

B

A C

A

C

C

B

40% 35% 25%

B

A

40%

B

35%

25%

Social Preference

C

A

75%

C

B

65%

60%

B

A

{A,B,C}

Fig. 5.1. In one-on-one contests A defeats C, C defeats B, and B defeats
A.

5.1 Voting and Ranking Mechanisms

Example 5.1.1 (Plurality Voting). In (extended) plurality voting, each

voter submits a rank-ordering of the candidates, and the candidate with the

102
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most first-place votes wins the election (with some tie-breaking rule). It

is not required that the winner have a majority of the votes. In the U.S.,

congressional elections are conducted using plurality voting.

This voting system has many advantages, foremost among them simplicity

and transparency. On the other hand, plurality voting has the disturbing

property that the candidate that is elected can be the least favorite for a

majority of the population! Figure 5.2 gives an example of this with three

candidates A, B, and C, and three different types of voters. Under simple

Social Preference

A

25%

A

B

C

B

C

A

45% 30%

C

B A
{B,C}

Fig. 5.2. Option A is preferred by 45% of the population, option B by 30%
and option C by 25%.

plurality, A wins the election, despite the fact that A is ranked third by

55% of the population. This may motivate voters to misrepresent their

preferences: If the 25% of voters who favor C were to move B to the top

of their rankings, then B would win the election with a 55% majority, and

these voters would be happier with the outcome.

Social Preference

A

25%

C

B

B
{A,C}

A

B

C

B

C

A

45% 30%

Fig. 5.3. When 25% insincerely switch their votes from C to B, the relative
ranking of A and B in the outcome changes.

This example illustrates a phenomenon that at first glance might seem

odd: the third type of voters were able to change the outcome from A to

B without changing the relative ordering of A and B in the rankings they

submitted.

5.1.1 Definitions

We consider settings in which there is a set of candidates A, a set of voters,

and a rule that describes how the voters’ preferences are used to determine

an outcome. We consider two different kinds of rules. A voting rule pro-

duces a single winner, and a ranking rule produces a social ranking over
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the candidates. Voting rules are obviously used for elections, or more gener-

ally, when a group needs to select one of several alternatives. A ranking rule

might be used when a university department is ranking faculty candidates

based on the preferences of current faculty members.

In both cases, we assume that the ranking of each voter is represented by a

preference relation ≻ on the set of candidates A which is complete (∀A,B,

A ≻ B or B ≻ A) and transitive (A ≻ B and B ≻ C implies A ≻ C).

Note that this definition does not allow for ties; we discuss rankings with

ties in the notes.

We use ≻i to denote the preference relation of voter i: A ≻i B if voter i

strictly prefers candidate A to candidate B.

Definition 5.1.2. A voting rule f maps each preference profile, π =

(≻1, . . . ,≻n) to an element of A, the winner of the election.

Definition 5.1.3. A ranking rule R associates to each preference pro-

file, π = (≻1, . . . ,≻n), a social ranking, another complete and transitive

preference relation ⊲ = R(π). (A ⊲ B means that A is strictly preferred to

B in the social ranking.)

Remark. An obvious way to obtain a voting rule from a ranking rule is

to output the top ranked candidate. (For another way, see exercise ??.)

Conversely, a voting rule yields an induced ranking rule as follows. Apply

the voting rule to select the top candidate. Then apply the voting rule to

the remaining candidates to select the next candidate and so on. However,

not all ranking rules can be obtained this way; see exercise ??.

Two properties that we might desire a ranking rule R to have are:

• Unanimity: If for every voter i we have A ≻i B, then A ⊲ B. In

words, if every voter strictly prefers candidate A to B, then A should

be strictly preferred to B in the social ranking.

• Independence of irrelevant alternatives (IIA): For any two

candidates A and B, the preference between A and B in the social

ranking depends only on the voters’ preferences between A and B.

Formally, if π = {≻i} and π′ = {≻′
i} are two profiles such that

{i | A ≻i B} = {i | A ≻′
i B} and {i | B ≻i A} = {i | B ≻′

i A}, then
A ⊲ B implies A ⊲′ B.

The desirability of unanimity is incontrovertible and indeed it holds for all

ranking rules that are used in practice. One motivation for IIA is that, if it

fails, then some voter is incentivized to misrepresent his preferences; see the
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next definition and lemma. However, almost all ranking rules violate IIA,

and we will see why later in the chapter.

Definition 5.1.4. A ranking rule R is strategically vulnerable at the

profile π = (≻1, . . . ,≻n), if there is a voter i and alternatives A and B so

that A ≻i B and B ⊲ A in R(π), yet replacing ≻i by ≻∗
i yields a profile π∗

such that A ⊲∗ B in R(π∗).

Lemma 5.1.5. If a ranking rule R violates IIA, then it is strategically

vulnerable.

Proof. Let π = {≻i} and π′ = {≻′
i} be two profiles such that {i | A ≻i B} =

{i | A ≻′
i B} and {i | B ≻i A} = {i | B ≻′

i A}, but A ⊲ B in R(π) whereas

B ⊲′ A in R(π′). Let σi = (≻′
1, . . . ,≻′

i,≻i+1, . . . ,≻n), so that σ0 = π and

σn = π′. Let i ∈ [1, n] be such that A ⊲ B in R(σi−1), but B ⊲ A in R(σi).

If B ≻i A, then R is strategically vulnerable at σi−1 since voter i can switch

from ≻i to ≻′
i. Similarly, if A ≻i B, then R is vunerable at σi, since voter

i can switch from ≻′
i to ≻i.

For plurality voting, as we saw in the example of Figures 5.2 and 5.3, the

induced ranking rule violates IIA.

5.1.2 Instant runoff elections

In instant runoff elections (or plurality with elimination), the winner in

an election with N candidates is determined by the following procedure. If

N = 2, then the winner is the candidate with the majority of first-place

votes. If N > 2, the candidate with the fewest first-place votes is eliminated

from consideration, and removed from all the rankings. An instant run-off

election is then run on the remaining N − 1 candidates. Figure 5.4 shows

an example. (Notice that runoff voting and plurality yield different winners

in this example.)

C is eliminated

{A,C}
A

B

B

A

Social Preference

B

C

A

C

B

A

25%

A

B

C

45% 30%
45% 55%

B

Fig. 5.4. In the first round C is eliminated. When votes are redistributed,
B gets the majority. The full voter rankings are not revealed in the process.

Instant runoff is used in Australia and Fiji for the House of Representa-

tives, in Ireland to elect the President, and for various municipal elections

in Australia, the United States, and New Zealand.
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Unfortunately, this method is also vulnerable to strategic manipulation.

Consider the scenario depicted in Figure 5.5. If voters in the first group

C is eliminated

{A,C}

C

B

A

25%

A

B

B

A

Social Preference

A

B

C

B

45% 30%
45% 55%

A

C

B

Fig. 5.5. After C is eliminated, B gets the majority of votes.

knew the distribution of preferences, they could ensure a victory for A by

getting some of their constituents to conceal their true preference and move

C from the bottom to the top of their rankings, as shown in Figure 5.6. In

the first round, B would be eliminated. Subsequently A would win against

C.

B is eliminated

25%30%
65% 35%

Social Preference

A
{B,C}

AC B C

BA B

CB A

A

C

A

AC

C

10% 35%

Fig. 5.6. A small group misrepresents their true preferences, ensuring that
B is eliminated. As a result, A wins the election.

This example show that ranking rule induced by instant runoff also vio-

lates the IIA criterion since it allows for the relative ranking of A and B to

be switched without changing any of the individual A-B preferences.

5.1.3 Borda count

Borda count is a ranking rule in which each voter’s ranking is used to

assign points to the candidates. If there are N candidates, then N points

are assigned to each voter’s top-ranked candidate on down to one point for

his lowest ranked candidate. The candidates are then ranked in decreasing

order of their point totals (with ties broken arbitrarily).

The Borda count is also vulnerable to strategic manipulation. In the

example shown in Figure 5.7, A has an unambiguous majority of votes and

is also the winner.

However, if supporters of C were to strategically rank B above A, they

could ensure a victory for C. This is also a violation of IIA, since none of

the individual A-C preferences had been changed.
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In an election with 100 voters 

     the Borda scores are:

206 190 204

A
C
B

B:3

C:2

A:1

A:3

45%51% 4%

A:2

C:3

C:2

B:1 B:1

B:

Social Preference

A: C:

Fig. 5.7. Alternative A has the overall majority and is the winner under
Borda count.

     the Borda scores are:

In an election with 100 voters 

B:3

C:2

A:1

A:3

45%51% 4%

C:3

C:2

B:1

Social Preference

B:2

A:1

B:A: C:

B
202 194 204

C
A

Fig. 5.8. Supporters of C can bury A by moving B up in their rankings.

5.1.4 Dictatorship

A ranking rule is a dictatorship if there is a voter v whose preferences are

reproduced in the outcome. In other words, for every pair of candidates A

and B, A ≻v B if and only if A ⊲ B.

While dictatorship does satisfy unanimity and IIA, most of us would re-

gard this method as unacceptable.

5.2 Arrow’s impossibility theorem

In 1951, Kenneth Arrow formulated and proved his famous Impossibility

Theorem.

Theorem 5.2.1. [Arrow’s Impossibility Theorem] Any ranking rule that

satisfies unanimity and independence of irrelevant alternatives is a dictator-

ship.

What does the theorem mean? If we want to avoid dictatorship, we must

accept the possibility of strategic manipulation in our ranking system; the

same applies to voting by Theorem 5.3.2. Thus, strategizing (i.e., game

theory) is an inevitable part of ranking and voting.

Proof of Arrow’s theorem:

Fix a ranking rule R that satisfies unanimity and IIA. The proof we

present requires that we consider extremal candidates, those that are ei-

ther most preferred or least preferred. The proof is written so that it ap-

plies verbatim to rankings with ties, as discussed in the notes; therefore, we

occasionally refer to “strict” preferences.
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Lemma 5.2.2 (Extremal Lemma). Consider an arbitrary candidate B. For

any profile π in which B has an extremal rank for all voters (i.e., B is strictly

preferred to all other candidates or all other candidates are strictly preferred

to B), B has an extremal rank in the social ranking R(π).

Proof. Suppose not. Then for such a profile π, with ⊲ = R(π), there are

two candidates A and C such that A ⊲ B and B ⊲ C. Consider a new

profile π′ = (≻′
1, . . . ,≻′

n) obtained from π by having every voter move C

just above A in their ranking. None of the AB or BC preferences change

since B started out and stays in the same extremal rank. Hence, by IIA, in

the outcome ⊲′ = R(π′), we have A ⊲′ B and B ⊲′ C, and hence A ⊲′ C.

But this violates unanimity, since for all voters i in π′, we have C ≻′
i A.

Definition 5.2.3. Let B be a candidate. Voter i is said to be B-pivotal if

there exist profiles π1 and π2 such that

• B is extremal for all voters in both profiles;

• The only difference between π1 and π2 is that B is strictly lowest

ranked by i in π1 and B is strictly highest ranked by i in π2;

• B is ranked strictly lowest in R(π1) and strictly highest in R(π2).

Such a voter has the “power” to move candidate B from the very bottom

of the outcome ranking to the very top.

Lemma 5.2.4. For every candidate B, there is a B-pivotal voter v(B).

Proof. Consider an arbitrary profile in which candidate B is ranked strictly

lowest by every voter. By unanimity, all other candidates are strictly pre-

ferred to B in the social ranking. Now consider a sequence of profiles ob-

tained by letting the voters, one at a time, move B from the bottom to the

top of their rankings. By the extremal lemma, for each one of these profiles,

B is either at the top or at the bottom of the social ranking. Also, by una-

nimity, as soon as all the voters put B at the top of their rankings, so must

the social ranking. Hence, there is a first voter v whose change in preference

precipitates the change in the social ranking of candidate B. This change

is illustrated in Figures 5.9 and 5.10, where π1 is the profile just before v

has switched B to the top with ⊲1 = R(π1), and π2 the profile immediately

after the switch with ⊲2 = R(π2). This voter v is B-pivotal.

Lemma 5.2.5. If voter v is B-pivotal, v is a dictator on A \ {B}, i.e., for
any profile π, if A 6= B and C 6= B satisfy A ≻v C in π, then A ⊲ C in

R(π).
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Proof. Let π1 and π2 be the profiles from the definition of v being B-pivotal.

Fix A 6= B and C 6= B. Consider the set of profiles P obtained from π2

by letting v move A to the top of her ranking, just above B, leaving B in

its same extremal position for all other voters, and otherwise, changing the

preferences arbitrarily. Let π3 be any profile in P, and let ⊲3 = R(π3).

Then the preferences between A and B in π3 are the same as in π1 and

thus, by IIA, we have A ⊲3 B. Also, the preferences between B and C in

π3 are the same as in π2 and thus, by IIA, we have B ⊲3 C. Hence, by

transitivity, we have A ⊲3 C. Since the profiles in P include all possible

preferences between A and C for voters other than v, by IIA, for any profile

π in which A ≻v C, it must be that A ⊲ C.

We can now complete the proof of Theorem 5.2.1. By Lemmas 5.2.4 and

5.2.5, there is a B-pivotal voter v = v(B) that is a dictator on A \ {B}.
Let π1 and π2 be the profiles from the definition of v being B-pivotal. We

claim that for any other candidate, say C, the C-pivotal voter v′ = v(C) is

actually the same voter, i.e. v = v′.
To see this, consider any A 6= B and A 6= D. We know that in ⊲1, we

have A ⊲ B, and in ⊲2, we have B ⊲ A. Moreover, by Lemma 5.2.5, v′

dictates the strict preference between A and B in both of these outcomes.

But in both profiles, the strict preference between A and B is the same for

all voters other than v. Hence v′ = v, and thus v is a dictator (over all of

A).

5.3 Strategy-proof Voting

We next turn our attention to voting rules. Consider n voters in a society,

each with a complete ranking of a set of m alternatives A, and a voting rule
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f mapping each profile π = (≻1, . . . ,≻n) of n rankings of A to an alternative

f(π) ∈ A.
What voting rules f have the property that no matter what preferences

are submitted by other voters, each voter is incentivized to report their

ranking truthfully? Such a voting rule is called strategy-proof.

Definition 5.3.1. A voting rule f from profiles to A is strategy-proof

if for all profiles π, candidates A and B, and voters i, the following holds:

If A ≻i B and f(π) = B, then all π′ that differ from π only on voter i’s

ranking satisfy f(π′) 6= A.

Theorem 5.3.2 (Gibbard-Satterthwaite). Let f be a strategy-proof voting

rule onto A, where |A| ≥ 3. Then f is a dictatorship. That is, there is a

voter i such that for every profile π, voter i’s highest ranked alternative is

equal to f(π).

We prove the theorem as a corollary of Arrow’s theorem, by showing that

if f is strategy-proof and is not a dictatorship, then it can be extended

to a ranking rule that satisfies unanimity, IIA and is not a dictatorship, a

contradiction.

The following notation will also be useful.

Definition 5.3.3. For any two profiles π = (≻1, . . . ,≻n) and π′ = (≻′
1, . . . ,≻′

n),

we let ri(π,π
′) denote the profile (≻′

1, . . . ,≻′
i,≻i+1, . . . ,≻n). Thus r0(π,π

′) =
π and rn(π,π

′) = π′.

We will repeatedly use the following lemma:

Lemma 5.3.4. Suppose that f is strategy-proof. Consider two profiles π =

(≻1, . . . ,≻n) and π′ = (≻′
1, . . . ,≻′

n) and two candidates X and Y such that:

• all preferences between X and Y in π and π′ are the same

(i.e., X ≻i Y iff X ≻′
i Y for all i);

• in π′ all voters prefer X to all candidates other than possibly Y

(i.e., X ≻′
i Z for all Z 6∈ {X,Y });

• f(π) = X.

Then f(π′) = X.

Proof. We have f(r0) = X by assumption. We prove by induction on i, that

f(ri) = X, where ri = ri(π,π
′), or else f is not strategy-proof. To this end,

suppose that f(ri−1) = X. Observe that ri−1 and ri differ only on voter i’s

preferences: in ri−1 it is ≻i and in ri it is ≻′
i.

There are two cases: If f(ri) = Z 6∈ {X,Y }, then on profile ri, voter i has

an incentive to lie and report ≻i instead of ≻′
i.
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On the other hand, suppose f(ri) = Y . If X ≻i Y , then on profile ri,

voter i has an incentive to lie and report ≻i instead of ≻′
i. On the other

hand, if Y ≻i X, then on profile ri−1, voter i has an incentive to lie and

report ≻′
i instead of ≻i.

We also need the following definition.

Definition 5.3.5. Let S be a subset of the alternatives A, and let π be

a ranking of the alternatives A. Define a new ranking πS by moving all

alternatives in S to the top of the ranking, maintaining the same relative

ranking between them, as well as the same relative ranking between all

alternatives not in S.

Claim 5.3.6. Let f be strategy-proof and onto A. Then for any profile π,

and any subset S of the alternatives A, it must be that f(πS) ∈ S.

Proof. Take any A ∈ S. Since f is onto, there is a profile π̃ such that

f(π̃) = A. Consider the sequence of profiles ri = ri(π̃,π
S), with 0 ≤ i ≤ n.

We claim that f(ri−1) ∈ S implies that f(ri) ∈ S. Otherwise, on profile

ri, voter i has an incentive to lie and report ≻̃i instead of ≻S
i . Thus, since

f(r0) = f(π̃) ∈ S, we conclude that f(rn) = f(πS) ∈ S as well.

We can now complete the proof of Theorem 5.3.2. Let f be strategy-

proof, onto and a non-dictatorship. Define a ranking rule R(π) as follows.

For each pair of alternatives A and B, let A ⊲ B if f(π{A,B}) = A and

B ⊲ A if f(π{A,B}) = B. (Claim 5.3.6 guarantees that these are the only

two possibilities.)

To see that this is a bona fide ranking rule, we observe that these pairwise

rankings are transitive. If not, there is a triple of alternatives such that

A ⊲ B, B ⊲ C and C ⊲ A. Let S = {A,B,C}. We know that f(πS) ∈ S,
without loss of generality f(πS) = A. Applying Lemma 5.3.4, with π = πS

and π′ = π{A,C}, X = A and Y = C, we conclude that f(π{A,C}) = A and

A ⊲ C, a contradiction.

Finally, we observe that the ranking rule R satisfies unanimity, IIA, and

is not a dictatorship.

Unanimity follows from the fact that if in π all voters have A ≻i B, then

(π{A,B})A = π{A,B}, and thus by Claim 5.3.6, f(π{A,B}) = A.

To see that IIA holds, let π1 and π2 be two profiles that agree on all

of their AB preferences. Then by Lemma 5.3.4, with π = π
{A,B}
1 and

π′ = π
{A,B}
2 , and Claim 5.3.6, we conclude that f(π

{A,B}
1 ) = f(π

{A,B}
2 ),

and hence IIA holds.
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Finally, the ranking rule R is not a dictatorship because f is not a dicta-

torship: For every voter v, there is a profile π for which v’s highest ranked

alternative is A, but for which f(π) = B 6= A. Then, applying Lemma 5.3.4

to the pair of profiles π and π{A,B}, with X = B and Y = A, we conclude

that f(π{A,B}) = B, and thus B ⊲ A in the outcome of the election. Hence

voter v is not a dictator relative to the ranking rule R.

Exercises

5.1 Give an example where one of the losing candidates in a runoff elec-

tion would have a greater support than the winner in a one-on-one

contest.

5.2 Describe a ranking rule that is not the induced ranking rule of any

voting rule.

5.3 Another way to go from a ranking rule to a voting rule. Apply this

procedure and the one in the text to Vote-counting. What voting

rule do you get in the two cases?

5.4 For other voting rules and ranking rules, find example violation of

IIA or way to manipulate for voting. (e.g. Approval voting):

Notes

The study of voting has a long history....

Voting Rules:

Chevalier de Borda proposed the Borda count in 1770 when he discovered that
the plurality method then used by the French Academy of Sciences was vulnerable
to strategic manipulation. The Borda count was subsequently used by the Academy
for the next two decades.

The method of pairwise contests referred to in the beginning of this chapter was
proposed by the Marquis de Condorcet after he demonstrated that the Borda count
was also vulnerable to strategic manipulation. He then proceeded to show a vulner-
ability in his own method — a tie in the presence of a preference cycle [dCMdC90].

Donald G. Saari showed that Borda count is in some sense ???? the least prob-
lematic of all single winner mechanisms [Saa90],[Saa06].

We have surveyed only a few of the many voting rules that have been considered.
Other voting rules include approval voting, .... Approval voting is a procedure in
which voters can vote for, or approve of, as many candidates as they wish, and
candidates are ranked by the number of approval votes they receive.

Arrow’s Impossibility Theorem

We have presented here a simplified proof of Arrow’s theorem that is due to
Geanakoplos [Gea04]. The version in the text assumes that each voter has a com-
plete ranking of all the candidates. However, in many cases voters are indifferent
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between certain subsets of candidates. To accomodate this possibility, one can
generalize the setting as follows.

Assume that the preferences of each voter are described by a relation � on the
set of candidates A which is reflexive (∀A, A � A), complete (∀A,B, A � B or
B � A or both) and transitive (A � B and B � C implies A � C).

As in the chapter, we use�i to denote the preference relation of voter i: A �i B if
voter i weakly prefers candidate A to candidate B. However, we can now distinguish
between strict preferences and indifference. As before, we use the notation A ≻i B
to denote a strict preference, i.e., A �i B but B �i A. (If A �i B and B �i A,
then voter i is indifferent between the two candidates.)

A reflexive, complete and transitive relation � can be described in two other
equivalent ways:

• It is a set of equivalence classes (each equivalence class is a set of candidates
that the voter is indifferent between), with a total order on the equivalence
classes. In other words, it is a ranking that allows for ties.

• It is the ranking induced by a function g : A → R from the candidates to
the reals, such that A � B if and only if g(A) ≥ g(B). Obviously, many
functions induce the same preference relation.

A ranking rule R asociates to each preference profile, π = (�1, . . . ,�n),
another reflexive, complete and transitive preference D = R(π).

In this more general setting, the definitions of unanimity and IIA are essentially
unchanged. (Formally, IIA states that if π = {�i} and π′ = {�′

i} are two profiles
such that {i | A �i B} = {i | A �′

i B} and {i | B �i A} = {i | B �′

i A}, then
A D B implies A D′ B.)

Arrow’s theorem in this setting is virtually identical to the version given in the
text: Any ranking rule that satisfies unanimity and IIA is a dictatorship. The
only difference is that, in the presence of ties, voters other than the dictator can
influence the outcome with respect to candidates that the dictator is indifferent
between. Formally, in this more general setting, a dictator is a voter v all of whose
strict preferences are reproduced in the outcome.

It is straightforward to check that the proof presented in Section 5.2 goes through
unchanged.
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Auctions and Mechanism Design

6.1 Auctions

Auctions are an ancient mechanism for buying and selling goods, and in

modern times a huge volume of economic transactions is conducted through

auctions: The US government runs auctions to sell treasury bills, spectrum

licenses and timber and oil leases, among others. Christie’s and Sotheby’s

run auctions to sell art. In the age of the Internet, we can buy and sell goods

and services via auction, using the services of companies like eBay. The ad-

vertisement auctions that companies like Google, Yahoo! and Microsoft run

in order to sell advertisement slots on their web pages bring in a significant

fraction of their revenue.

Why might a seller use an auction as opposed to simply fixing a price?

Primarily because sellers often don’t know how much buyers value their

goods, and don’t want to risk setting prices that are either too low, thereby

leaving money on the table, or, so high that nobody will want to buy the

item. An auction is a technique for dynamically setting prices. Auctions

are particularly important these days because of their prevalence in Internet

settings where the participants in the auction are computer programs, or

individuals with no direct knowledge of or contact with each other. As

auctions are games of incomplete information, game theory provides us with

the tools to understand their design and analysis.

6.2 Single Item Auctions

We are all familiar with the famous English or ascending auction for

selling a single item: The auctioneer starts by calling out a low price p. As

long as there are at least two people willing to pay the price p, he increases p

by a small amount. This continues until there is only one player left willing

114
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to pay the current price, at which point that player “wins” the auction, i.e.

receives the item at that price.

When multiple rounds of communication are inconvenient, the English

auction is sometimes replaced by other formats. For example, in a sealed-

bid first-price auction, the participants submit sealed bids to the auc-

tioneer. The auctioneer allocates the item to the highest bidder who pays

the amount she bid.

To compare these and other auction formats, we introduce the following

model: We assume that each player has a private value v for the item being

auctioned off. This means that he would not pay more than v for the item,

while if he gets the item at a price p < v, his gain is v − p. Given the rules

of the auction, and any knowledge he has about other players’ bids, he will

bid so as to maximize his gain.

In the ascending auction, a player will keep bidding only if the current

price is below his value. But how should a player bid in a sealed-bid first

price auction? Clearly, bidding one’s value makes no sense, since even upon

winning, this would result in a gain of 0! So a bidder will want to bid lower

than their true value. But how much lower? Low bidding has the potential

to increase a player’s gain, but at the same time increases the risk of losing

the auction. In fact, the optimal bid in such an auction depends on how the

other players are bidding, which in general, a bidder will not know.

Example 6.2.1. Suppose that two players are competing in a first-price

auction, and each of them knows that the other player’s value is a random

draw from a Unif[0,1] distribution.

In this game, each player has a strategy s. A strategy is a mapping

s : [0, 1]→ [0, 1] which describes the bid b = s(v) of a player when his value

is v.

We claim that in this setting it is an equilibrium for both players to bid

half of their value, i.e. s(v) = v/2.

To see this, we compute the expected gain of player 1 with value v1 when

his bid is b1, assuming the other player’s value v2 is drawn from U [0, 1] and

is using the strategy s(v2) = v2/2:

Ev2 [(v1 − b1)1b1≥b2 ] = Pv2 [b1 ≥ s(v2)](v1 − b1)
= Pv2 [b1 ≥ v2/2](v1 − b1).

Since v2 is U [0, 1], Pv2 [b1 ≥ v2/2] = 2b1 and therefore

Ev2 [gain of player 1 when his value is v1] = 2b1(v1 − b1).
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Choosing b1 to maximize the above expression, we see that player 1’s

expected gain is maximized by setting b1 = v1/2 = s(v1).

The symmetric argument for the other player shows that the strategies

s1(v1) = v1/2 and s2(v2) = v2/2 are best responses to each other in expec-

tation over the other player’s random value, and thus it is an equilibrium

for both players to play this way.

So is strategic bidding a necessary consequence of the convenience of

sealed-bid auctions? No. Nobel-prize winner William Vickrey (1960) dis-

covered that one can combine the low communication cost of sealed-bid auc-

tions with the optimality of truthful bidding found in the ascending auction.

We can get a hint on how to construct this combination by determining the

revenue of the auctioneer in the ascending auction when all players act ratio-

nally: The item is sold to the highest bidder when the current price exceeds

what other bidders are willing to offer; this threshold price is approximately

the value of the item to the second-highest bidder.

Definition 6.2.2. In a (sealed bid) second price auction, the highest

bidder wins the auction at a price equal to the second highest bid.

Theorem 6.2.3. The second price auction is truthful. In other words, for

each player i, and for any fixed set of bids of all players except for player i,

player i’s gain is maximized by bidding their true value vi.

Proof. Suppose the maximum of the bids submitted by players other than i

is m. If m > vi, bidding truthfully (or bidding any value that is at most m)

will result in a utility of 0 for player i. On the other hand, bidding above

m would result in a negative utility. Thus, the player cannot gain by lying.

On the other hand, if m ≤ v, then as long as the player wins the auction,

his utility will be v−m ≥ 0. Thus, the only change in utility that can result

due to bidding untruthfully occurs if the player bids below m, in which case,

his utility will be 0 since he then loses the auction.

Remark. We emphasize that the theorem statement is not merely saying

that truthful bidding is a Nash equilibrium, but rather the much stronger

statement that bidding truthfully is a dominant strategy, i.e., it maximizes

each players gain no matter how other players play.

6.2.1 Profit in single-item auctions

From the perspective of the bidders in an auction, a second price auction is

appealing. They don’t need to perform any complex strategic calculations.
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The appeal is less clear, however, from the perspective of the auctioneer.

Wouldn’t the auctioneer make more money running a first price auction?

Example 6.2.4. We return to our early example of two players, each with

a value drawn from U[0,1] distribution. From that analysis, we know that if

the auctioneer runs a first price auction, then in equilibrium his profit will

be

Ev1,v2(max(v1/2, v2/2)) = 1/3.

On the other hand, suppose that in the exact same setting, the auctioneer

runs a second-price auction. Since the players will bid truthfully, the auc-

tioneer’s profit will be the expected value of the second highest bid, which

is

Ev1,v2(min(v1, v2)) = 1/3,

exactly the same as in the 1st price auction!

Coincidence? No. As we shall see in Section 6.6.5, the very important

revenue equivalence theorem shows that any auction that has same allocation

rule in equilibrium yields the same auctioneer revenue! This applies even

to weird auctions like the all-pay auction, in which the winner is also the

bidder who submitted the highest bid, but this time all bidders pay the

auctioneer what they bid. (While this might seem like an auction nobody

would want to participate in, it models a number of interesting scenarios

outside the realm of selling a single item. For example, variants on this

basic all-pay auction are sometimes used to model political races or patent

races among firms, since in these cases there is only one winner, but all the

participants put in effort that is ultimately wasted if that participant loses

the “auction”, and they need to decide how much effort to put in.)

The lesson is that bidders adapt their behavior to the rules of the auction

and the information they have about their opponents, and this can lead to

outcomes that one would not necessarily expect at first glance.

6.2.2 More profit?

The discussion above implies that auctions that always allocate (in equilib-

rium) to the player with the highest value make the same amount of profit.

Unfortunately, this profit can be very low. A notorious example was the

1990 New Zealand sale of spectrum licenses in which a 2nd price auction

was used, the bidder bid $100,000, but paid only $6!

Is it possible for the auctioneer to obtain more profit with a different auc-

tion format? For example, if there are two players participating, and it is
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known that their values are U[0,1], can the auctioneer make a higher ex-

pected profit than 1/3? It turns out he can, by running a Vickrey auction

with a reserve price. This is a sealed bid auction in which the item is

allocated to the highest bidder, but only if her bid is at least the reserve

price. Her payment is the maximum of the reserve price and the bid of the

next highest bidder. A virtually identical argument to that of Theorem 6.2.3

shows that the Vickrey auction with a reserve price is also truthful.

6.2.3 Exercise: Vickrey with Reserve Price

Determine the expected profit of the auctioneer in a Vickrey auction with

a reserve price of r, with two players whose values are drawn independently

from a U[0,1] distribution. Show that this expected revenue is 5/12 when

when the reserve price is 1/2, and that this is the optimal choice of reserve

price.

Remarkably, this simple auction optimizes the auctioneer’s expected rev-

enue over all possible auctions! It is a special case of Myerson’s optimal

mechanism, a broadly applicable technique for maximizing auctioneer rev-

enue when agents values are drawn from known prior distributions. This

mechanism is discussed in §Section 6.6.7.

6.3 The general mechanism design problem

Mechanism design is concerned with designing games of incomplete infor-

mation such that, in equilibrium, the mechanism designer’s goals are ac-

complished. In the previous section, we pondered the design of an auction

for selling a single item, and asked what auction design best achieves the

auctioneer’s goals, say profit maximization, in equilibrium. There are many

other mechanism design problems as well.

Example 6.3.1. The federal government is trying to determine which roads

to build to connect a new city C to cities A and B (which already have a

road between them). The options are to build a road from A to C or a road

from B to C, both roads, or neither. Each road will cost the government 10

million dollars to build. Each city obtains a certain economic/social benefit

for each outcome. For example, city A might obtain a 5 million dollar benefit

from the creation of a road to city C, but no real benefit from the creation of

a road between B and C. City C, on the other hand, currently disconnected

from the others, obtains a significant benefit (9 million) from the creation
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of each road, but the marginal benefit of adding a second connection is

not as great as the benefit creating a first connection. The following table

summarizes these values (in millions), and the cost to the government for

each option.

road A-C road B-C both none

City A 5 0 5 0

City B 0 5 5 0

City C 9 9 15 0

Government -10 -10 -20 0

The government’s goal is to choose the option that yields the highest

total benefit to society which, for these numbers, is the creation of both

roads. However, these numbers are reported to the government by the cities

themselves, who may have an incentive to exaggerate their values, so that

their preferred option will be selected. Thus, the government would like to

employ a mechanism for learning the values and making the decision that

provides the correct incentive structure.

Example 6.3.2. Consider a mechanism for the allocation of takeoff and

landing slots at a particular airport to competing airlines (the participants).

The valuation functions of the airlines are likely to be quite complicated

incorporating specifications such as “I want to purchase the right to use a

landing slot at 3pm each day and the right to use a takeoff slot at 3:30pm

each day for $X,” where X might depend on whether the takoff and land-

ing slots are the same or close to each other, and might vary depending

on the precise timing involved. In such a setting, the mechanism designer

(the airport administration or the government) might want to maximize the

utilization of these slots, or maximize the total profit taken in, or any of a

number of other objectives.

Example 6.3.3. When you perform a query in a search engine, you receive

a page of results containing the links the search engine has deemed relevant

to the search, together with sponsored links, i.e. “advertisements”. (See

figure.) This enables advertisers to precisely target their ads based on users’

search terms. For example, if a travel agent “buys” the search term “Tahiti”,

then when searching on the word “Tahiti”, a user might be shown a link to

a web page for that travel agent offering, say, plane tickets to Tahiti. If the

user actually clicks on this link, he will be transferred to the aforementioned

web page. For each such click, in which the advertiser receives a potential

customer, the advertiser pays the search engine.

The process of determining which ads get assigned to which keywords



120 Auctions and Mechanism Design

(search terms) and how much each advertiser pays is resolved via keyword

auctions. Advertisers choose which keywords they want to bid on and par-

ticipate in auctions for those keywords. When a user submits a query on

that keyword, an instantaneous auction is run to determine which of the ad-

vertisers currently bidding on that keyword are allocated advertising slots.

Here, the search engine needs to design the mechanism for allocating these

advertisement slots to advertisers and the payment rules. A typical goal for

the search engine might be profit maximization, whereas the advertisers seek

to maximize their own utility.

The setting for a mechanism design problem is specified by:

• the number n of participants (also called players, bidders or agents).

• the set of possible outcomes A: For example, in a single-item auction,

the outcome specifies who, if anyone, wins the item.

• the space of valuation functions for the players: Player i’s valuation

function vi : A→ R, maps outcomes to real numbers. The quantity

vi(a) represents the “value” that i assigns to outcome a ∈ A, mea-

sured in a common currency, such as dollars. This valuation function

is player i’s private information, and is chosen from some specified

function space Vi. For the single item auction case, vi(a) is simply

vi, player i’s value for the item, if a is the outcome in which player

i wins the item, and 0 otherwise.

• the objective of the designer. In the single-item auction case, this

could be, for example, to maximize profit. We will discuss other

objectives below.

We consider the following type of mechanism design problem: Design

a mechanismM (a game of incomplete information) that takes as input the

players valuation functions v = (v1(·), . . . , vn(·)), and selects as output an

outcome a = a(v) ∈ A, and a set of payments pi = pi(v) (pi is the payment

by player i), such that, in equilibrium, the mechanism designer’s objective

is met (or approximately met).

To complete the specification of a mechanism design problem, we need to

define the players payoff/utility model and the equilibrium notion of interest.

Before we do that, we introduce some notation that we will use throughout

the chapter: Given any vector whose entries represent some quantity for each

of the agents, such as, for example, the values of the agents v = (v1, . . . , vn),
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we will use v−i to denote the elements of this vector excluding i, and we will

interchangeably refer to the full vector as either v, (v1, . . . , vn) or (vi,v−i).

Definition 6.3.4. The quasi-linear utility model linearly combines the

players valuation for the outcome with their value for money, and assumes

the goal of each agent is to maximize their expected utility. We use ui(b|vi),
to represent player i′s expected utility when the mechanism M is run on

the input b = (bi,b−i), assuming player i’s actual valuation function is vi.

In a quasi-linear utility model this is

ui(b|vi) = vi(a(b))− pi(b).

As for the equilibrium notion, we begin our discussion with the strongest

possible notion, namely that it be a dominant strategy for each agent to

report their valuation function truthfully.

Definition 6.3.5. We say that a mechanism M is truth-eliciting if, for

each player i, each valuation function vi(·) and each possible report b−i

of the other players, it is a dominant strategy for player i to report their

valuation truthfully. Formally, for all b−i, all i, vi, and bi

ui(vi,b−i|vi) ≥ ui(bi,b−i|vi)

As we saw, the second price auction for selling a single item is truth-

eliciting.

6.4 Social Welfare Maximization

Consider a mechanism design problem where the design goal is to maxi-

mize social welfare, the total happiness of all the participants including

the auctioneer. The happiness of the auctioneer is simply the total payment

collected the the participants (minus any cost C(·) he incurs to implement

that outcome), and the happiness of a player is their utility for that out-

come. Summing these, we obtain that the social welfare of an outcome a

is (
∑

j vj(a)) − C(a). (For most of this section, we assume that C(a) = 0.

FIX THIS.) We use the following mechanism to solve this problem:

Definition 6.4.1. The Vickrey-Clarke-Groves (VCG) mechanism, il-

lustrated in Figure 6.1, works as follows: The agents are asked to report their

valuation functions. Say they report b = (b1, . . . , bn) (where bi may or may

not equal their true valuation vi). The outcome a∗ = a(b) selected is the

one that maximizes social welfare with respect to the reported valuations.
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The payment pi(b) player i makes is the harm his presence causes others

(with respect to the reported bids), formally:

pi(b) = max
a

∑

j 6=i

bj(a)−
∑

j 6=i

bj(a
∗).

The first term is the total reported value the other players would obtain

if i was absent, and the term being subtracted is the total reported value

the others obtain when i is present.

VCG Mechanism

Fig. 6.1.

Exercise 6.4.2. Check that the Vickrey second price auction is a special

case of the VCG mechanism.

Here are two other examples:

Example 6.4.3. Consider the outcome and payments for the VCG mech-

anism on example 6.3.1, assuming that the cities report truthfully. As the

social welfare of each outcome is the sum of the values to each of the par-

ticipants for that outcome (the final row in the following table), the social

welfare maximizing outcome would be to build both roads.

road A-C road B-C both none

City A 5 0 5 0

City B 0 5 5 0

City C 9 9 15 0

Government -10 -10 -20 0

Social welfare 4 4 5 0

What about the payments using VCG? For city A, the total value attained

by others in A’s absence is 4 (road B-C only would be built), whereas with

city A, the total value attained by others is 0, and therefore player A’s pay-

ment, the harm his presence causes others is 4. By symmetry, B’s payment is
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the same. For city C, the total value attained by other’s in C’s absence is 0,

whereas the total value attained by others in C’s presence is -10, and there-

fore the difference, and C’s payment is 10. Notice that the total payment is

18, whereas the government spends 20.

Example 6.4.4. Consider a search engine selling advertising slots on one

of its pages. There are three advertising slots with clickthrough rates (prob-

ability that an individual viewing the web page will click on the ad) of

0.08, 0.03 and 0.01 respectively, and four advertisers whose values for a click

are 10, 8, 2 and 1 respectively. We assume that the expected value for an

advertiser to have his ad shown in a particular slot is his value times the

clickthrough rate. Suppose the search engine runs a VCG auction in order

to decide which advertiser gets which slot. The outcome and payments are

shown in the figure.

The beauty of VCG payments is that they ensure that the players’ in-

centives are precisely aligned with the goal of the mechanism since when all

players report truthfully, that is, b = v, the outcome a∗ selected is the one

that maximizes social welfare with respect to the true valuations v and as

a result player i’s utility is:

ui(v) = vi(a
∗)− pi(v)

= vi(a
∗) +

∑

j 6=i

vj(a
∗)−max

a

∑

j 6=i

vj(a)

=
∑

j

vj(a
∗)−max

a

∑

j 6=i

vj(a).

exactly the same quantity the mechanism is trying to maximize (minus a

term player i has no control over). Formally:

Theorem 6.4.5. VCG is a truth-eliciting mechanism for maximizing social

welfare.

Proof. Fix the reports b−i of all agents except agent i (that may or may not

be truthful). Suppose that agent i’s true valuation function is vi(·). but he
lies and reports bi(·), resulting in outcome

a′ = argmaxa
∑

j

bj(a)
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and payment

pi(b) = max
a

∑

j 6=i

bj(a)−
∑

j 6=i

bj(a
′) = −

∑

j 6=i

bj(a
′) + C.

(Here C = maxa
∑

j 6=i bj(a) is a constant that agent i’s report has no influ-

ence on.) Thus by lying, agent i’s utility is

ui(b|vi) = vi(a
′)− pi(bi,b−i)

= vi(a
′) +

∑

j 6=i

bj(a
′)− C.

Had he reported truthfully, the outcome

ã = argmaxa



vi(a) +
∑

j 6=i

bj(a)





would have been selected. Since

vi(a
′) +

∑

j 6=i

bj(a
′)− C ≤ vi(ã) +

∑

j 6=i

bj(ã)− C,

we obtain

ui(b|vi) ≤ ui(vi,b−i|vi).

The following example illustrates a few of the deficiencies of the VCG

mechanism.

Example 6.4.6. Spectrum Auctions: In a spectrum auction, the govern-

ment is selling licenses for the use of some band of electromagnetic spectrum

in a certain geographic area. The participants in the auction are cell phone

companies who need such licenses to operate. Company A has recently en-

tered the market and needs two licenses in order to operate efficiently enough

to compete with the established companies. Thus, A has no value for a sin-

gle license, but values a pair of licenses at 1 billion dollars. Companies B

and C are already well established and only seek to expand capacity. Thus,

each one needs just one license and values that license at 1 billion.

Suppose the government runs a VCG auction to sell 2 licenses. If only

companies A and B compete in the auction, the government revenue is 1

billion dollars (either A or B can win). However, if A, B and C all compete,

then companies B and C will each receive a license, but pay nothing. Thus,

VCG revenue is not necessarily monotonic in participation or bidder values.

A variant on this same setting illustrates another problem with the VCG
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mechanism and that is susceptibility to collusion. Suppose that company

A’s preferences are as above, and companies B and C still only need one

license each, but now they only value a license at 25 million. In this case,

if companies B and C bid honestly, they lose the auction. However, if they

collude and each bid 1 billion, they both win at a price of 0.

6.5 Win/Lose Mechanism Design

We turn now to the objective of profit maximization in settings where the

outcomes divide the players into winners and losers. In such settings, the

auctioneer is allocating goods or a service to some subset of the agents.

Thus, outcomes are represented by binary vectors x, where xi = 1 if i is a

winner and xi = 0 otherwise. Since in these settings, all each agent cares

about is whether they win or lose and their value for losing is 0, each agent’s

private information vi(x) is defined by a single number vi ∈ [0,∞), such that

vi(x) is vi if xi is 1 and 0 otherwise. Thus, in mechanisms for these problems,

the agents are asked to simply report their values vi for allocation. We call

their reports bids, and observe that agents may or may not bid truthfully.

Here are two examples of single-parameter problems:

Example 6.5.1. Concert tickets: A well-known singer is planning a con-

cert in a a 10,000 seat arena to raise money for her favorite charity. Her

goal is to raise as much money as possible and hence she sells the tickets by

auction. In this scenario, the singer is the auctioneer and has a set of 10,000

identical items (tickets) she wishes to sell. Assume that there are 100,000

potential buyers, each interested in exactly one ticket, and each with his or

her own private value for the ticket. If the singer wants to maximize social

welfare, that is, make sure the tickets end up in the hands of the buyers

who value them the most, she can simply run the VCG mechanism from

the previous section. It is easy to check that this will result in selling the

tickets to the top 10,000 bidders at the price bid by the 10,001st bidder. But

if there are a small number (much smaller than 10,000) of buyers that are

willing to pay a large sum for a ticket, and vast numbers of buyers willing

to pay a tiny amount for a ticket, this could result in a very low profit. This

raises the question: what auction format should the singer use if she wishes

to make as much money as possible?

Google IPO auction?

Example 6.5.2. Exclusive markets: A massage therapist (the auctioneer

in this example) is trying to decide whether to set up shop in Seattle or New
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York. To guage the profit potential in the two different locations, he runs an

auction asking a set of individuals from each city to submit a bit indicating

how much they will pay for a massage. The constraint in the design of the

auction is that winners can only be from one of the markets.

The question we turn to next is how to design a truth-eliciting, profit-

maximizing auction in win/lose settings.

6.6 Profit Maximization in Win/Lose Settings

We begin by characterizing truth-eliciting mechanisms in win/lose settings.

The following simple theorem is fundamental:

Theorem 6.6.1 (Characterization for Truthfulness). Let A be a determin-

istic mechanism for a win/lose setting. A is truth-eliciting if and only if,

for every agent i and bids b−i

(i) There is a value ti such that i wins if her bid is above ti and loses

if her bid is below ti. (At ti it can go either way.) The value ti is

called i’s threshold bid given b−i.

(ii) Agent i’s payment is ti if agent i is a winner and 0 otherwise.

Proof. We use the following simplified notation in the proof: When i and

b−i are understood, we use x(b) to denote xi(b,b−i) and p(b) to denote

pi(b,b−i). We also use ui(b|v) = vx(b) − p(v) to represent agent i’s utility

when he bids b and his true value is v. We now proceed to the proof.

It is an easy exercise to check that if conditions (i) and (ii) are satis-

fied, then the mechanism is truthful. (These conditions are precisely the

conditions that made the Vickrey 2nd price auction truthful.)

For the converse, fix b−i. We observe that A is truth-eliciting only if for

every b−i, v and w

ui(v|v) = vx(v)− p(v) ≥ vx(w) − p(w) = ui(w|v)
and

ui(w|w) = wx(w) − p(w) ≥ wx(v) − p(v) = ui(v|w).
Adding these two inequalities, we obtain that for all v and w in [0,∞)

(v − w)(x(v) − x(w)) ≥ 0.

Thus, if v ≥ w, then x(v) ≥ x(w), and x(z) is monotone nondecreasing in

z. In other words, condition (i) holds.

As for the payment rule, we assume wlog that the minimum payment pmin
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agent i can make is 0; if not, reducing all payments by pmin doesn’t change

the incentive properties of the mechanism. This implies that no matter what

i’s value is, if she loses, she pays 0. Otherwise, she would lie and bid so that

her payment is 0. Thus, we have only to argue that agent i’s payment is ti if

she wins. To this end, observe that if there are two winning bids v and v′ for
which the payments are different, say lower for v, then if her value was v′ she
would increase her utility by lying and bidding v. Thus, all the winning bids

for agent i result in the same payment. Moreover, this payment p has to be

at most ti, since otherwise, a bidder with value v such that ti < v < p would

have an incentive to lie so as to become a loser. On the other hand, if this

payment p is strictly below ti, an agent with value v such that p < v < ti
would have an incentive to lie and become a winner.

Remark. This characterization implies that, operationally, a truth-eliciting

auction in win/lose settings consists of making an offer at a price of ti to

bidder i, where ti is a function of all other bids b−i, but is independent of bi.

This offer is then accepted or rejected by i depending on whether bi is above

or below ti. Thus, truth-eliciting auctions in single-parameter settings are

often said to be bid-independent.

6.6.1 Profit maximization in digital goods auctions

We now show how to apply Theorem ?? to the design of profit-maximizing

digital goods auctions. A digital goods auction is an auction to sell digital

goods such as mp3’s, digital video, pay-per view TV, etc. The unique aspect

of digital goods is that the cost of reproducing the items is negligible and

therefore the auctioneer effectively has an unlimited supply of the items.

This means that there is no constraint on how many of the items can be

sold, or to whom.

For digital goods auctions, the VCG mechanism allocates to all of the bid-

ders, and charges them all nothing! Thus, while VCG perfectly maximizes

social welfare, it can be disastrous when the goal is to maximize profit.

In this section, we present a truth-eliciting auction that does much better.

Specifically, we present an auction that always gets within a factor of four

of the profit obtained by the auction that sells the items at a fixed price.

Definition 6.6.2. The optimal fixed price profit that can be obtained

from bidders with bid vector b is

OFP(b) = max
p
{p · (the number of bids in b at or above p)},
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and the optimal fixed price is

p∗(b) = argmaxp{p · (the number of bids in b at or above p)}.

If we knew the true values v of the agents, a profit of OFP(v) would be

trivial to obtain. We would just offer the price p∗(v) to all the bidders, and

sell at that price to all bidders whose values are above p∗. But we can’t do

this truthfully.

Exercise 6.6.3. Show that no truth-eliciting auction can obtain a profit of

OFP(v) for every bid vector v.

The following auction is perhaps the first thing one might try as a truth-

eliciting alternative:

The Deterministic Optimal Price Auction (DOP): For each bidder
i, compute ti = p∗(b−i), the optimal fixed price for the remaining bidders,
and use that as the threshold bid for bidder i.

Unfortunately, this auction does not work well, as the following example

shows.

Example 6.6.4. Consider a group of bidders of which 11 bidders have value

100, and 1001 bidders have value 1. Then the best fixed price is 100 – at

that price 11 items can be sold for a total profit of 1100.

Unfortunately, if we run the DOT auction on this bid vector, then for

each bidder of value 100, the threshold price that will be used is 1, whereas

for each bidder of value 1, the threshold price is of value 100, for a total

profit of only 11!

In fact, the DOT auction can obtain arbitrarily poor profit compared to

the optimal fixed price profit. Moreover, it is possible to prove that any

deterministic truth-eliciting auction that treats the bidders symmetrically

will fail to consistently obtain a constant fraction of the optimal fixed price

profit. The key to overcoming this problem is to use randomization. First

though, we show how to solve a somewhat easier problem.

6.6.2 Profit Extraction

Suppose that we lower our sights and rather than shooting for the best fixed

price profit possible for each input, we set a specific target, say $1000, and

ask if we can design an auction that guarantees us a profit of $1000, when

the bidders can “afford it”. Formally:
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Definition 6.6.5. A digital goods profit extractor. with parameter T ,

denoted by peT (·), is a truth-eliciting auction that, given a set of sealed

bids b and a target profit T , is guaranteed to obtain a profit of T as long as

the optimal fixed price profit OFP(b) is at least T . If the optimal fixed price

profit OFP(b) is less than T , there is no guarantee, and the profit extractor

could, in the worst case, obtain no profit.

It turns out that such an auction is easy to design:

Definition 6.6.6 (A Profit Extractor:). The digital goods profit extrac-

tor peT(b) with target profit T sells to the largest group of k bidders that

can equally share the cost T and charges each T/k.

Using Theorem ??, it is straightforward to verify that:

Lemma 6.6.7. The digital goods profit extractor peT is truthful, and guar-

antees a profit of T on any b such that OFP(b) ≥ T .

6.6.3 A profit-making digital goods auction

The following auction is near optimal:

Definition 6.6.8 (RSPE). The Random Sampling Profit Extraction auction

(RSPE) works as follows:

• Randomly partition the bids b into two by flipping a fair coin for

each bidder and assigning her to b′ or b′′.
• Compute the optimal fixed price profit for each part: T ′ = OFP(b′)
and T ′′ = OFP(b′′).
• Run the profit extractors: peT ′ on b′′ and peT ′′ on b′.

Our main theorem is the following:

Theorem 6.6.9. The Random Sampling Profit Extraction (RSPE) auction

is truthful, and for all bid vectors v for which there are at least two values at

or above p∗(v), RSPE obtains at least 1/4 of the optimal fixed profit OFP(v).

Proof. The fact that the RSPE auction is truth-eliciting is straightforward

since it is simply randomizing over truth-eliciting auctions, one for each

possible partition of the bids. (Note that any target profit used in step 3

of the auction is independent of the bids to which it is applied.) So we

have only to lower bound the profit obtained by RSPE on each input v.

The crucial observation is that for any particular partition of the bids, the

profit of RSPE is at least min(T ′, T ′′). This follows from the fact that if,
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Fig. 6.2. This figure illustrates a possible execution of the RSPE auction
when the entire set of bids is (20, 10, 10, 8, 5, 5, 5, 5, 5, 3, 1).

say T ′ ≤ T ′′, then OFP(b′′) = T ′′ is large enough to ensure the success of

peT ′(b′′), namely the extraction of a profit of T ′.
Thus, we just need to analyze E(min(T ′, T ′′)).
Assume that OFP(b) = kp∗ has with k ≥ 2 winners at price p∗. Of the

k winners in OFP, let k′ be the number of them that are in b′ and k′′ the
number that are in b′′. Thus, T ′ ≥ k′p∗ and T ′′ ≥ k′′p∗. Therefore

E(RSPE(b))

OFP(b)
=
E(min(T ′, T ′′))

kp∗

≥ E(min(k′p∗, k′′p∗))
kp∗

=
E(min(k′, k′′))

k

≥ k/4

k
= 1/4.

The last inequality follows from the fact that, for k ≥ 2,

E(min(k′, k′′)) =
∑

0≤i≤k

min(i, k − i)
(

k

i

)

2−k = k

(

1

2
−
(

k − 1

⌊k2⌋

)

2−k

)

≥ k

4
.
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6.6.4 With priors: the Bayesian setting

We now return to the Bayesian setting discussed in the introduction. Here,

it is assumed that each agent’s private value vi is drawn independently with

distribution function Fi and these prior distributions, or priors for short, are

known to both the auctioneer and all the players. Only player i, however,

knows her actual draw vi from distribution Fi. We also assume for now that

the distribution functions Fi have support on [0,∞), and are continuous and

differentiable.

In such an auction, each player has a strategy:

Definition 6.6.10. A strategy in an auction is a mapping s : [0,∞) →
[0,∞) which specifies agent i’s bid b = s(v) when her value is v. A player

chooses her strategy knowing the rules of the auction to be run, and, in

this Bayesian setting, the prior distributions from which the other player’s

values are drawn.

To describe our equilibrium notion, we will use the following notation, in

which an expectation or probability taken over subscript “−i” means that

it is computed with respect to the draws of vj ∼ Fj for each j 6= i:

• The probability that agent i receives allocation when all players but

i employ strategies s−i, and agent i bids si(bi) is denoted by

x̄i(bi) = P−i[xi (si(bi), s−i(v−i)) = 1].

• The expected payment that agent i will have to make when all players

but i employ strategies s−i and agent i bids si(bi) is denoted by

p̄i(bi) = E−i[pi (si(bi), s−i(v−i))].

• Agent i’s expected utility when all players but i employ strategies

s−i, her value is vi and she bids si(bi) is denoted by

ūi(bi|vi) = E−i[ui (si(bi), s−i(v−i)|vi)].

By definition

ūi(bi|vi) = vix̄i(bi))− p̄i(bi).

We use the following equilibrium notion.

Definition 6.6.11. Given a mechanism A, we say that strategies si for

1 ≤ i ≤ n are in Bayes-Nash equilibrium if for each agent i and value vi,

strategy si is a best response, in expectation over the draws of other players
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values, to strategies s−i for each i. Formally, this means that for all i and

values vi,

ūi(bi|vi)

is maximized when bi = vi (which means that agent i bids si(vi)).

The key theorem we will need in this setting with priors is the following.

Theorem 6.6.12 (Characterization for Bayes-Nash Equilibrium). Let A be

a mechanism for a single-parameter allocation problem with priors, where

vi ∼ Fi for each i. Then an onto strategy profile s = (s1, . . . , sn) for the

agents is in Bayes-Nash equilibrium if and only if

(i) The probability of allocation x̄i(b) is monotone non-decreasing in b.

(ii) The payment rule is determined by the allocation rule up to an ad-

ditive constant as follows:

p̄i(b) = bx̄i(b)−
∫ b

0
x̄i(z)dz + p̄i(0).

Fig. 6.3. This figure shows the monotonic non-decreasing curve of x̄(·).
The grey area is p̄(v) and the purple area is ū(v|v).

Remarks:

(i) To simplify the exposition, we will henceforth assume that pi(0) = 0
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for all i. All statements proceed mutatis mutandis if this is not the

case.

(ii) If conditions (i) and (ii) hold then player i’s expected utility in Bayes-

Nash equilibrium satisfies

ū(v|v) =
∫ v

0
x̄i(z)dz.

Figure 6.3 illustrates this fact.

Fig. 6.4. In this figure, the area above the curve x̄(·) up to the line y = x̄(w)
is the payment p̄(w) (the teal part together withA, the green part). The
picture shows that that ū(w|v) = ū(v|v)−A. A similar picture shows that
ū(w|v) ≤ ū(v|v) when w < v.

Proof. We present a proof by picture that, if conditions (i) and (ii) hold and

the strategy profile is onto (for every b, there exists a v such that s(v) = b),

then the strategy profile s is in Bayes-Nash equilibrium. To see this, observe

that since the strategy profile is onto, any deviation by player i with value

v from the strategy si corresponds to playing strategy si with respect to a

modified value w. Thus, we need only show that for all v and w,

ū(v|v) ≥ ū(w|v). (6.1)

This is illustrated in Figure 6.4.

For the converse, suppose that inequality (6.1) holds for all v and w.
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Then combining ū(v|v) ≥ ū(w|v) and ū(w|w) ≥ ū(v|w), and using the fact

that ū(w|v) = vx̄(w) − p̄(w) for all v and w, we obtain (as in the proof of

Theorem 6.6.1) that

(v − w)(x̄i(v)− x̄i(w)) ≥ 0, (6.2)

meaning that x̄(z) is monotone in z and thus condition (i) holds. It also

follows that

w(x̄(v)− x̄(w)) ≤ p̄(v)− p̄(w) ≤ v(x̄(v)− x̄(w)). (6.3)

for all v and w. Letting v = w + dw and taking the limit as dw → 0, we

obtain

p̄′(v) = vx′(v).

Integrating by parts yields condition ((ii)).

6.6.5 Revenue Equivalence

One of the most important results in auction theory is a simple corollary of

Theorem 6.6.12:

Theorem 6.6.13 (Revenue Equivalence). Consider any two auctions A and

A′ for a win/lose setting, where players values vi are independent and iden-

tically distributed. Suppose that s is a Bayes-Nash equilibrium for auction A
and s′ is a BN equilibrium for auction A′, and that xA(s(v)) = xA′

(s′(v))
for all v. Then A and A′ have the same expected revenue in equilibrium

(assuming that p̄i(0) = 0 for all i in both auctions).

Proof. By Theorem 6.6.12, the payment to the auctioneer is determined by

the allocation rule x̄i(·). Thus, auctions with the same allocation rule (and

with p̄i(0) = 0 for all i), obtain the same expected revenue from each agent,

and hence the same expected revenue overall in equilibrium.

Corollary 6.6.14. Consider the following three auctions for selling a single

item: the first price auction, the second price auction and the all-pay auction,

and suppose that each of them is run with agents such that vi ∼ U [0, 1] for

all i. Then in Bayes-Nash equilibrium, all three of these auctions have the

same expected revenue.

Proof. By definition pi(0) = 0 for all three auctions. Thus, it will suffice

to show that all three auctions have a Bayes-Nash equilibrium strategy in
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which the allocation is the same, specifically, the item is allocated to the

player with the highest value.

To this end, we show that all three auctions have a BN equilibrium for

which the strategy profile is symmetric, (si(v) = s(v) for all i), and s(v) is

monotone increasing.

For the second price auction, this is immediate from the fact that s(v) = v

is a dominant strategy, since every dominant strategy profile is also a BN

equilibrium strategy profile.

To find such equilibrium strategies for the first-price auction and all-pay

auctions, we observe that if s is in BNE then ūi(b|v) is maximized when

b = v for all v. Thus, we have that

∂ū(b|v)
∂b

|(b=v) = 0. (6.4)

Applying this for each of the auctions enables us to derive a differential

equation which we can then solve to find the equilibrium strategies.

• For the first-price auction,

ū(b|v) = bn−1(v − s(b)).
Applying Equation (6.4), we obtain that

(n− 1)vn−2(v − s(v))− vn−1s′(v) = 0,

or

s′(v) = (n− 1)

(

1− s(v)

v

)

.

A solution to this differential equation is

s(v) =

(

n− 1

n

)

v,

which can easily be verified to be a BN equilibrium strategy profile

for the first-price auction.

• For the all-pay auction

ū(b|v) = bn−1(v − s(b)) + (1− bn−1)(−s(b))
Again applying Equation (6.4), we obtain the differential equation

s′(v) = (n− 1)vn−1

which has as a solution

s(v) =
n− 1

n
vn.
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Again, this can easily be verified to be a BN equilibrium strategy

profile for the all-pay auction.

Thus, these two auctions have equilibrium strategy profiles that are sym-

metric and monotone increasing, from which we conclude that in all three

auctions, the item is allocated to the player with the highest value.

6.6.6 The revelation principle

We now have almost everything we need in order to derive the profit-

maximizing, or optimal auction in win/lose settings with priors. The final

result we will use is the revelation principle, a simple but terribly useful

observation that enables us to significantly restrict the class of auctions we

consider in our search for the optimal auction.

Fig. 6.5.

Theorem 6.6.15 (The Revelation Principle). LetM be a mechanism and s

a strategy profile in Bayes-Nash equilibrium with respect toM. Then there is

another mechanism M′ for which (a) bidding truthfully (i.e. using strategy

si(v) = v for all i) is a Bayes-Nash equilibrium, and (b) M′ has the same

input/output relationship as M.

Proof. The mechanismM′ operates as follows: On each input b,M′ com-

putes s(b) = (s1(b1), s2(b2), . . . , sn(bn)), and then runsM on s(b) to com-

pute the output and payments. (See Figure 6.5.) It is straightforward to

check that if s is in Bayes-Nash equilibrium forM, then bidding truthfully

is a Bayes-Nash equilibrium forM′.
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Definition 6.6.16. If bidding truthfully is a Bayes-Nash equilibrium for

mechanismM, thenM is said to be Bayes-Nash incentive compatible

(BIC).

6.6.7 Optimal Auctions

Example 6.6.17. Consider an auctioneer with a single item to sell to an

agent whose private value is publicly known to be drawn from distribution

F . What price should the auctioneer offer the agent to maximize her profit?

If she offers a price of v, the agent will accept the offer if her value is at

least that price, i.e. with probability 1−F (v). Thus, the auctioneer should

choose the price to maximize R(v) = v(1 − F (v)), her expected revenue at

price v. If R(v) is concave, then R(v) is maximized when R′(v) = 0, i.e., at

the value at which the agents “marginal revenue” is 0. Note that if R(v) is

concave, then R′(v) is monotone nonincreasing in v. ♣

We now derive the famous Myerson optimal mechanism for maximizing

auctioneer profit in win/lose settings where players’ priors are drawn from

known distributions.

By the revelation principle (Theorem 6.6.15), we need consider optimizing

only over BIC mechanisms. Moreover, by Theorem 6.6.12, we need consider

only how to determine the allocation rule, since the payment rule is deter-

mined by the allocation rule (and we will fix pi(0) = 0 for all i).

Consider a mechanism M with truthtelling (si(v) = v for all i) a Bayes-

Nash equilibrium, and suppose that its allocation rule is x(b). Then the

goal of the auctioneer is to choosen x(b) to maximize

Ei

[

∑

i

p̄(vi)

]

.

It will be convenient to write everything in terms of the probability of sale

q at a given price. If a player whose value is drawn from distribution F is

offered a price of v, he will accept this price (i.e. have a value higher than

this price) with probability.

q(v) = 1− F (v).

(We will assume that F is invertible and refer also to the value at a given

probability of sale q which is v(q) = F−1(1 − q).) Using this notation, the

payment rule (condition (ii) from Theorem 6.6.12) can be rewritten as fol-
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lows:

p̄i(q) = −
∫ 1

q
x̄′i(ℓ)v(ℓ)dℓ + p̄i(1).

Notice that since x̄i(v) is monotone non-decreasing in v, x̄i(q) is monotone

non-increasing in q. Moreover, drawing v from the distribution F is equiv-

alent to drawing q from U [0, 1].

Fix v−i. Then the expected revenue from agent i is

Eq [p(v(q),v−i)] = −
∫ 1

0

∫ 1

q
x′(ℓ)v(ℓ)dℓdq.

Reversing the order of integration, we get

= −
∫ 1

0
x′(ℓ)v(ℓ)

∫ ℓ

0
dqdℓ

= −
∫ 1

0
x′(ℓ)ℓv(ℓ)dℓ

= −
∫ 1

0
x′(ℓ)R(ℓ)dℓ.

where R(q) = qv(q) is the profit from offering a price of v to an agent whose

value is drawn from F . Finally, integrating by parts, we obtain

= −
∫ 1

0
x(q)R′(q)dq.

In the absence

Lemma 6.6.18. Suppose that A has allocation rule x(v) and is Bayes-Nash

incentive-compatible auction when vi ∼ Fi for all i and qi = 1− Fi(vi). Let

Ri(qi) = qivi(qi), the profit the auctioneer would make if he offered agent i

a price of vi(qi). Then the expected profit of the auctioneer is

Ev(profit of A) = −Eq

(

∑

i

xi(q(v))R
′
i(qi)

)

(6.5)

Notice that we now have a formula for the expected profit of any BIC

auction in terms of its allocation rule! We can also now see the path to

designing an auction that maximizes expected profit in equilibrium. If we

want to maximize equation (6.5), we should choose our allocation rule x(v)

so that pointwise, on each input v, it chooses the feasible outcome that

maximizes the right hand side of (6.5), in other words, choose the allocation

that maximizes marginal revenue. That is the best we can do!
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Unfortunately, such an allocation rule is not always monotone, and hence

does not always yield a BIC mechanism. There is, however, a very large

class of settings for which it is a monotone allocation rule: whenever R′
i(qi)

is monotone non-increasing in qi for all i.

Definition 6.6.19. A probability distribution with distribution function F

is regular if R′
i(qi) is monotone nonincreasing in qi.

For the purposes of summarizing the resulting mechanism, it will be con-

venient to switch back from “probability space”.

Definition 6.6.20. For agent i whose value v is drawn from distribution

Fi, define the virtual value of agent i to be φi(v) = v − 1−Fi(v)
fi(v)

.

Exercise 6.6.21. Show that φi(v) = R′(q(v)), and that R′(q) is monotone

nonincreasing in q if and only if φi(v) is monotone nondecreasing in v.

Thus a probability distribution is regular if the corresponding virtual val-

ues are monotone nondecreasingi n v. Many common distributions, such as

Gaussian, exponential and even many heavy-tailed distributions, are regular.

We can now summarize Myerson’s optimal mechanism (for regular distri-

butions):

Definition 6.6.22 (Myerson’s mechanism for regular distributions (Mye)).

The Myerson mechanism for regular distributions is defined by the following

steps:

(i) Solicit a bid vector b from the agents.

(ii) Compute the virtual value b′i of each agent, where b′i = φi(bi), and

choose the feasible win/loss vector x for which
∑

i b
′
ixi is maximized.

(iii) Charge each winning agent her threshold bid.

Theorem 6.6.23. If each distribution Fi is regular, Mye is truth-eliciting

and maximizes the auctioneer’s expected profit over values drawn from F.

In other words, for any BIC mechanism M:

Ev [Mye (v)] ≥ Ev [M (v)]

Remark. Note that not only is Myerson’s mechanism BIC – it is actually

dominant strategy truthful! Indeed it meets the conditions of Theorem 6.6.1.
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Stable matching

7.1 Introduction

Stable matching was introduced by Gale and Shapley in 1962. The problem

is described as follows.

Suppose we have n men and n women. Every man has a preference order

over the n women, while every woman also has a preference order over the

n men. A matching is a one-to-one mapping between the men and women,

and it is perfect if all men and women are matched. A matching M is

unstable if there exists a man and a woman who are not matched to each

other in M , but prefer each other to their partners in M . Otherwise, the

matching is called stable.

c

b

a

z

y

x

Fig. 7.1.

Consider the following example with three men x, y and z, and three

women a, b and c. Their preference lists are:

x : a > b > c, y : b > c > a, z : a > c > b.

140
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a : y > z > x, b : y > z > x, c : x > y > z.

Then, x ←→ a, y ←→ b, z ←→ c is an unstable matching, since z and a

prefer each other to their partners.

Our questions are, whether there always exist stable matchings and how

can we find one.

7.2 Algorithms for finding stable matchings

The following algorithm which is called the men-proposing algorithm

was introduced by Gale and Shapley.

(i) Initially each woman is not tentatively matched.

(ii) Each man proposes to his most preferred woman.

(iii) Each woman evaluates her proposers, including the man she is ten-

tatively matched to, if there is one, and rejects all but the most

preferred one. She becomes tentatively matched to this latter man.

(iv) Each rejected man proposes to his next preferred woman.

(v) Repeat step (ii) and (iii) until each woman has a tentative match.

At that point the tentative matches become final.

Fig. 7.2. Arrows indicate pro-
posals, cross indicates rejection.

Fig. 7.3. Stable matching is
achieved in the second stage.

Similarly, we could define a women-proposing algorithm.

Theorem 7.2.1. The men-proposing algorithm yields a stable matching.

Proof. First, observe that the algorithm terminates, because a man proposes

to each woman at most once, and he can only make a total of n proposals.

In the worst case, a man is rejected every round, and thus the number of

rounds is upper bounded by n2.

Next, we argue that when the algorithm terminates, a perfect matching of



142 Stable matching

men to women has been found. We claim that from the first time a woman

is proposed to, she remains tentatively matched for the rest of the execution

of the algorithm (and permanently matched at the end). If the algorithm

terminates without finding a perfect matching, then some man has been

rejected by all women. But if some man ends up unmatched, then some

woman, to whom he proposed at some point, is unmatched as well. This is

a contradiction to the previous claim. Hence, the algorithm terminates with

a perfect matching, which we call M .

Finally, we prove that M is a stable matching. To this end, consider

any man Bob and woman Alice, not matched to each other, such that Bob

prefers Alice to his match in M . This means that he proposed to Alice

before he proposed to his final match, and she, at some point, rejected him.

But whenever a woman rejects a man during the execution of the algorithm,

she rejects him for someone she prefers over him. Moreover, as discussed

above, her tentative matches just get better and better over time, from her

perspective. Thus, it can’t be that Alice prefers Bob to her final match in

M .

7.3 Properties of stable matchings

We say a woman a is attainable for a man x if there exists a stable matching

M with M(x) = a.

Theorem 7.3.1. Let M be the stable matching produced by Gale-Shapley

men-proposing algorithm. Then,

(a) For every man i, M(i) is the most preferred attainable woman for i.

(b) For every woman j, M−1(j) is the least preferred attainable man for

j.

Proof. We prove (a) by contradiction. Suppose that M does not match

each man with his most preferred attainable woman. Consider the first

time during the execution of the algorithm that a man m is rejected by his

most preferred attainable woman w, and suppose that w rejects m at that

moment for m′ who she prefers to m. Since this is the first time a man is

rejected by his most preferred attainable woman, we know that m′ likes w
at least as much as his most preferred attainable woman.

Also, since w is m’s most preferred attainable women, there is another

stable matching M ′ in which they are matched. In M ′, m′ is matched to

someone other than w. But now we have derived a contradiction: m′ likes
w at least as much as his most preferred attainable woman and hence more

than his match in M ′ and w prefers m′ to m. Thus M ′ is unstable.
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We also prove part (b) by contradiction. Suppose that in M , woman w

ends up matched to a man m she prefers over her least preferred attainable

man m′. Then there is another stable matching M ′ in which m′ and w are

matched, and m is matched to a different woman. Then in M ′, w prefers m

to her match m′. Also, by part (a), inM ,m is matched to his most preferred

attainable woman. Thus, m prefers w to the woman he is matched with in

M ′, which is a contradiction to the stability of M ′.

Corollary 7.3.2. If Alice is assigned to the same man in both the man-

proposing and the woman-proposing version of algorithms, then this is the

only attainable man for her.

7.4 A special preference order case

Suppose we seek stable matchings for n men and n women with preference

order determined by a matrix A = (ai,j)n×n where all entries in each row

are distinct, and all entries in each column are distinct. If in the ith row of

the matrix, we have

ai,j1 < ai,j2 < · · · < ai,jn ,

then the preference order of man i is: j1 > j2 > · · · > jn. Similarly, if in the

jth column, we have

ai1j < ai2j < · · · < ainj

then the preference order of woman j is: i1 > i2 > · · · > in.

Lemma 7.4.1. In this case, there exists a unique stable matching.

Proof. By Theorem 7.3.1, we get that the men-proposing algorithm pro-

duces a stable matching which maximizes
∑

i ai,M(i) among all the stable

matchings M . Moreover, this stable matching reaches the unique maxi-

mum of
∑

i ai,M(i). Similarly, the women-proposing algorithm produces a

stable matching which maximizes
∑

j aM−1(j),j among all stable matchings

M . Thus the stable matchings produced by the two algorithms are exactly

the same. By Corollary 7.3.2, there exists a unique stable matching.
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Exercises

7.1 There are 3 men, called a, b, c and 3 women, called x, y, z, with the

following preference lists (most preferred on left):

for a : x > y > z for x : c > b > a

for b : y > x > z for y : a > b > c

for c : y > x > z for z : c > a > b

Find the stable matchings that will be produced by the men-

proposing and by the women-proposing Gale-Shapley algorithm.

7.2 Consider an instance of the stable matching problem, and suppose

that M and M ′ are two distinct stable matchings. Show that the

men who prefer their match in M to their match in M ′ are matched

in M to women that prefer their match in M ′ to their match in M .

7.3 Give an instance of the stable matching problem in which, by lying

about her preferences during the execution of the Gale-Shapley al-

gorithm, a woman can end up with a man that she prefers over the

man she would have ended up with had she told the truth.

7.4 Consider using stable matching in the National Resident Matching

Program, for the problem of assigning medical residents to hospitals.

In this setting, there are n hospitals and m students that can be

assigned as medical residents. Each hospital has a certain number

of positions for residents, say oi for hospital i. Suppose also that

m >
∑

i pi, i.e., there is an oversupply of students. Each hospital

has a ranking of all the students, and each student has a ranking of

all the hospitals.

Construct an assignment of students to hospitals such that each

student is assigned to at most one hospital, no hospital is assigned

more students than it has slots, and the assignment is stable in the

sense that: (a) there is no student s and hospital h that are not

matched, and for which hospital h prefers s to some other student

s′ assigned to h, and s prefers h to the hospital she was assigned (or

she simply wasn’t assigned).

7.5 Consider the following integer programming† formulation of the sta-

ble matching problem. To describe the program, we use the follow-

ing notation. Let m be a particular man and w a particular women.

Then j >m w represents the set of all women j that m prefers over

w, and i >w m represents the set of all men i that w prefers over m.

† In Section 2.7 we introduced linear programming. Integer programming is linear programming
in which the variables are required to take integer values.
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In the following program the variable xij will be selected to be 1 if

man i and woman j are matched in the matching selected:

maximize
∑

i,j

xij

subject to
∑

j

xm,j ≤ 1 for all men m (E7.1)

∑

i

xi,w ≤ 1 for all women w

∑

j>mw

xm,j +
∑

i>wm

xi,w + xm,w ≥ 1 for all pairs (m,w)

xm,w ∈ {0, 1} for all pairs (m,w)
• Prove that this integer program is a correct formulation of the

stable matching problem.

• Consider the relaxation of the integer program that allows frac-

tional stable matchings. It is identical to the above program, ex-

cept that instead of each xm,w being either 0 or 1, xm,w is allowed

to take any real value in [0, 1]. Show that the following program

is the dual program to the relaxation of E7.1.

minimize
∑

i

αi +
∑

j

βj −
∑

i,j

γij

subject to αm + βw −
∑

j<mw

γm,j −
∑

i<wm

γi,w − γm,w ≥ 1

for all pairs (m,w)

αi, βj , γi,j ≥ 0 for all i and j.

• Use complementary slackness (Theorem ??) to show that every

feasible fractional solution to the relaxation of E7.1 is optimal

and that setting

αm =
∑

j

xm,j for all m,

βw =
∑

i

xi,w for all w

and

γij = xij for all i, j

is optimal forthe dual program.
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Coalitions and Shapley value

In this chapter, we consider cooperative game theory, in which players

form coalitions to work toward a common goal. In these settings, there is

a set n > 2 of players that can achieve a common goal yielding an overall

payoff of v, if they all cooperate with each other. However, subsets of these

players, so-called coalitions, have the option of going off on their own and

collaborating only with each other, rather than working as part of a grand

coalition. Questions addressed by this theory include: How should rewards

be shared among the players so as to discourage subgroups from defecting?

What power or influence does a player have in the game?

8.1 The Shapley value and the glove market

We review the example discussed in the Chapter (1). Suppose that three

people are selling their wares in a market. Two of them are selling a single,

left-handed glove, while the third is selling a right-handed one. A wealthy

tourist arrives at the market in dire need of a pair of gloves, willing to

pay $100 for a pair of gloves. She refuses to deal with the glove-bearers

individually, and thus, these sellers have to come to some agreement as to

how to make a sale of a left- and right-handed glove to her and how to

then split the $100 amongst themselves. Clearly, the third player has an

advantage, because his commodity is in scarcer supply. This means that

he should be able to obtain a higher fraction of the payment than either

of the other players. However, if he holds out for too high a fraction of

the earnings, the other players may agree between them to refuse to deal

with him at all, blocking any sale, thereby risking his earnings. Finding

a solution for such a game involves a mathematical concept known as the

Shapley value.

The question then is, in their negotiations prior to the purchase, how

146
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much can each player realistically demand out of the total payment made

by the customer?

Fig. 8.1.

To resolve this question, we introduce a characteristic function v, de-

fined on subsets of the player set. This characteristic function captures for

each subset S of the players, whether or not they are able between them

to effect their aim. In our example of the glove market, v(S), where S is a

subset of the three players, is 1 if, just amongst themselves, the players in

S have both a left glove and a right glove. Thus, in our example

v(123) = v(12) = v(13) = 1,

and the value is 0 on every other subset of {1, 2, 3}. (We abuse notation in

this chapter and write v(12) instead of v({1, 2}), etc.)
More generally, a cooperative game is defined by a set N of n players

and a characteristic function v on subsets of the n players, where v(S) is the

value or payoff that subset S of players can achieve on their own regardless

of what the remaining players do. The characteristic function satisfies the

following properties:

• v(∅) = 0.

• The characteristic function is monotone nondecreasing. That is, if

S ⊆ T , then v(S) ≤ v(T ). This is because players in T always have

the option of achieving at least what subset S can achieve on their

own.

• The characteristic function is superadditive, that is: v(S ∪ T ) ≥
v(S) + v(T ) if S and T are disjoint. This is because subsets S
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and T always have the option of simply cooperating each amongst

themselves, and ignoring the other group.

The outcome of the game is a set of “shares”, one per player, where ψi(v)

is the share player i gets when the characteristic function is v. We think of

ψi(v) as reflecting player i’s power in the game.

How should these shares be determined? A first natural property is effi-

ciency, i.e.
∑

i

ψi(v) = v(N). (8.1)

But beyond this, what properties might we desire that the shares have?

Shapley analyzed this question by considering the following axioms:

(i) Symmetry: if v
(

S ∪ {i}
)

= v
(

S ∪ {j}
)

for all S with i, j /∈ S, then
ψi(v) = ψj(v).

(ii) Dummy: A player that doesn’t add value gets nothing: if v
(

S ∪
{i}
)

= v(S) for all S, then ψi(v) = 0.

(iii) Additivity: ψi(v + u) = ψi(v) + ψi(u).

(iv) Efficiency:
∑n

i=1 ψi(v) = v
(

{1, . . . , n}
)

.

What is fascinating is that it turns out that there is a unique choice of ψ,

given these axioms. This unique choice for each ψi is called the Shapley

value of player i in the game defined by characteristic function v.

Before we prove this theorem in general, let’s see why it’s true in an

example.

Example 8.1.1. The S-veto game: Consider a coalitional game with n

players, in which a fixed subset S of the players hold all the power. We will

denote the characteristic function here by wS , defined as: wS(T ) is 1 if T

contains S and 0 otherwise. We will show that, under Shapley’s axioms, we

have

ψi

(

wS

)

=
1

|S| if i ∈ S,

and 0 otherwise. To see this observe first that, using the dummy axiom,

ψi

(

wS

)

= 0 if i /∈ S.
Then, for i, j ∈ S, the “symmetry” axiom gives ψi(wS) = ψj(wS). Finally,

the “efficiency” axiom implies that

ψi

(

wS

)

=
1

|S| if i ∈ S.

Note that to derive this, we did not use the additivity axiom. However,
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using the additivity axiom, we can also derive that ψi(cwS) = cψi(wS) for

any c ∈ [0,∞).

The glove market game, again: We can now use our understanding of

the S-veto game to solve for the unique shares in the glove game under the

above axioms. The observation is that the glove market game has the same

payoffs as w12+w13, except for the case of the set {1, 2, 3}. In fact, we have

that

w12 +w13 = v + w123,

where, as you recall, v is the characteristic function of the glove market

game. Thus, the additivity axiom gives

ψi(w12) + ψi(w13) = ψi(v) + ψi(w123).

We conclude from this that for player 1, 1/2+1/2 = ψ1(v)+1/3, whereas for

player 3, 0+1/2 = ψ3(v)+1/3. Hence ψ1(v) = 2/3 and ψ2(v) = ψ3(v) = 1/6.

Thus, under Shapley’s axioms, player 1 obtains a two-thirds share of the

payoff, while players 2 and 3 equally share one-third between them.

Example 8.1.2. Four Stockholders: Four people own stock in ACME.

Player i holds i units of stock, for each i ∈ {1, 2, 3, 4}. Six shares are needed

to pass a resolution at the board meeting. Here v(S) is 1 if subset S of players

have enough shares of stock between them to pass a resolution. Thus,

1 = v(1234) = v(24) = v(34),

while v = 1 on any 3-tuple, and v = 0 in each other case. What power share

does each of the players have under our axioms?

We will assume that the characteristic function v may be written in the

form

v =
∑

S 6=∅

cSwS .

Later (in the proof of Theorem 8.2.1), we will see that there always exists

such a way of writing v. For now, however, we assume this, and compute

the coefficients cS . Note first that

0 = v(1) = c1

Similarly, 0 = c2 = c3 = c4. Also,

0 = v(12) = c1 + c2 + c12,
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implying that c12 = 0. Similarly, c13 = c14 = c23 = 0. Next,

1 = v(24) = c2 + c4 + c24 = 0 + 0 + c24,

implying that c24 = 1. Similarly, c34 = 1. Proceeding, we have

1 = v(123) = c123,

and

1 = v(124) = c24 + c124 = 1 + c124,

implying that c124 = 0. Similarly, c134 = 0, and

1 = v(234) = c24 + c34 + c234 = 1 + 1 + c234,

implying that c234 = −1. Finally,

1 = v(1234) = c24 + c34 + c123 + c124 + c134 + c234 + c1234

= 1 + 1 + 1 + 0 + 0− 1 + c1234,

implying that c1234 = −1. Thus,

v = w24 + w34 + w123 − w234 −w1234,

whence

ψ1(v) = 1/3− 1/4 = 1/12,

and

ψ2(v) = 1/2 + 1/3− 1/3 − 1/4 = 1/4,

while ψ3(v) = 1/4, by symmetry with player 2. Finally, ψ4(v) = 5/12. It

is interesting to note that the person with 2 shares and the person with 3

shares have equal power.

8.2 The Shapley value

Consider a fixed ordering of the players, defined by a permutation π of [1..n].

Imagine the players arriving one by one according to this permutation π,

and define φi(v, π) to be the marginal contribution of player i at the time of

his arrival assuming players arrive in this order. Thus, if π(k) = i, we have

φi(v, π) = v
(

π(1), . . . , π(k)
)

− v
(

π(1), . . . , π(k − 1)
)

. (8.2)

Notice that if we were to set ψi(v) = φi(v, π) for any fixed π, the “dummy”,

“efficiency” and “additivity” axioms would be satisfied.

To satisfy the “symmetry” axiom as well, we will instead imagine that the
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players arrive in a random order and define ψi(v) to be the expected value

of φi(v, π) when π is chosen uniformly at random.

Remark. If we apply the approach just described to the four stockholders

example, then there exists a moment when, with the arrival of the next stock-

holder, the coalition already present in the board-room becomes effective.

The Shapley value of a given player turns out to be precisely the probability

of that player being the one to make the existing coalition effective when

the stockholders arrive in a random order.

Theorem 8.2.1. Shapley’s four axioms uniquely determine the functions

ψi which follow the random arrival formula:

ψi(v) =
1

n!

n
∑

k=1

∑

π∈Sn:π(k)=i

(

v
(

π(1), . . . , π(k)
)

− v
(

π(1), . . . , π(k − 1)
)

)

Remark. Note that this formula indeed specifies the probability just men-

tioned.

Proof. First, we prove that the shares ψi(v)’s are uniquely determined by v

and the four axioms. To prove this, we show that any characteristic function

v can be uniquely represented as a linear combination of S-veto characteristic

functions wS for different subsets S of [1..n]. Recall that ψi(wS) = 1/|S| if
i ∈ S, and ψi(wS) = 0 otherwise.

We claim that, given v, there are coefficients
{

cS
}

S⊆[n],S 6=∅ such that for

all T ⊆ [n]

v(T ) =
∑

∅ 6=S⊆[n]

cSwS(T ) =
∑

∅ 6=S⊆T

cSwS(T ). (8.3)

To see that this system of 2n − 1 equations in 2n − 1 unknowns has a

solution, we construct the coefficients cS inductively, in order of increasing

cardinality. To begin, choose ci as follows:

v(i) =
∑

∅ 6=S⊆{i}
cSwS(i) = ciwi(i) = ci. (8.4)

Now suppose that we have defined cS for all S with |S| < ℓ, and have shown

that (8.3) holds for any T with |T | < ℓ. To determine cS̃ for some S̃ with

|S̃| = ℓ, we observe that

v(S̃) =
∑

∅ 6=S⊆S̃

cSwS

(

S̃
)

=
∑

S⊆S̃,|S|<ℓ

cS + cS̃ , (8.5)
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and thus (8.3) is satisfied for cS̃ if we choose

cS̃ = v(S̃) −
∑

S⊆S̃:|S|<ℓ

cS .

Next, we apply the additivity axiom and conclude that ψi(v) is uniquely

determined:

ψi(v) = ψi

(

∑

∅ 6=S⊆[n]

cSwS

)

=
∑

∅ 6=S⊆[n]

ψi

(

cSwS

)

=
∑

S⊆[n],i∈S

cS
|S| .

We complete the proof by showing that the specific values given in the

statement of the theorem satisfy all of the axioms. Recall the definition of

φi(v, π) from (8.2). By averaging over all permutations π, and then defining

ψi(v) =
1

n!

∑

{π:π(k)=i}
φi(v, π),

we claim that all four axioms are satisfied. Since averaging preserves the

“dummy”, “efficiency” and “additivity” axioms, we only need to prove the

intuitive fact that by averaging over all permutations, we obtain symmetry.

To this end, suppose that i and j are such that

v
(

S ∪ {i}
)

= v
(

S ∪ {j}
)

for all S ⊆ [n] with S ∩ {i, j} = ∅. For every permutation π, define π∗ to

be the same as π except that the positions of i and j are switched. Then

φi(v, π) = φj(v, π
∗).

Using the fact that the map π 7→ π∗ is a one-to-one map from Sn to itself

for which π∗∗ = π, we obtain

ψi(v) =
1

n!

∑

π∈Sn

φi(v, π) =
1

n!

∑

π∈Sn

φj(v, π
∗)

=
1

n!

∑

π∗∈Sn

φj(v, π
∗) = ψj(v).

Therefore, ψi(v) is indeed the unique Shapley value.

8.3 Two more examples

A fish without intrinsic value. A seller has a fish having no intrinsic

value to him, i.e., he values it at $0. A buyer values the fish at $10. Writing

S and B for the seller and buyer, we have that v(S) = 0 and v(B) = 0, since
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separately neither can obtain any positive payoff. However, if the seller sells

the fish for $x, then the seller obtains a reward of x and the buyer a reward

of 10− x (for 0 < x ≤ 10). Thus, v(S,B) = (10− x) + x = 10. In this game

we have the following Shapley values: ψS(v) = ψB(v) = 5.

Notice however that the buyer’s value is private to her, and if this is

how the buyer and seller split her value for the fish, then she will have an

incentive to underreport her desire for the fish to the party that arbitrates

the transaction.

Many right gloves. Consider the following variant of the glove game.

There are n = r+2 players. Players 1 and 2 have left gloves. The remaining

players each have a right glove. Thus, the characteristic function v(S) is the

maximum number of proper and disjoint pairs of gloves owned by players

in S. Note that ψ1(v) = ψ2(v), and ψr(v) = ψ3(v), for each r ≥ 3. By the

efficiency property ((8.1)), we have

2ψ1(v) + rψ3(v) = 2

provided that r ≥ 2. To determine the Shapley value of the third player,

we consider all permutations π with the property that the third player adds

value to the group of players that precede him in π. These are the following

orders:

13, 23, {1, 2}3, {1, 2, j}3,

where j is any value in {4, . . . , n}, and the curly brackets mean that each

permutation of the elements in curly brackets is included. The number of

permutations corresponding to each of these possibilities is: r!, r!, 2(r− 1)!,

and 6(r − 1) · (r − 2)! Thus,

ψ3(v) =
2r! + 8(r − 1)!

(r + 2)!
=

2r + 8

(r + 2)(r + 1)r
.

Exercises

8.1 The glove market revisited. A proper pair of gloves consists of

a left glove and a right glove. There are n players. Player 1 has two

left gloves, while each of the other n− 1 players has one right glove.

The payoff v(S) for a coalition S is the number of proper pairs that

can be formed from the gloves owned by the members of S.

(a) For n = 3, determine v(S) for each of the 7 nonempty sets

S ⊂ {1, 2, 3}. Then find the Shapley value ϕi(v) for each of the

players i = 1, 2, 3.
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(b) For a general n, find the Shapley value ϕi(v) for each of the n

players i = 1, 2, . . . , n.
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Interactive Protocols

So far we have studied how different players should play a given game. The

goal of mechanism design is to construct a mechanism (a game) through

which the participants interact with one another (“play the game”), so that

when the participants act in their own self interest (“play strategically”), the

resulting “game play” has desireable properties. For example, an auctioneer

will wish to set up the rules of an auction so that the players will play against

one another and drive up the price. Another example is cake cutting, where

the participants wish to divy up a cake so that everyone feels like he or she

received a fair share of the best parts of the cake. Zero-knowledge proofs

are another example: here one of the participants (Alice) has a secret, and

wishes to prove that to another participant (Bob) that she knows the secret,

but without giving the secret away. If Alice follows the protocol, she is

assured that her secret is safe, and if Bob follows the protocol, he is assured

that Alice knows the secret.

9.1 Keeping the meteorologist honest

The employer of a weatherman is determined that he should provide a good

prediction of the weather for the following day. The weatherman’s instru-

ments are good, and he can, with sufficient effort, tune them to obtain the

correct value for the probability of rain on the next day. There are many

days, and on the ith day the true probability of rain is called pi. On the

evening of the (i− 1)th day, the weatherman submits his estimate p̂i for the

probability of rain on the following day, the ith one. Which scheme should

we adopt to reward or penalize the weatherman for his predictions, so that

he is motivated to correctly determine pi (that is, to declare p̂i = pi)? The

employer does not know what pi is because he has no access to technical

155
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equipment, but he does know the p̂i values that the weatherman provides,

and he knows whether or not it is raining on each day.

One suggestion is to pay the weatherman on the ith day the amount p̂i
(or some dollar multiple of that amount) if it rains, and 1 − p̂i if it shines.

If p̂i = pi = 0.6, then the payoff is

p̂i Pr(rainy) + (1− p̂i) Pr(sunny) =p̂ipi + (1− p̂i)(1− pi)
=0.6× 0.6 + 0.4 × 0.4 = 0.52.

But in this case, even if the weatherman does correctly compute that pi =

0.6, he is tempted to report the p̂i value of 1 because, by the same formula,

in this case, his earnings are 0.6.

Another idea is to pay the weatherman a fixed salary over a term, say,

one year. At the end of the term, penalize the weatherman according to

how accurate his predictions have been on the average. More concretely,

suppose for the sake of simplicity that the weatherman is only able to report

p̂i values on a scale of 1
10 , so that he has eleven choices, namely

{

k/10 : k ∈
{0, . . . , 10}

}

. When a year has gone by, the days of that year may be divided

into eleven types according to the p̂i-value that the weatherman declared.

Suppose there are nk days that the predicted value p̂i is
k
n , while according

to the actual weather, rk days out of these nk days rained. Then, we give

the penalty as

10
∑

k=0

(

rk
nk
− k

10

)2

.

A scheme like this seems quite reasonable, but in fact, it can be quite

disastrous. If the weather doesn’t fluctuate too much from year to year and

the weatherman knows that on average it rained on 3
10 of the days last year,

he will be able to ignore his instruments completely and still do reasonably

well. To see this, suppose the weatherman simply sets p̂ = 3
10 ; then n3 = 365

and nk 6=3 = 0. In this case his penalty will be

(

r3
365
− 3

10

)2

,

where r3 is simply the overall number of rainy days in a year, which is

expected to be quite close to 365 × 3
10 . By the Law of Large Numbers, as

the number of observations increases, the penalty is likely to be close to

zero.

It turns out that even if the weatherman doesn’t know the average rainfall,

he can still do quite well as the following theorem indicates.
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Theorem 9.1.1. Suppose the weatherman is restricted to report p̂i values

on a scale of 1
10 . Even if he knows nothing about the weather, he can devise

a strategy so that over a period of n days his penalty is, on average, within
1
20 , in each slot.

lim sup
n→∞

1

n

10
∑

k=0

∣

∣

∣

∣

rk −
k

10
nk

∣

∣

∣

∣

≤ 1

20
.

One proof of this can be found in ([FV99]), and an explicit strategy has

been constructed in (need ref Dean Foster). Since then, the result has been

recast as a consequence of minimax theorem (see [HMC00]), by considering

the situation as a zero-sum game between the weatherman and a certain

adversary. In this case the adversary is obtained from the combined effects

of the employer and the weather.

There are two players, the weatherman W and the adversary A. Each

day, A can play a mixed strategy randomizing between Rain and Shine.

The problem is to devise an optimal response for W, which consists of a

prediction for each day. Such a prediction can also be viewed as a mixed

strategy, randomizing between Rain and Shine. At the end of the term, the

weatherman W pays the adversary A a penalty as described above.

In this case, there is no need for instruments: the minimax theorem guar-

antees that there is an optimal response strategy. We can go even further

and give a specific prescription: On each day, compute a probability of rain,

conditional on what the weather had been up to now.

A solution to the problem

The above examples cast the situation in a somewhat pessimistic light —

so far we have shown that the scheme encourages the weatherman to ignore

his instruments. Is is possible to give him an incentive to tune them up?

In fact, it is possible to design a scheme whereby we decide day-by-day how

to reward the weatherman only on the basis of his declaration from the

previous evening, without encountering the kind of problem that the last

scheme had [Win69].

Suppose that we pay f(p̂i) to the weatherman if it rains, and f(1− p̂i) if
it shines on day i. If pi = p and p̂i = x, then the expected payment made

on day i is equal to

gp(x) := pf(x) + (1− p)f(1− x).

Our aim is to reward the weatherman if his p̂i equals pi, in other words, to

http://scholar.google.com/scholar?q=Dean+Foster+weather+OR+weatherman&hl=en&lr=
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ensure that the expected payout is maximized when x = p. This means that

the function gp : [0, 1]→ R should satisfy gp(p) > gp(x) for all x ∈ [0, 1]\{p}.
One good choice is to let f(x) = log x. In this case, the derivative of gp(x)

is:

g′p(x) = pf ′(x) + (1− p)f ′(1− x) = p

x
− 1− p

1− x.

The derivative is positive if x < p, and negative if x > p, and the function

gp(x) achieves its maximum at. x = p, as we wished.

9.2 Secret sharing

In the introduction, we talked about the problem of sharing a secret between

two people. Suppose we do not trust either of them entirely, but want the

secret to be known to each of them, provided that they co-operate. More

generally, we can ask the same question about n people.

Think of this in a computing context: Suppose that the secret is a pass-

word that is represented as an integer S that lies between 0 and some large

value, for example, 0 ≤ S < M = 1015.

We might take the password and split it in n chunks, giving one chunk to

each of the players. However, this would force the length of the password to

be high, if none of the chunks are to be guessed by repeated tries. Moreover,

as more players put together their chunks, the size of the unknown chunk

goes down, making it more likely to be guessed by repeated trials.

A more ambitious goal is to split the secret S among n people in such

a way that all of them together can reconstruct S, but no coalition of size

ℓ < n has any information about S. We need to clarify what we mean when

we say that a coalition has no information about S:

Definition 9.2.1. Let A = {i1, . . . , iℓ} ⊂ {1, . . . , n} be any subset of

size ℓ < n. We say that a coalition of ℓ people holding a random vector

(Xi1 , . . . ,Xiℓ) has no information about a secret S provided (Xi1 , . . . ,Xiℓ)

is a random vector on {0, . . . ,M − 1}ℓ, whose distribution is independent of

S, that is

Pr(Xi1 = x1, . . . ,Xiℓ = xℓ|S = s) = Pr(Xi1 = x1, . . . ,Xiℓ = xℓ).

The simplest way to ensure that the distribution of (Xi1 , . . . ,Xiℓ) does

not depend upon S is to make its distribution uniformly random. Recall

that a random variable X has a uniform distribution on a space of size N ,

denoted by Ω, provided each of the N possible outcomes is equally likely:

Pr(X = x) =
1

N
∀ x ∈ Ω .
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In the case of an ℓ-dimensional vector with elements in {0, . . . ,M − 1}, we
have Ω = {0, . . . ,M − 1}ℓ, of size M ℓ.

9.2.1 A simple secret sharing method

The following scheme allows the secret holder to split a secret S ∈ {0, . . . ,M−
1} among n individuals in such a way that any coalition of size ℓ < n has

no information about S: The secret holder, produces a random (n − 1)-

dimensional vector (X1, X2, . . . ,Xn−1), whose distribution is uniform on

{0, . . . ,M − 1}n−1. She gives the number Xi to the ith person for 1 ≤ i ≤
n− 1, and the number

Xn =

(

S −
n−1
∑

i=1

Xi

)

mod M (9.1)

to the last person. Notice that with this definition, Xn is also a uniformly

random variable on {0, . . . ,M − 1}, you will prove this in Ex. 9.2.

It is enough to show that any coalition of size n − 1 has no useful infor-

mation. For {i1, . . . , in−1} = {1, . . . , n − 1}, the coalition of the first n − 1

people, this is clear from the definition. What about those that include the

last one? To proceed further we’ll need an elementary lemma, whose proof

is left as an Ex. 9.1:

Lemma 9.2.2. Let Ω be a finite set of size N . Let T be a one-to-one

and onto function from Ω to itself. If a random variable X has a uniform

distribution over Ω, then so does Y = T (X).

Consider a coalition that omits the jth person: A = {1, . . . , j − 1, j +

1, . . . , n}. Let Tj((X1, . . . ,Xn−1)) = (X1, . . . ,Xj−1,Xj+1, . . . ,Xn), where

Xn is defined by Eq. (9.1). This map is one-to-one and onto for each j since

we can explicitly define its inverse:

T−1
j ((Z1, . . . , Zj−1, Zj+1, . . . Zn)

T ) = (Z1, . . . , Zj−1, Zj , Zj+1, . . . , Zn−1)
T ,

where Zj = S −∑1≤i 6=j≤n−1 Zi.

Thus, by Lemma 9.2.2, a coalition (that does not include all players) that

puts together all its available information, still has only a uniformly random

vector. Since they could generate a uniformly random vector themselves

without knowing anything about S, the coalition has the same chance of

guessing the secret S as if it had no information at all.

All together, however, the players can add the values they had been given,

reduce the answer mod M , and obtain the secret S.
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9.2.2 Polynomial method

We now consider a generalization of the previous method, due to Adi Shamir

[Sha79]. This generalization also provides a method for splitting a secret

between n individuals, but now guarantees that any coalition of at least m

individuals can recover it, while a group of a smaller size cannot. This could

be useful if a certain action required a quorum of m individuals, less than

the total number of people in the group.

Let S be the secret to be shared. Let p be a prime number such that

0 ≤ S < p and n < p. We define a polynomial of order m− 1:

F (z) =

m−1
∑

i=0

Aiz
i mod p,

where A0 is the secret S and (A1, . . . , Am−1) is a uniform random vector on

{0, . . . , p− 1}m−1.

Let z1, . . . , zn be distinct numbers in {1, . . . p − 1}. To split the secret

we give the jth person the number F (zj) (together with zj , p, and m). We

claim that

Theorem 9.2.3. A coalition of size m or bigger can reconstruct the secret S,

but a coalition of size ℓ < m has no useful information:

Pr(F (z1) = x1, . . . , F (zℓ) = xℓ | S) =
1

pℓ
, xi ∈ {0, . . . , p− 1}.

Intuitively, the reason this works is that a polynomial of degree m− 1 is

uniquely determined by its value at m points, and thus, any coalition of size

m can determine A0. On the other hand, if we know (z, F (z) for only m− 1

values of z, there are still p possibilities for what A0 = S can be.

Proof. Clearly it’s enough to consider the case ℓ = m − 1. We will show

that for any fixed distinct non-zero integers z1, . . . , zm ∈ {0, . . . , p− 1},

T ((A0, . . . , Am−1)) = (F (z1), . . . , F (zm))

is an invertible linear map on {0, . . . , p− 1}m, and hence m people together

can recover all the coefficients of F , including A0 = S.

Let’s construct these maps explicitly:

T







A0
...

Am−1






=







∑m−1
i=0 Aiz

i
1 mod p
...

∑m−1
i=0 Aiz

i
m mod p






.



9.2 Secret sharing 161

We see that T is a linear transformation on {0, . . . , p− 1}m that is equiv-

alent to multiplying on the left with the following m×m matrix M , known

as the Vandermonde matrix:

M =















1 z1 . . . zm−1
1

1 z2 . . . zm−1
2

...
...

. . .
...

1 zm−1 . . . zm−1
m−1

1 zm . . . zm−1
m















.

You will prove in Ex. 9.3 that

det(M) =
∏

1≤i<j≤m

(zj − zi).

Recall that the numbers {0, . . . , p− 1} (recall that p is a prime) together

with addition and multiplication (mod p) form a finite field. (Recall that

a field is a set S with operations called + and × which are associative

and commutative, for which multiplication distributes over addition, which

contains an additive identity called 0 and a multiplicative identity called 1,

for which each element has an additive inverse, and each non-zero element

contains a multiplicative inverse. Because multiplicative inverses of non-zero

elements are defined, there are no zero divisors, i.e., a pair of elements whose

product is zero.)

Since the zi’s are all distinct and p is a prime number, the Vandermonde

determinant detM is non-zero modulo p, so the transformation is invertible.

This shows that any coalition of m people can recover the secret S. Al-

most the same argument shows that any coalition of m− 1 people have no

information about S. Let the m− 1 people be z1, . . . , zm−1, and let zm = 0.

We have shown that the map

T ((A0, . . . , Am−1)) = (F (z1), . . . , F (zm−1), A0 = F (zm))

is invertible. Thus, for any fixed value of A0, the map

T ((A1, . . . , Am−1)) = (F (z1), . . . , F (zm−1))

is invertible. Since A1, . . . , Am−1 are uniformly random and independent

of A0 = S, it follows that (F (z1), . . . , F (zm−1) is uniformly random and

independent of S.

The proof is complete, however, it is quite instructive to construct the

inverse map T−1 explicitly. We use the method of Lagrange interpolation
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to reconstruct the polynomial:

F (z) =

m
∑

j=1

F (zj)
∏

1≤i≤m
i 6=j

z − zi
zj − zi

mod p.

Once we expand the right-hand side and bring it to the standard form,

(A0, . . . , Am−1) will appear as the coefficients of the corresponding powers

of the indeterminate z. Evaluating at z = 0 gives back the secret.

9.3 Private computation

An applied physics professor at Harvard posed the following problem to his

fellow faculty during tea hour: Suppose that all the faculty members would

like to know the average salary in their department. How can they compute

it without revealing the individual salaries? Since there is no disinterested

third party who could be trusted by all the faculty members, they hit upon

the following scheme:

All the faculty members gather around a table. A designated first person

picks a very large integerM (which he keeps private), adds his salary to that

number, and passes the result to his neighbor on the right. She, in turn,

adds her salary and passes the result to her right. The intention is that

the total should eventually return to the designated first person, who would

then subtract M , compute and reveal the average. However, gefore the

physicists could finish the computation, a Nobel laureate, who was flanked

by two junior faculty, refused to participate when he realized that the two

could collude to find out his salary.

Luckily, the physicists shared their tea-room with computer scientists who,

after some thought, proposed the following ingenious scheme that is closely

related to the secret sharing method described in section 9.2.1: A very large

integer M is picked and announced to the entire faculty, consisting of n

individuals. An individual with salary si generates n − 1 random numbers

Xi,1, . . . ,Xi,n−1, uniformly distributed in the set {0, 1, 2, . . . ,M − 1}, and
producesXi,n, such that Xi,1+· · ·+Xi,n = si modM . He then forwardsXi,j

to the jth faculty member. In this manner each person receives n uniform

random numbers mod M , adds them up and reports the result. These are

tallied mod M and divided by n.

Here a coalition of n − 1 faculty can deduce the last professor’s salary,

if for no other reason than that they know their own salaries and also the

average salary. This holds for any scheme that the faculty adopt. Similarly,

for any scheme for computing the average salary, a coalition of n− j faculty
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could deduce the sum of the salaries of the remaining j faculty. You will

show in Ex. 9.5 that the above scheme leaks no additional information about

the salaries.

9.4 Cake cutting

Recall from the introduction the problem of cutting a cake with several

different toppings. The game has two or more players, each with a particular

preference regarding which parts of the cake they would most like to have.

We assume that all parts of the cake are divisible.

If there are just two players, there is a well-known method for dividing the

cake: One splits it into two halves, and the other chooses which he would

like. Each obtains at least one-half of the cake, as measured according to

his own preferences. But what if there are three or more players? This can

still be done, but requires some new notions.

Let’s denote the cake by Ω. Then F denotes the algebra of measurable

subsets of Ω. Roughly speaking, these are all the subsets into which the

cake can be subdivided by repeated cutting.

Definition 9.4.1 (Algebra of sets). More formally, we say that a collec-

tion F of subsets of Ω forms an algebra if:

(i) ∅ ∈ F ;
(ii) if A ∈ F then Ac ∈ F ;
(iii) if A,B ∈ F then A ∪B ∈ F .

The sets in F are called measurable.

We will need a tool to measure the “desirability” of any possible piece of

the cake for any given individual.

Definition 9.4.2. A non-negative real-valued set function µ defined on F
is called a finite measure if:

(i) µ(∅) = 0 and µ(Ω) =M <∞;

(ii) if A,B ∈ F and A ∩B = ∅ then µ(A ∪B) = µ(A) + µ(B).

The triple (Ω,F , µ) is called a finite measure space.

In addition we will require that the measure space should have the inter-

mediate value property: For every measurable set A ∈ F annd any real

number β ∈ (0, µ(A)), there is a measurable set B ∈ F such that B ⊂ A

and µ(B) = β. This ensures that there are no indivisible elements in the

cake such as hard nuts that cannot be cut into two.

Now let µj be the measure on the cake which reflects the preferences of
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the jth person. Notice that each person gives a personal value to the whole

cake. For each person, however, the value of the “empty slice” is 0, and the

value of any slice is bigger than or equal to that of any of its parts.

Our task is to divide the cake into K slices {A∗
1, . . . , A

∗
K}, such that for

each individual i,

µi(A
∗
i ) ≥

µi(Ω)

K
.

In this case, we say that the division is fair. Notice that this notion addresses

fairness from the point of view of each individual: She is assured a slice that

is at least 1
K of her particular valuation of the cake.

The following algorithm provides such a subdivision: The first person is

asked to mark a slice A1 such that µ1(A1) =
µ1(Ω)
K , and this slice becomes

the “current proposal”. Each person j in turn looks at the current proposed

slice of cake A, and if µj(A) > µj(Ω)/K, person j proposes a smaller slice of

cake Aj ⊂ A such that µj(Aj) = µj(Ω)/K, which then becomes the current

proposal, and otherwise person j passes on the slice. After each person has

had a chance to propose a smaller slice, the proposed slice of cake is cut

and goes to the person k who proposed it (call the slice A∗
k). This person is

happy because µk(A
∗
k) = µk(Ω)/K. Let Ω̃ = Ω \A∗

k be the rest of the cake.

Notice that for each of the remaining K − 1 individuals µj(A
∗
k) ≤ µj(Ω)/K,

and hence for the remainder of the cake

µj(Ω̃) ≥ µj(Ω)
(

1− 1

K

)

= µj(Ω)
K − 1

K
.

We can repeat the process on Ω̃ with the remaining K − 1 individuals. By

induction, each person m obtains a slice A∗
m with

µm(A∗
m) ≥ µm(Ω̃)

1

K − 1
≥ µm(Ω)

K
.

This is true if each person j carries out the instructions faithfully. After

all, since we do not know his measure µj, we cannot judge whether he had

marked off a fair slice at every stage of the game. However, since everyone’s

measure has the intermediate property, a person who chooses to comply can

ensure that she gets her fair share.

9.5 Zero-knowledge proofs

Determining whether or not a graph is 3-colorable, i.e., whether or not it is

possible to color the vertices red, green, and blue, so that

each edge in the graph connects vertices with different colors, is a classic

NP-hard problem. Solving 3-colorability for general graphs is at least as hard
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as factoring integers, solving the traveling salesman problem, or solving any

of a number of other hard problems. We describe a simple zero-knowledge

proof of 3-colorability, which means that any of these other problems also

has a zero-knowledge proof.

Suppose that Alice knows a 3-coloring of a graph G, and wishes to prove

to Bob that the graph is 3-colorable, but does not wish to reveal the 3-

coloring. What she can do is randomly permute the 3 colors red, green, and

blue, and then write down the new color of each vertex in a sealed envelope,

and place the envelopes on a table. Bob then picks a random edge (u, v) of

the graph, and Alice then gives the envelopes for u and v to Bob, who opens

them and checks that the colors are different. If the graph G has E edges,

this protocol is then repeated tE times, where t might be 20.

There are three things to check: (1) completeness: if Alice knows a 3-

coloring, she can convince Bob, (2) soundness: if there is no 3-coloring, then

Bob catches her with high probability, and (3) zero-knowledge: Bob learns

nothing about the 3-coloring other than that it exists.

Completeness here is trivial: if Alice knows a 3-coloring, and follows the

protocol, then when Bob opens the two envelopes, he will always see different

colors.

Soundness is straightforward too: If there is no 3-coloring, then there is

always at least on edge of the graph whose endpoints have the same color.

With probability 1/E Bob will pick that edge, and discover that Alice was

cheating. Since this protocol is repeated tE times, the probability that Alice

is not caught is at most (1 − 1/E)tE < e−t. For t = 20, this probability is

about 2× 10−9.

Zero-knowledge: Suppose Alice knows a 3-coloring and follows the proto-

col, can Bob learn anything about the 3-coloring about it? Because Alice

randomly permuted the labels of the colors, for any edge that Bob selects,

each of the 6 possible 2-colorings of that edge are equally likely. At the end

of the protocol, Bob sees tE random 2-colorings of edges. But Bob was per-

fectly able to randomly 2-color these edges on his own without Alice’s help.

Therefore, this communication from Alice did not reveal anything about her

3-coloring.

In a computer implementation, rather than use envelopes, Alice would use

some cryptography to conceal the colors of the vertices but commit to their

values. With a cryptographic implementation, the zero-knowledge property

is not perfect zero-knowledge, but relies on Bob not being able to break the

cryptosystem.
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9.6 Remote coin tossing

Suppose, while speaking on the phone, two people would like to make a

decision that depends on an outcome of a coin toss. How can they imitate

such a set-up?

The standard way to do this before search-engines was for one of them

to pick an arbitrary phone number from the phone-book, announce it to

the other person and then ask him to decide whether this number is on an

even- or odd-numbered page. Once the other person announces the guess,

the first supplies the name of the person, whose phone number was used. In

this way, the parity of the page number can be checked and the correctness

of the phone number verified.

With the advent of fast search engines this has become impractical, since,

from a phone number, the name (and hence the page number) can easily

be looked up. A modification of this scheme that is somewhat more search-

engine resistant is for one person to give a sequence of say 20 digits that

occur in the 4th position on twenty consecutive phone numbers from the

same page, and then to ask whether this page is even or odd.

If the two people have computers and email, another method can be used.

One person could randomly pick two large prime numbers, multiply them,

and mail the result to the other person. The other person guesses whether

or not the two primes have the same parity of their middle digit, at which

point the first person mails the primes. If the guess was right, the coin was

heads, otherwise it is tails.

Exercises

9.1 Let Ω be a finite set of size N . Let T be a one-to-one and onto

function from Ω to itself. Show that if a random variable X has a

uniform distribution over Ω, then so does Y = T (X).

9.2 Given a random (n−1)-dimensional vector (X1, X2, . . . ,Xn−1), with

a uniform distribution on {0, . . . ,M − 1}n−1. Show that

(a) Each Xi is a uniform random variable on {0, . . . ,M − 1}.
(b) Xi’s are independent random variables.

(c) Let S ∈ {0, . . . ,M − 1} be given then

Xn =

(

S −
n−1
∑

i=1

Xi

)

modM
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is also a uniform random variable on {0, . . . ,M − 1}.

9.3 Prove that the Vandermonde matrix has the following determinant:

det















1 z1 . . . zm−1
1

1 z2 . . . zm−1
2

...
...

. . .
...

1 zm−1 . . . zm−1
m−1

1 zm . . . zm−1
m















=
∏

1≤i<j≤m

(zj − zi).

Hint: the determinant is a multivariate polynomial. Show that the

determinant is 0 when zi = zj for i 6= j, show that the polynomial

on the right divides the determinant, show that they have the same

degree, and show that the constant factor is correct.

9.4 Evaluate the following determinant, known as a Cauchy determi-

nant:

det













1
x1−y1

1
x1−y2

. . . 1
x1−ym

1
x2−y1

1
x2−y2

. . . 1
x2−ym

...
...

. . .
...

1
xm−y1

1
xm−y2

. . . 1
xm−ym













.

Hint: find the zeros and poles and the constant factor. It is helpful

to consider the limit xi → yj.

9.5 Show that for the scheme for computing average salary described in

section 9.3, a coalition n− j faculty learn nothing about the salaries

of the remaining j faculty beyond the sum of their salaries (which is

what they could deduce knowing the average salary of everybody).
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Combinatorial games

In this chapter, we will look at combinatorial games, a class of games

that includes some popular two-player board games such as Nim and Hex,

discussed in the introduction. In a combinatorial game, there are two play-

ers, a set of positions, and a set of legal moves between positions. Some of

the positions are terminal. The players take turns moving from position to

position. The goal for each is to reach the terminal position that is winning

for that player. Combinatorial games generally fall into two categories:

Those for which the winning positions and the available moves are the

same for both players are called impartial. The player who first reaches

one of the terminal positions wins the game. We will see that all such games

are related to Nim.

All other games are called partisan. In such games the available moves,

as well as the winning positions, may differ for the two players. In addition,

some partisan games may terminate in a tie, a position in which neither

player wins decisively.

Some combinatorial games, both partisan and impartial, can also be

drawn or go on forever.

For a given combinatorial game, our goal will be to find out whether one

of the players can always force a win, and if so, to determine the winning

strategy — the moves this player should make under every contingency.

Since this is extremely difficult in most cases, we will restrict our attention

to relatively simple games.

In particular, we will concentrate on the combinatorial games that termi-

nate in a finite number of steps. Hex is one example of such a game, since

each position has finitely many uncolored hexagons. Nim is another exam-

ple, since there are finitely many chips. This class of games is important

enough to merit a definition:

168
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Definition 10.0.1. A combinatorial game with a position set X is said to

be progressively bounded if, starting from any position x ∈ X, the game

must terminate after a finite number B(x) of moves.

Here B(x) is an upper bound on the number of steps it takes to play a

game to completion. It may be that an actual game takes fewer steps.

Note that, in principle, Chess, Checkers and Go need not terminate in a fi-

nite number of steps since positions may recur cyclically; however, in each of

these games there are special rules that make them effectively progressively

bounded games.

We will show that in a progressively bounded combinatorial game that

cannot terminate in a tie, one of the players has a winning strategy. For

many games, we will be able to identify that player, but not necessarily the

strategy. Moreover, for all progressively bounded impartial combinatorial

games, the Sprague-Grundy theory developed in section 10.1.3 will reduce

the process of finding such a strategy to computing a certain recursive func-

tion.

We begin with impartial games.

10.1 Impartial games

Before we give formal definitions, let’s look at a simple example:

Example 10.1.1 (A Subtraction game). Starting with a pile of x ∈ N
chips, two players alternate taking one to four chips. The player who removes

the last chip wins.

Observe that starting from any x ∈ N, this game is progressively bounded

with B(x) = x.

If the game starts with 4 or fewer chips, the first player has a winning

move: he just removes them all. If there are five chips to start with, however,

the second player will be left with between one and four chips, regardless of

what the first player does.

What about 6 chips? This is again a winning position for the first player

because if he removes one chip, the second player is left in the losing position

of 5 chips. The same is true for 7, 8, or 9 chips. With 10 chips, however,

the second player again can guarantee that he will win.
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Let’s make the following definition:

N =

{

x ∈ N :
the first (“next”) player can ensure a win

if there are x chips at the start

}

,

P =

{

x ∈ N :
the second (“previous”) player can ensure a win
if there are x chips at the start

}

.

So far, we have seen that {1, 2, 3, 4, 6, 7, 8, 9} ⊆ N, and {0, 5} ⊆ P. Continu-

ing with our line of reasoning, we find thatP = {x ∈ N : x is divisible by five}
and N = N \P.

The approach that we used to analyze the Subtraction game can be ex-

tended to other impartial games. To do this we will need to develop a formal

framework.

Definition 10.1.2. An impartial combinatorial game has two players,

and a set of possible positions. To make amove is to take the game from one

position to another. More formally, a move is an ordered pair of positions. A

terminal position is one from which there are no legal moves. For every non-

terminal position, there is a set of legal moves, the same for both players.

Under normal play, the player who moves to a terminal position wins.

We can think of the game positions as nodes and the moves as directed

links. Such a collection of nodes (vertices) and links (edges) between them

is called a graph. If the moves are reversible, the edges can be taken as

undirected. At the start of the game, a token is placed at the node corre-

sponding to the initial position. Subsequently, players take turns placing the

token on one of the neighboring nodes until one of them reaches a terminal

node and is declared the winner.

With this definition, it is clear that the Subtraction game is an impartial

game under normal play. The only terminal position is x = 0. Figure 10.1

gives a directed graph corresponding to the Subtraction game with initial

position x = 14.

14136 127 1184 93

5

2

10

1

0

Fig. 10.1. Moves in the Subtraction game. Positions in N are marked in
red and those in P, in black.
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We saw that starting from a position x ∈ N, the next player to move can

force a win by moving to one of the elements in P = {5n : n ∈ N}, namely

5⌊x/5⌋.
Let’s make a formal definition:

Definition 10.1.3. A (memoryless) strategy for a player is a function

that assigns a legal move to each non-terminal position. A winning strat-

egy from a position x is a strategy that, starting from x, is guaranteed to

result in a win for that player in a finite number of steps.

We say that the strategy is memoryless because it does not depend on the

history of the game, i.e., the previous moves that led to the current game

position. For games which are not progressively bounded, where the game

might never end, the players may need to consider more general strategies

that depend on the history in order to force the game to end. But for games

that are progressively bounded, this is not an issue, since as we will see, one

of the players will have a winning memoryless strategy.

We can extend the notions of N and P to any impartial game.

Definition 10.1.4. For any impartial combinatorial game, we define N

(for “next”) to be the set of positions such that the first player to move

can guarantee a win. The set of positions for which every move leads to an

N-position is denoted by P (for “previous”), since the player who can force

a P-position can guarantee a win.

In the Subtraction game, N = N ∪ P, and we were easily able to specify

a winning strategy. This holds more generally: If the set of positions in an

impartial combinatorial game equals N ∪ P, then from any initial position

one of the players must have a winning strategy. If the starting position is

in N, then the first player has such a strategy, otherwise, the second player

does.

In principle, for any progressively bounded impartial game it is possible,

working recursively from the terminal positions, to label every position as

either belonging to N or to P. Hence, starting from any position, a winning

strategy for one of the players can be determined. This, however, may be

algorithmically hard when the graph is large. In fact, a similar statement

also holds for progressively bounded partisan games. We will see this in

§Section 10.2.

We get a recursive characterization of N and P under normal play by

letting Ni and Pi be the positions from which the first and second players

respectively can win within i ≥ 0 moves:
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N0 = ∅

P0 = { terminal positions }
Ni+1 = {positions x for which there is a move leading to Pi }
Pi+1 = {positions y such that each move leads to Ni }

N =
⋃

i≥0

Ni, P =
⋃

i≥0

Pi.

Notice that P0 ⊆ P1 ⊆ P2 ⊆ · · · and N0 ⊆ N1 ⊆ N2 ⊆ · · · .
In the Subtraction game, we have

N0 = ∅ P0 = {0}
N1 = {1, 2, 3, 4} P1 = {0, 5}
N2 = {1, 2, 3, 4, 6, 7, 8, 9} P2 = {0, 5, 10}

...
...

N = Nr 5N P = 5N

Let’s consider another impartial game that has some interesting proper-

ties. The game of Chomp was invented in the 1970’s by David Gale, now a

professor emeritus of mathematics at the University of California, Berkeley.

Example 10.1.5 (Chomp). In Chomp, two players take turns biting off

a chunk of a rectangular bar of chocolate that is divided into squares. The

bottom left corner of the bar has been removed and replaced with a broccoli

floret. Each player, in his turn, chooses an uneaten chocolate square and

removes it along with all the squares that lie above and to the right of it.

The person who bites off the last piece of chocolate wins and the loser has

to eat the broccoli.

Fig. 10.2. Two moves in a game of Chomp.

In Chomp, the terminal position is when all the chocolate is gone.
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The graph for a small (2× 3) bar can easily be constructed and N and P

(and therefore a winning strategy) identified, see Figure 10.3. However, as

the size of the bar increases, the graph becomes very large and a winning

strategy difficult to find.

N

P

N

N

N

N

N

P

P

Fig. 10.3. Every move from a P-position leads to anN-position (bold black
links); from everyN-position there is at least one move to a P-position (red
links).

Next we will formally prove that every progressively bounded impartial

game has a winning strategy for one of the players.

Theorem 10.1.6. In a progressively bounded impartial combinatorial game

under normal play, all positions x lie in N ∪P.

Proof. We proceed by induction on B(x), where B(x) is the maximum num-

ber of moves that a game from x might last (not just an upper bound).

Certainly, for all x such that B(x) = 0, we have that x ∈ P0 ⊆ P. Assume

the theorem is true for those positions x for which B(x) ≤ n, and consider

any position z satisfying B(z) = n + 1. Any move from z will take us to a

position in N ∪P by the inductive hypothesis.

There are two cases:

Case 1: Each move from z leads to a position in N. Then z ∈ Pn+1 by

definition, and thus z ∈ P.

Case 2: If it is not the case that every move from z leads to a position

in N, it must be that there is a move from z to some Pn-position. In this

case, by definition, z ∈ Nn+1 ⊆ N.
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Hence, all positions lie in N ∪P.

Now, we have the tools to analyze Chomp. Recall that a legal move (for

either player) in Chomp consists of identifying a square of chocolate and

removing that square as well as all the squares above and to the right of it.

There is only one terminal position where all the chocolate is gone and only

broccoli remains.

Chomp is progressively bounded because we start with a finite number

of squares and remove at least one in each turn. Thus, the above theorem

implies that one of the players must have a winning strategy.

We will show that it’s the first player that does. In fact, we will show

something stronger: that starting from any position in which the remaining

chocolate is rectangular, the next player to move can guarantee a win. The

idea behind the proof is that of strategy-stealing. This is a general technique

that we will use frequently throughout the chapter.

Theorem 10.1.7. Starting from a position in which the remaining chocolate

bar is rectangular of size greater than 1 × 1, the next player to move has a

winning strategy.

Proof. Given a rectangular bar of chocolate R of size greater than 1× 1, let

R− be the result of chomping off the upper-right corner of R.

If R− ∈ P, then R ∈ N, and a winning move is to chomp off the upper-

right corner.

If R− ∈ N, then there is a move from R− to some position S in P. But if

we can chomp R− to get S, then chomping R in the same way will also give

S, since the upper-right corner will be removed by any such chomp. Since

there is a move from R to the position S in P, it follows that R ∈ N.

Note that the proof does not show that chomping the upper-right hand

corner is a winning move. In the 2 × 3 case, chomping the upper-right

corner happens to be a winning move (since this leads to a move in P, see

Figure 10.3), but for the 3 × 3 case, chomping the upper-right corner is

not a winning move. The strategy-stealing argument merely shows that a

winning strategy for the first player must exist; it does not help us identify

the strategy. In fact, it is an open research problem to describe a general

winning strategy for Chomp.

Next we analyze the game of Nim, a particularly important progressively

bounded impartial game.
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10.1.1 Nim and Bouton’s solution

Recall the game of Nim from the Introduction.

Example 10.1.8 (Nim). In Nim, there are several piles, each containing

finitely many chips. A legal move is to remove any number of chips from a

single pile. Two players alternate turns with the aim of removing the last

chip. Thus, the terminal position is the one where there are no chips left.

Because Nim is progressively bounded, all the positions are in N or P,

and one of the players has a winning strategy. We will be able to describe

the winning strategy explicitly. We will see in section 10.1.3 that any pro-

gressively bounded impartial game is equivalent to a single Nim pile of a

certain size. Hence, if the size of such a Nim pile can be determined, a

winning strategy for the game can also be constructed explicitly.

As usual, we will analyze the game by working backwards from the termi-

nal positions. We denote a position in the game by (n1, n2, . . . , nk), meaning

that there are k piles of chips, and that the first has n1 chips in it, the second

has n2, and so on.

Certainly (0, 1) and (1, 0) are in N. On the other hand, (1, 1) ∈ P be-

cause either of the two available moves leads to (0, 1) or (1, 0). We see that

(1, 2), (2, 1) ∈ N because the next player can create the position (1, 1) ∈ P.

More generally, (n, n) ∈ P for n ∈ N and (n,m) ∈ N if n,m ∈ N are not

equal.

Moving to three piles, we see that (1, 2, 3) ∈ P, because whichever move

the first player makes, the second can force two piles of equal size. It follows

that (1, 2, 3, 4) ∈ N because the next player to move can remove the fourth

pile.

To analyze (1, 2, 3, 4, 5), we will need the following lemma:

Lemma 10.1.9. For two Nim positions X = (x1, . . . , xk) and Y = (y1, . . . , yℓ),

we denote the position (x1, . . . , xk, y1, . . . , yℓ) by (X,Y ).

(i) If X and Y are in P, then (X,Y ) ∈ P.

(ii) If X ∈ P and Y ∈ N (or vice versa), then (X,Y ) ∈ N.

(iii) If X,Y ∈ N, however, then (X,Y ) can be either in P or in N.

Proof. If (X,Y ) has 0 chips, then X, Y , and (X,Y ) are all P-positions, so

the lemma is true in this case.

Next, we suppose by induction that whenever (X,Y ) has n or fewer chips,

X ∈ P and Y ∈ P implies (X,Y ) ∈ P
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and

X ∈ P and Y ∈ N implies (X,Y ) ∈ N.

Suppose (X,Y ) has at most n+ 1 chips.

If X ∈ P and Y ∈ N, then the next player to move can reduce Y to a

position in P, creating a P-P configuration with at most n chips, so by the

inductive hypothesis it must be in P. It follows that (X,Y ) is in N.

If X ∈ P and Y ∈ P, then the next player to move must takes chips from

one of the piles (assume the pile is in Y without loss of generality). But

moving Y from P-position always results in a N-position, so the resulting

game is in a P-N position with at most n chips, which by the inductive

hypothesis is an N position. It follows that (X,Y ) must be in P.

For the final part of the lemma, note that any single pile is in N, yet, as

we saw above, (1, 1) ∈ P while (1, 2) ∈ N.

Going back to our example, (1, 2, 3, 4, 5) can be divided into two sub-

games: (1, 2, 3) ∈ P and (4, 5) ∈ N. By the lemma, we can conclude that

(1, 2, 3, 4, 5) is in N.

The divide-and-sum method (using Lemma 10.1.9) is useful for analyzing

Nim positions, but it doesn’t immediately determine whether a given posi-

tion is in N or P. The following ingenious theorem, proved in 1901 by a

Harvard mathematics professor named Charles Bouton, gives a simple and

general characterization of N and P for Nim. Before we state the theorem,

we will need a definition.

Definition 10.1.10. The Nim-sum of m,n ∈ N is the following operation:

Write m and n in binary form, and sum the digits in each column modulo 2.

The resulting number, which is expressed in binary, is the Nim-sum of m

and n. We denote the Nim-sum of m and n by m⊕ n.

Equivalently, the Nim-sum of a collection of values (m1,m2, . . . ,mk) is

the sum of all the powers of 2 that occurred an odd number of times when

each of the numbers mi is written as a sum of powers of 2.

If m1 = 3, m2 = 9, m3 = 13, in powers of 2 we have:

m1 = 0× 23 + 0× 22 + 1× 21 + 1× 20

m2 = 1× 23 + 0× 22 + 0× 21 + 1× 20

m3 = 1× 23 + 1× 22 + 0× 21 + 1× 20.

The powers of 2 that appear an odd number of times are 20 = 1, 21 = 2,

and 22 = 4, so m1 ⊕m2 ⊕m3 = 1 + 2 + 4 = 7.

We can compute the Nim-sum efficiently by using binary notation:
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decimal binary

3 0 0 1 1

9 1 0 0 1

13 1 1 0 1

7 0 1 1 1

Theorem 10.1.11 (Bouton’s Theorem). A Nim position x = (x1, x2, . . . , xk)

is in P if and only if the Nim-sum of its components is 0.

To illustrate the theorem, consider the starting position (1, 2, 3):

decimal binary

1 0 1

2 1 0

3 1 1

0 0 0

Summing the two columns of the binary expansions modulo two, we obtain

00. The theorem affirms that (1, 2, 3) ∈ P. Now, we prove Bouton’s theorem.

Proof of Theorem 10.1.11. Define Z to be those positions with Nim-sum

zero.

Suppose that x = (x1, . . . , xk) ∈ Z, i.e., x1 ⊕ · · · ⊕ xk = 0. Maybe there

are no chips left, but if there are some left, suppose that we remove some

chips from a pile ℓ, leaving x′ℓ < xℓ chips. The Nim-sum of the resulting

piles is x1 ⊕ · · · ⊕ xℓ−1⊕ x′ℓ⊕ xℓ+1⊕ · · · ⊕ xk = x′ℓ⊕ xℓ 6= 0. Thus any move

from a position in Z leads to a position not in Z.

Suppose that x = (x1, x2, . . . , xk) /∈ Z. Let s = x1 ⊕ · · · ⊕ xk 6= 0.

There are an odd number of values of i ∈ {1, . . . , k} for which the binary

expression for xi has a 1 in the position of the left-most 1 in the expression

for s. Choose one such i. Note that xi⊕s < xi, because xi⊕s has no 1 in this

left-most position, and so is less than any number whose binary expression

does. Consider the move in which a player removes xi−xi⊕s chips from the

ith pile. This changes xi to xi ⊕ s. The Nim-sum of the resulting position

(x1, . . . , xi−1, xi ⊕ s, xi+1, . . . , xk) = 0, so this new position lies in Z. Thus,

for any position x /∈ Z, there exists a move from x leading to a position

in Z.

For any Nim-position that is not in Z, the first player can adopt the

strategy of always moving to a position in Z. The second player, if he

has any moves, will necessarily always move to a position not in Z, always

leaving the first player with a move to make. Thus any position that is not

in Z is an N-position. Similarly, if the game starts in a position in Z, the
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second player can guarantee a win by always moving to a position in Z when

it is his turn. Thus any position in Z is a P-position.

10.1.2 Other impartial games

Example 10.1.12 (Staircase Nim). This game is played on a staircase

of n steps. On each step j for j = 1, . . . , n is a stack of coins of size xj ≥ 0.

Each player, in his turn, moves one or more coins from a stack on a step

j and places them on the stack on step j − 1. Coins reaching the ground

(step 0) are removed from play. The game ends when all coins are on the

ground, and the last player to move wins.

00

1 1

2 2

3 3

x1x1

x3x3

Corresponding move in Nim on odd-numbered steps.

Fig. 10.4. A move in Staircase Nim, in which 2 coins are moved from step
3 to step 2. Considering the odd stairs only, the above move is equivalent
to the move in regular Nim from (3, 5) to (3, 3).

As it turns out, the P-positions in Staircase Nim are the positions such

that the stacks of coins on the odd-numbered steps correspond to a P-

position in Nim.

We can view moving y coins from an odd-numbered step to an even-

numbered one as corresponding to the legal move of removing y chips in

Nim. What happens when we move coins from an even numbered step to

an odd numbered one?

If a player moves z coins from an even numbered step to an odd numbered

one, his opponent may then move the coins to the next even-numbered step;

that is, she may repeat her opponent’s move at one step lower. This move

restores the Nim-sum on the odd-numbered steps to its previous value, and

ensures that such a move plays no role in the outcome of the game.
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Now, we will look at another game, called Rims, which, as we will see, is

also just Nim in disguise.

Example 10.1.13 (Rims). A starting position consists of a finite number

of dots in the plane and a finite number of continuous loops that do not

intersect. Each loop may pass through any number of dots, and must pass

through at least one.

Each player, in his turn, draws a new loop that does not intersect any

other loop. The goal is to draw the last such loop.

x1 x1x1

x2 x2 x2
x3x3x3
x4

Fig. 10.5. Two moves in a game of Rims.

For a given position of Rims, we can divide the dots that have no loop

through them into equivalence classes as follows: Each class consists of a

set of dots that can be reached from a particular dot via a continuous path

that does not cross any loops.

To see the connection to Nim, think of each class of dots as a pile of chips.

A loop, because it passes through at least one dot, in effect, removes at least

one chip from a pile, and splits the remaining chips into two new piles. This

last part is not consistent with the rules of Nim unless the player draws the

loop so as to leave the remaining chips in a single pile.

x1 x1x1

x2 x2x2

x3 x3x3

x4

Fig. 10.6. Equivalent sequence of moves in Nim with splittings allowed.

Thus, Rims is equivalent to a variant of Nim where players have the option

of splitting a pile into two piles after removing chips from it. As the following

theorem shows, the fact that players have the option of splitting piles has

no impact on the analysis of the game.
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Theorem 10.1.14. The sets N and P coincide for Nim and Rims.

Proof. Thinking of a position in Rims as a collection of piles of chips, rather

than as dots and loops, we write PNim and NNim for the P- and N-positions

for the game of Nim (these sets are described by Bouton’s theorem).

From any position in NNim, we may move to PNim by a move in Rims,

because each Nim move is legal in Rims.

Next we consider a position x ∈ PNim. Maybe there are no moves from

x, but if there are, any move reduces one of the piles, and possibly splits it

into two piles. Say the ℓth pile goes from xℓ to x
′
ℓ < xℓ, and possibly splits

into u, v where u+ v < xℓ.

Because our starting position x was a PNim-position, its Nim-sum was

x1 ⊕ · · · ⊕ xℓ ⊕ · · · ⊕ xk = 0.

The Nim-sum of the new position is either

x1 ⊕ · · · ⊕ x′ℓ ⊕ · · · ⊕ xk = xℓ ⊕ x′ℓ 6= 0,

(if the pile was not split), or else

x1 ⊕ · · · ⊕ (u⊕ v)⊕ · · · ⊕ xk = xℓ ⊕ u⊕ v.

Notice that the Nim-sum u⊕v of u and v is at most the ordinary sum u+v:

This is because the Nim-sum involves omitting certain powers of 2 from the

expression for u+ v. Hence, we have

u⊕ v ≤ u+ v < xℓ.

Thus, whether or not the pile is split, the Nim-sum of the resulting position

is nonzero, so any Rims move from a position in PNim is to a position in

NNim.

Thus the strategy of always moving to a position in PNim (if this is pos-

sible) will guarantee a win for a player who starts in an NNim-position, and

if a player starts in a PNim-position, this strategy will guarantee a win for

the second player. Thus NRims = NNim and PRims = PNim.

The following examples are particularly tricky variants of Nim.

Example 10.1.15 (Moore’s Nimk). This game is like Nim, except that

each player, in his turn, is allowed to remove any number of chips from at

most k of the piles.
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Write the binary expansions of the pile sizes (n1, . . . , nℓ):

n1 = n
(m)
1 · · · n(0)1 =

m
∑

j=0

n
(j)
1 2j,

...

nℓ = n
(m)
ℓ · · · n(0)ℓ =

m
∑

j=0

n
(j)
ℓ 2j,

where each n
(j)
i is either 0 or 1.

Theorem 10.1.16 (Moore’s Theorem). For Moore’s Nimk,

P =
{

(n1, . . . , nℓ) :

ℓ
∑

i=1

n
(j)
i ≡ 0 mod (k + 1) for each j

}

.

The notation “a ≡ b mod m” means that a − b is evenly divisible by m,

i.e., that (a− b)/m is an integer.

Proof of Theorem 10.1.16. Let Z denote the right-hand-side of the above

expression. We will show that every move from a position in Z leads to a

position not in Z, and that for every position not in Z, there is a move to a

position in Z. As with ordinary Nim, it will follow that a winning strategy

is to always move to position in Z if possible, and consequently P = Z.

Take any move from a position in Z, and consider the left-most column

for which this move changes the binary expansion of at least one of the pile

numbers. Any change in this column must be from one to zero. The existing

sum of the ones and zeros (mod (k + 1)) is zero, and we are adjusting at

most k piles. Because ones are turning into zeros in this column, we are

decreasing the sum in that column and by at least 1 and at most k, so the

resulting sum in this column cannot be congruent to 0 modulo k + 1. We

have verified that no move starting from Z takes us back to Z.

We must also check that for each position x not in Z, we can find a move

to some y that is in Z. The way we find this move is a little bit tricky, and

we illustrate it in the following example:

We write the pile sizes of x in binary, and make changes to the bits so that

the sum of the bits in each column congruent to 0 modulo k + 1. For these

changes to correspond to a valid move in Moore’s Nimk, we are constrained

to change the bits in at most k rows, and for any row that we change, the

left-most bit that is changed must be a change from a 1 to a 0.

To make these changes, we scan the bits columns from the most significant
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p
il
e
si
ze
s
in

b
in
a
ry 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1

1 0 1 0 0 0 1 1 0 1 0 0 0 0 1 1
1 0 1 0 0 1 0 1 1 0 1 0 1 0 1 0
1 0 0 1 0 1 1 1 0 0 1 0 0 1 1 1
1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1
0 0 1 1 1 0 0 1 1 0 1 0 0 0 0 1

5 0 5 2 1 4 2 6 3 3 3 2 1 2 6 5

⇒

p
il
e
si
ze
s
in

b
in
a
ry 0 0 1 0 0 1 0 0 1 1 0 1 0 0 1 1

1 0 1 0 0 0 0 1 1 1 0 1 0 1 1 1
1 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1
1 0 0 0 0 1 0 1 1 1 0 1 0 1 0 1
1 0 1 0 0 1 0 1 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 1
0 0 1 0 0 1 0 0 1 1 0 0 0 1 0 0

5 0 5 0 0 5 0 5 5 5 0 5 0 5 5 5

Fig. 10.7. Example move in Moore’s Nim4 from a position not in Z to a
position in Z. When a row becomes activated, the bit is boxed, and active
rows are shaded. The bits in only 4 rows are changed, and the resulting
column sums are all divisible by 5.

to the least significant. When we scan, we can “activate” a row if it contains

a 1 in the given column which we change to a 0, and once a row is activated,

we may change the remaining bits in the row in any fashion.

At a given column, let a be the number of rows that have already been

activated (0 ≤ a ≤ k), and let s be the sum of the bits in the rows that

have not been activated. Let b = (s+ a) mod (k+ 1). If b ≤ a, then we can

set the bits in b of the active rows to 0 and a − b of the active rows to 1.

The new column sum is then s + a − b, which is evenly divisible by k + 1.

Otherwise, a < b ≤ k, and b − a = s mod (k + 1) ≤ s, so we may activate

b− a inactive rows that have a 1 in that column, and set the bits in all the

active rows in that column to 0. The column sum is then s− (b− a), which
is again evenly divisible by k+1, and the number of active rows remains at

most k. Continuing in this fashion results in a position in Z, by reducing at

most k of the piles.

Example 10.1.17 (Wythoff Nim). A position in this game consists of

two piles of sizes m and n. The legal moves are those of Nim, with one

addition: players may remove equal numbers of chips from both piles in a

single move. This extra move prevents the positions {(n, n) : n ∈ N} from
being P-positions.

This game has a very interesting structure. We can say that a position

consists of a pair (m,n) of natural numbers, such that m,n ≥ 0. A legal

move is one of the following:

Reduce m to some value between 0 and m−1 without changing m, reduc-

ing n to some value between 0 and n − 1 without changing m, or reducing

each of m and n by the same amount. The one who reaches (0, 0) is the

winner.
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0

1

2

3

2 3 40 1

0

1

2

3

2 3 40 1

Fig. 10.8. Wythoff Nim can be viewed as the following game played on a
chess board. Consider an m×n section of a chess-board. The players take
turns moving a queen, initially positioned in the upper right corner, either
left, down, or diagonally toward the lower left. The player that moves the
queen into the bottom left corner wins. If the position of the queen at
every turn is denoted by (x, y), with 1 ≤ x ≤ m, 1 ≤ y ≤ n, we see that
the game corresponds to Wythoff Nim.

To analyze Wythoff Nim (and other games), we define

mex(S) = min{n ≥ 0 : n /∈ S},
for S ⊆ {0, 1, . . .} (the term “mex” stands for “minimal excluded value”).

For example, mex({0, 1, 2, 3, 5, 7, 12}) = 4. Consider the following recursive

definition of two sequences of natural numbers: For each k ≥ 0,

ak = mex({a0, a1, . . . , ak−1, b0, b1, . . . , bk−1}), and bk = ak + k.

Notice that when k = 0, we have a0 = mex({}) = 0 and b0 = a0 + 0 = 0.

The first few values of these two sequences are

k 0 1 2 3 4 5 6 7 8 9 . . .

ak 0 1 3 4 6 8 9 11 12 14 . . .

bk 0 2 5 7 10 13 15 18 20 23 . . .

(For example, a4 = mex({0, 1, 3, 4, 0, 2, 5, 7}) = 6 and b4 = a4 + 4 = 10.)

Theorem 10.1.18. Each natural number greater than zero is equal to pre-

cisely one of the ai’s or bi’s. That is, {ai}∞i=1 and {bi}∞i=1 form a partition

of N∗.

Proof. First we will show, by induction on j, that {ai}ji=1 and {bi}ji=1 are

disjoint strictly increasing subsets of N∗. This is vacuously true when
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j = 0, since then both sets are empty. Now suppose that {ai}j−1
i=1 is

strictly increasing and disjoint from {bi}j−1
i=1 , which, in turn, is strictly in-

creasing. By the definition of the ai’s, we have have that both aj and

aj−1 are excluded from {a0, . . . , aj−2, b0, . . . , bj−2}, but aj−1 is the small-

est such excluded value, so aj−1 ≤ aj. By the definition of aj , we also

have aj 6= aj−1 and aj /∈ {b0, . . . , bj−1}, so in fact {ai}ji=1 and {bi}j−1
i=1 are

disjoint strictly increasing sequences. Moreover, for each i < j we have

bj = aj + j > ai + j > ai + i = bi > ai, so {ai}ji=1 and {bi}ji=1 are strictly

increasing and disjoint from each other, as well.

To see that every integer is covered, we show by induction that

{1, . . . , j} ⊂ {ai}ji=1 ∪ {bi}
j
i=1 .

This is clearly true when j = 0. If it is true for j, then either j + 1 ∈
{ai}ji=1 ∪ {bi}

j
i=1 or it is excluded, in which case aj+1 = j + 1.

It is easy to check the following theorem:

Theorem 10.1.19. The set of P-positions for Wythoff Nim is exactly P̂ :=

{(ak, bk) : k = 0, 1, 2, . . . } ∪ {(bk, ak) : k = 0, 1, 2, . . . }.

Proof. First we check that any move from a position (ak, bk) ∈ P̂ is to a

position not in P̂ . If we reduce both piles, then the gap between them

remains k, and the only position in P̂ with gap k is (ak, bk). If we reduce

the first pile, the number bk only occurs with ak in P̂ , so we are taken to

a position not in P̂ , and similarly, reducing the second pile also leads to a

position not in P̂ .

Let (m,n) be a position not in P̂ , say m ≤ n, and let k = n − m. If

(m,n) > (ak, bk), we can reduce both piles of chips to take the configuration

to (ak, bk), which is in P̂ . If (m,n) < (ak, bk), then either m = aj or

m = bj for some j < k. If m = aj , then we can remove k − j chips from

the second pile to take the configuration to (aj , bj) ∈ P̂ . If m = bj, then

n ≥ m = bj > aj, so we can remove chips from the second pile to take the

state to (bj , aj) ∈ P̂ .
Thus P = P̂ .

It turns out that there is there a fast, non-recursive, method to decide if

a given position is in P:

Theorem 10.1.20. ak = ⌊k(1 +
√
5)/2⌋ and bk = ⌊k(3 +

√
5)/2⌋.

⌊x⌋ denotes the “floor of x,” i.e., the greatest integer that is ≤ x. Similarly,

⌈x⌉ denotes the “ceiling of x,” the smallest integer that is ≥ x.
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Proof of Theorem 10.1.20. Consider the following sequences positive inte-

gers: Fix any irrational θ ∈ (0, 1), and set

αk(θ) = ⌊k/θ⌋, βk(θ) = ⌊k/(1 − θ)⌋.

We claim that {αk(θ)}∞k=1 and {βk(θ)}∞k=1 form a partition of N∗. Clearly,
αk(θ) < αk+1(θ) and βk(θ) < βk+1(θ) for any k. Observe that αk(θ) = N if

and only if

k ∈ IN := [Nθ,Nθ + θ),

and βℓ(θ) = N if and only if

−ℓ+N ∈ JN := (Nθ + θ − 1, Nθ].

These events cannot both happen with θ ∈ (0, 1) unless N = 0, k = 0, and

ℓ = 0. Thus, {αk(θ)}∞k=1 and {βk(θ)}∞k=1 are disjoint. On the other hand,

so long as N 6= −1, at least one of these events must occur for some k or ℓ,

since JN ∪ IN = ((N +1)θ − 1, (N +1)θ) contains an integer when N 6= −1
and θ is irrational. This implies that each positive integer N is contained in

either {αk(θ)}∞k=1 or {βk(θ)}∞k=1.

Does there exist a θ ∈ (0, 1) for which

αk(θ) = ak and βk(θ) = bk? (10.1)

We will show that there is only one θ for which this is true.

Because bk = ak+k, (10.1) implies that ⌊k/θ⌋+k = ⌊k/(1−θ)⌋. Dividing

by k we get

1

k
⌊k/θ⌋+ 1 =

1

k
⌊k/(1 − θ)⌋,

and taking a limit as k →∞ we find that

1/θ + 1 = 1/(1− θ). (10.2)

Thus, θ2 + θ − 1 = 0. The only solution in (0, 1) is θ = (
√
5 − 1)/2 =

2/(1 +
√
5).

We now fix θ = 2/(1 +
√
5) and let αk = αk(θ), βk = βk(θ). Note that

(10.2) holds for this particular θ, so that

⌊k/(1 − θ)⌋ = ⌊k/θ⌋+ k.

This means that βk = αk + k. We need to verify that

αk = mex
{

α0, . . . , αk−1, β0, . . . , βk−1}.

We checked earlier that αk is not one of these values. Why is it equal to
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their mex? Suppose, toward a contradiction, that z is the mex, and αk 6= z.

Then z < αk ≤ αℓ ≤ βℓ for all ℓ ≥ k. Since z is defined as a mex, z 6= αi, βi
for i ∈ {0, . . . , k − 1}, so z is missed and hence {αk}∞k=1 and {βk}∞k=1 would

not be a partition of N∗, a contradiction.

10.1.3 Impartial games and the Sprague-Grundy theorem

In this section, we will develop a general framework for analyzing all pro-

gressively bounded impartial combinatorial games. As in the case of Nim,

we will look at sums of games and develop a tool that enables us to analyze

any impartial combinatorial game under normal play as if it were a Nim pile

of a certain size.

Definition 10.1.21. The sum of two combinatorial games, G1 and G2,

is a game G in which each player, in his turn, chooses one of G1 or G2 in

which to play. The terminal positions in G are (t1, t2), where ti is a terminal

position in Gi for i ∈ {1, 2}. We write G = G1 +G2.

Example 10.1.22. The sum of two Nim games X and Y is the game (X,Y )

as defined in Lemma 10.1.9 of the previous section.

It is easy to see that Lemma 10.1.9 generalizes to the sum of any two

progressively bounded combinatorial games:

Theorem 10.1.23. Suppose G1 and G2 are progressively bounded impartial

combinatorial games.

(i) If x1 ∈ PG1
and x2 ∈ PG2

, then (x1, x2) ∈ PG1+G2
.

(ii) If x1 ∈ PG1
and x2 ∈ NG2

, then (x1, x2) ∈ NG1+G2
.

(iii) If x1 ∈ NG1
and x2 ∈ NG2

, then (x1, x2) could be in either NG1+G2

or PG1+G2
.

Proof. In the proof for Lemma 10.1.9 for Nim, replace the number of chips

with B(x), the maximum number of moves in the game.

Definition 10.1.24. Consider two arbitrary progressively bounded combi-

natorial games G1 and G2 with positions x1 and x2. If for any third such

game G3 and position x3, the outcome of (x1, x3) in G1 +G3 (i.e., whether

it’s an N- or P-position) is the same as the outcome of (x2, x3) in G2 +G3,

then we say that (G1, x1) and (G2, x2) are equivalent.

It follows from Theorem 10.1.23 that in any two progressively bounded

impartial combinatorial games, the P-positions are equivalent to each other.

In Exercise 10.12 you will prove that this notion of equivalence for games
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defines an equivalence relation. In Exercise 10.13 you will prove that two

impartial games are equivalent if and only if there sum is a P-position. In

Exercise 10.14 you will show that if G1 and G2 are equivalent, and G3 is a

third game, then G1 +G3 and G2 +G3 are equivalent.

Example 10.1.25. The Nim game with starting position (1, 3, 6) is equiv-

alent to the Nim game with starting position (4), because the Nim-sum of

the sum game (1, 3, 4, 6) is zero. More generally, the position (n1, . . . , nk) is

equivalent to (n1⊕· · ·⊕nk) because the Nim-sum of (n1, . . . , nk, n1⊕· · ·⊕nk)
is zero.

If we can show that an arbitrary impartial game (G,x) is equivalent to a

single Nim pile (n), we can immediately determine whether (G,x) is in P

or in N, since the only single Nim pile in P is (0).

We need a tool that will enable us to determine the size n of a Nim pile

equivalent to an arbitrary position (G,x).

Definition 10.1.26. Let G be a progressively bounded impartial combina-

torial game under normal play. Its Sprague-Grundy function g is defined

recursively as follows:

g(x) = mex({g(y) : x→ y is a legal move}).
Note that the Sprague-Grundy value of any terminal position is mex(∅) =

0. In general, the Sprague-Grundy function has the following key property:

Lemma 10.1.27. In a progressively bounded impartial combinatorial game,

the Sprague-Grundy value of a position is 0 if and only if it is a P-position.

Proof. Proceed as in the proof of Theorem 10.1.11 — define P̂ to be those

positions x with g(x) = 0, and N̂ to be all other positions. We claim that

P̂ = P and N̂ = N.

To show this, we need to show first that t ∈ P̂ for every terminal position t.

Second, that for all x ∈ N̂ , there exists a move from x leading to P̂ . Finally,

we need to show that for every y ∈ P̂ , all moves from y lead to N̂ .

All these are a direct consequence of the definition of mex. The details of

the proof are left as an exercise (Ex. 10.15).

Let’s calculate the Sprague-Grundy function for a few examples.

Example 10.1.28 (The m-Subtraction game). In the m-subtraction

game with subtraction set {a1, . . . , am}, a position consists of a pile of chips,

and a legal move is to remove from the pile ai chips, for some i ∈ {1, . . . ,m}.
The player who removes the last chip wins.
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Consider a 3-subtraction game with subtraction set {1, 2, 3}. The follow-

ing table summarizes a few values of its Sprague-Grundy function:

x 0 1 2 3 4 5 6

g(x) 0 1 2 3 0 1 2

In general, g(x) = x mod 4.

Example 10.1.29 (The Proportional Subtraction game). A position

consists of a pile of chips. A legal move from a position with n chips is to

remove any positive number of chips that is at most ⌈n/2⌉.
Here, the first few values of the Sprague-Grundy function are:

x 0 1 2 3 4 5 6

g(x) 0 1 0 2 1 3 0

Example 10.1.30. Note that the Sprague-Grundy value of any Nim pile

(n) is just n.

Now we are ready to state the Sprague-Grundy theorem, which allows us

relate impartial games to Nim:

Theorem 10.1.31 (Sprague-Grundy Theorem). Let G be a progres-

sively bounded impartial combinatorial game under normal play with start-

ing position x. Then G is equivalent to a single Nim pile of size g(x) ≥ 0,

where g(x) is the Sprague-Grundy function evaluated at the starting position

x.

Proof. We let G1 = G, and G2 be the Nim pile of size g(x). Let G3 be any

other combinatorial game under normal play. One player or the other, say

player A, has a winning strategy for G2 +G3. We claim that player A also

has a winning strategy for G1 +G3.

For each move of G2 + G3 there is an associated move in G1 + G3: If

one of the players moves in G3 when playing G2 + G3, this corresponds to

the same move in G3 when playing G1 + G3. If one of the players plays

in G2 when playing G2 + G3, say by moving from a Nim pile with y chips

to a Nim pile with z < y chips, then the corresponding move in G1 + G3

would be to move in G1 from a position with Sprague-Grundy value y to a

position with Sprague-Grundy value z (such a move exists by the definition

of the Sprague-Grundy function). There may be extra moves in G1 + G3

that do not correspond to any move G2 +G3, namely, it may be possible to

play in G1 from a position with Sprague-Grundy value y to a position with

Sprague-Grundy value z > y.

When playing in G1 + G3, player A can pretend that the game is really
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G2+G3. If player A’s winning strategy is some move in G2+G3, then A can

play the corresponding move in G1 +G3, and pretends that this move was

made in G2+G3. If A’s opponent makes a move in G1+G3 that corresponds

to a move in G2+G3, then A pretends that this move was made in G2+G3.

But player A’s opponent could also make a move in G1 +G3 that does not

correspond to any move of G2 + G3, by moving in G1 and increasing the

Sprague-Grundy value of the position in G1 from y to z > y. In this case,

by the definition of the Sprague-Grundy value, player A can simply play in

G1 and move to a position with Sprague-Grundy value y. These two turns

correspond to no move, or a pause, in the game G2+G3. Because G1+G3 is

progressively bounded, G2+G3 will not remain paused forever. Since player

A has a winning strategy for the game G2+G3, player A will win this game

that A is pretending to play, and this will correspond to a win in the game

G1+G3. Thus whichever player has a winning strategy in G2 +G3 also has

a winning strategy in G1 +G3, so G1 and G2 are equivalent games.

We can use this theorem to find the P- and N-positions of a particular

impartial, progressively bounded game under normal play, provided we can

evaluate its Sprague-Grundy function.

For example, recall the 3-subtraction game we considered in Example 10.1.28.

We determined that the Sprague-Grundy function of the game is g(x) =

x mod 4. Hence, by the Sprague-Grundy theorem, 3-subtraction game with

starting position x is equivalent to a single Nim pile with x mod 4 chips.

Recall that (0) ∈ PNim while (1), (2), (3) ∈ NNim. Hence, the P-positions

for the Subtraction game are the natural numbers that are divisible by four.

Corollary 10.1.32. Let G1 and G2 be two progressively bounded impartial

combinatorial games under normal play. These games are equivalent if and

only if the Sprague-Grundy values of their starting positions are the same.

Proof. Let x1 and x2 denote the starting positions of G1 and G2. We saw

already that G1 is equivalent to the Nim pile (g(x1)), and G2 is equivalent

to (g(x2)). Since equivalence is transitive, if the Sprague-Grundy values

g(x1) and g(x2) are the same, G1 and G2 must be equivalent. Now suppose

g(x1) 6= g(x2). We have that G1 + (g(x1)) is equivalent to (g(x1)) + (g(x1))

which is a P-position, while G2 + (g(x1)) is equivalent to (g(x2)) + (g(x1)),

which is an N-position, so G1 and G2 are not equivalent.

The following theorem gives a way of finding the Sprague-Grundy func-

tion of the sum game G1 + G2, given the Sprague-Grundy functions of the

component games G1 and G2.
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Theorem 10.1.33 (Sum Theorem). Let G1 and G2 be a pair of impartial

combinatorial games and x1 and x2 positions within those respective games.

For the sum game G = G1 +G2,

g(x1, x2) = g1(x1)⊕ g2(x2), (10.3)

where g, g1, and g2 respectively denote the Sprague-Grundy functions for the

games G, G1, and G2, and ⊕ is the Nim-sum.

Proof. It is straightforward to see that G1 + G1 is a P-position, since the

second player can always just make the same moves that the first player

makes but in the other copy of the game. Thus G1 +G2 +G1 +G2 is a P-

position. Since G1 is equivalent to (g(x1)), G2 is equivalent to (g(x2)), and

G1 + G2 is equivalent to (g(x1, x2)), we have that (g(x1), g(x2), g(x1, x2))

is a P-position. From our analysis of Nim, we know that this happens

only when the three Nim piles have Nim-sum zero, and hence g(x1, x2) =

g(x1)⊕ g(x2).

Let’s use the Sprague-Grundy and the Sum Theorems to analyze a few

games.

Example 10.1.34. (4 or 5) There are two piles of chips. Each player, in

his turn, removes either one to four chips from the first pile or one to five

chips from the second pile.

Our goal is to figure out the P-positions for this game. Note that the

game is of the form G1 + G2 where G1 is a 4-subtraction game and G2

is a 5-subtraction game. By analogy with the 3-subtraction game, g1(x) =

x mod 5 and g2(y) = y mod 6. By the Sum Theorem, we have that g(x, y) =

(x mod 5) ⊕ (y mod 6). We see that g(x, y) = 0 if and only if x mod 5 =

y mod 6.

The following example bears no obvious resemblance to Nim, yet we can

use the Sprague-Grundy function to analyze it.

Example 10.1.35 (Green Hackenbush). Green Hackenbush is played on

a finite graph with one distinguished vertex r, called the root, which may be

thought of as the base on which the rest of the structure is standing. (Recall

that a graph is a collection of vertices and edges that connect unordered pairs

of vertices.) In his turn, a player may remove an edge from the graph. This

causes not only that edge to disappear, but all of the structure that relies on

it — the edges for which every path to the root travels through the removed

edge.

The goal for each player is to remove the last edge from the graph.
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We talk of “Green” Hackenbush because there is a partisan variant of the

game in which edges are colored red, blue, or green, and one player can

remove red or green edges, while the other player can remove blue or green

edges.

Note that if the original graph consists of a finite number of paths, each of

which ends at the root, then Green Hackenbush is equivalent to the game of

Nim, in which the number of piles is equal to the number of paths, and the

number of chips in a pile is equal to the length of the corresponding path.

To handle the case in which the graph is a tree, we will need the following

lemma:

Lemma 10.1.36 (Colon Principle). The Sprague-Grundy function of Green

Hackenbush on a tree is unaffected by the following operation: For any two

branches of the tree meeting at a vertex, replace these two branches by a

path emanating from the vertex whose length is the Nim-sum of the Sprague-

Grundy functions of the two branches.

Proof. We will only sketch the proof. For the details, see Ferguson [Fer08,

I-42].

If the two branches consist simply of paths, or “stalks,” emanating from

a given vertex, then the result follows from the fact that the two branches

form a two-pile game of Nim, using the direct sum theorem for the Sprague-

Grundy functions of two games. More generally, we may perform the re-

placement operation on any two branches meeting at a vertex by iterating

replacing pairs of stalks meeting inside a given branch until each of the two

branches itself has become a stalk.

Fig. 10.9. Combining branches in a tree of Green Hackenbush.

As a simple illustration, see Fig. 10.9. The two branches in this case are

stalks of lengths 2 and 3. The Sprague-Grundy values of these stalks are 2

and 3, and their Nim-sum is 1.

For a more in-depth discussion of Hackenbush and references, see Ferguson

[Fer08, Part I, Sect. 6] or [BCG82a].

Next we leave the impartial and discuss a few interesting partisan games.
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10.2 Partisan games

A combinatorial game that is not impartial is called partisan. In a partisan

games the legal moves for some positions may be different for each player.

Also, in some partisan games, the terminal positions may be divided into

those that have a win for player I and those that have a win for player II.

Hex is an important partisan game that we described in the introduction.

In Hex, one player (Blue) can only place blue tiles on the board and the

other player (Yellow) can only place yellow tiles, and the resulting board

configurations are different, so the legal moves for the two players are dif-

ferent. One could modify Hex to allow both players to place tiles of either

color (though neither player will want to place a tile of the other color), so

that both players will have the same set of legal moves. This modified Hex

is still partisan because the winning configurations for the two players are

different: positions with a blue crossing are winning for Blue and those with

a yellow crossing are winning for Yellow.

Typically in a partisan game not all positions may be reachable by every

player from a given starting position. We can illustrate this with the game

of Hex. If the game is started on an empty board, the player that moves

first can never face a position where the number of blue and yellow hexagons

on the board is different.

In some partisan games there may be additional terminal positions which

mean that neither of the players wins. These can be labelled “ties” or

“draws” (as in Chess, when there is a stalemate).

While an impartial combinatorial game can be represented as a graph

with a single edge-set, a partisan game is most often given by a single set

of nodes and two sets of edges that represent legal moves available to either

player. Let X denote the set of positions and EI, EII be the two edge-

sets for players I and II respectively. If (x, y) is a legal move for player

i ∈ {I, II} then ((x, y) ∈ Ei) and we say that y is a successor of x. We

write Si(x) = {y : (x, y) ∈ Ei}. The edges are directed if the moves are

irreversible.

A partisan game follows the normal play condition if the first player

who cannot move loses. The misère play condition is the opposite, i.e.,

the first player who cannot move wins. In games such as Hex, some terminal

nodes are winning for one player or the other, regardless of whose turn it is

when the game arrived in that position. Such games are equivalent to normal

play games on a closely related graph (you will show this in an exercise).

A strategy is defined in the same way as for impartial games; however, a

complete specification of the state of the game will now, in addition to the
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position, require an identification of which player is to move next (which

edge-set is to be used).

We start with a simple example:

Example 10.2.1 (A partisan Subtraction game). Starting with a pile

of x ∈ N chips, two players, I and II, alternate taking a certain number of

chips. Player I can remove 1 or 4 chips. Player II can remove 2 or 3 chips.

The last player who removes chips wins the game.

This is a progressively bounded partisan game where both the terminal

nodes and the moves are different for the two players.
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s=(3,2)s=(3,1)

W(s)=2

s=(5,2)
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Fig. 10.10. Moves of the partisan Subtraction game. Node 0 is terminal
for either player, and node 1 is also terminal with a win for player I.

From this example we see that the number of steps it takes to complete

the game from a given position now depends on the state of the game,

s = (x, i), where x denotes the position and i ∈ {I, II} denotes the player

that moves next. We let B(x, i) denote the maximum number of moves to

complete the game from state (x, i).

We next prove an important theorem that extends our previous result to

include partisan games.

Theorem 10.2.2. In any progressively bounded combinatorial game with no

ties allowed, one of the players has a winning strategy which depends only

upon the current state of the game.

At first the statement that the winning strategy only depends upon the



194 Combinatorial games

current state of the game might seem odd, since what else could it depend

on? A strategy tells a player which moves to make when playing the game,

and a priori a strategy could depend upon the history of the game rather

than just the game state at a given time. In games which are not progres-

sively bounded, if the game play never terminates, typically one player is

assigned a payoff of −∞ and the other player gets +∞. There are examples

of such games (which we don’t describe here), where the optimal strategy of

one of the players must take into account the history of the game to ensure

that the other player is not simply trying to prolong the game. But such

issues do not exist with progressively bounded games.

Proof of Theorem 10.2.2. We will recursively define a function W , which

specifies the winner for a given state of the game: W (x, i) = j where i, j ∈
{I, II} and x ∈ X. For convenience we let o(i) denote the opponent of player

i.

When B(x, i) = 0, we setW (x, i) to be the player who wins from terminal

position x.

Suppose by induction, that whenever B(y, i) < k, the W (y, i) has been

defined. Let x be a position with B(x, i) = k for one of the players. Then

for every y ∈ Si(x) we must have B(y, o(i)) < k and hence W (y, o(i)) is

defined. There are two cases:

Case 1: For some successor state y ∈ Si(x), we have W (y, o(i)) = i. Then

we define W (x, i) = i, since player i can move to state y from which he can

win. Any such state y will be a winning move.

Case 2: For all successor states y ∈ Si(x), we have W (y, o(i)) = o(i).

Then we define W (x, i) = o(i), since no matter what state y player i moves

to, player o(i) can win.

In this way we inductively define the function W which tells which player

has a winning strategy from a given game state.

This proof relies essentially on the game being progressively bounded.

Next we show that many games have this property.

Lemma 10.2.3. In a game with a finite position set, if the players cannot

move to repeat a previous game state, then the game is progressively bounded.

Proof. If there there are n positions x in the game, there are 2n possible

game states (x, i), where i is one of the players. When the players play from

position (x, i), the game can last at most 2n steps, since otherwise a state

would be repeated.

The games of Chess and Go both have special rules to ensure that the
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game is progressively bounded. In Chess, whenever the board position (to-

gether with whose turn it is) is repeated for a third time, the game is declared

a draw. (Thus the real game state effectively has built into it all previous

board positions.) In Go, it is not legal to repeat a board position (together

with whose turn it is), and this has a big effect on how the game is played.

Next we go on to analyze some interesting partisan games.

10.2.1 The game of Hex

Recall the description of Hex from the introduction.

Example 10.2.4 (Hex). Hex is played on a rhombus-shaped board tiled

with hexagons. Each player is assigned a color, either blue or yellow, and

two opposing sides of the board. The players take turns coloring in empty

hexagons. The goal for each player is to link his two sides of the board with

a chain of hexagons in his color. Thus, the terminal positions of Hex are the

full or partial colorings of the board that have a chain crossing.

Y1

Y2B1

B2

Fig. 10.11. A completed game of Hex with a yellow chain crossing.

Note that Hex is a partisan game where both the terminal positions and

the legal moves are different for the two players. We will prove that any

fully-colored, standard Hex board contains either a blue crossing or a yellow

crossing but not both. This topological fact guarantees that in the game of

Hex ties are not possible.

Clearly, Hex is progressively bounded. Since ties are not possible, one of

the players must have a winning strategy. We will now prove, again using a

strategy-stealing argument, that the first player can always win.

Theorem 10.2.5. On a standard, symmetric Hex board of arbitrary size,

the first player has a winning strategy.
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Proof. We know that one of the players has a winning strategy. Suppose that

the second player is the one. Because moves by the players are symmetric, it

is possible for the first player to adopt the second player’s winning strategy as

follows: The first player, on his first move, just colors in an arbitrarily chosen

hexagon. Subsequently, for each move by the other player, the first player

responds with the appropriate move dictated by second player’s winning

strategy. If the strategy requires that first player move in the spot that

he chose in his first turn and there are empty hexagons left, he just picks

another arbitrary spot and moves there instead.

Having an extra hexagon on the board can never hurt the first player —

it can only help him. In this way, the first player, too, is guaranteed to win,

implying that both players have winning strategies, a contradiction.

In 1981, Stefan Reisch, a professor of mathematics at the Universität

Bielefeld in Germany, proved that determining which player has a winning

move in a general Hex position is PSPACE-complete for arbitrary size Hex

boards [Rei81]. This means that it is unlikely that it’s possible to write

an efficient computer program for solving Hex on boards of arbitrary size.

For small boards, however, an Internet-based community of Hex enthusiasts

has made substantial progress (much of it unpublished). Jing Yang [Yan],

a member of this community, has announced the solution of Hex (and pro-

vided associated computer programs) for boards of size up to 9×9. Usually,

Hex is played on an 11× 11 board, for which a winning strategy for player I

is not yet known.

We will now prove that any colored standard Hex board contains a monochro-

matic crossing (and all such crossings have the same color), which means

that the game always ends in a win for one of the players. This is a purely

topological fact that is independent of the strategies used by the players.

In the following two sections, we will provide two different proofs of this

result. The first one is actually quite general and can be applied to non-

standard boards. The section is optional, hence the *. The second proof

has the advantage that it also shows that there can be no more than one

crossing, a statement that seems obvious but is quite difficult to prove.

10.2.2 Topology and Hex: a path of arrows*

The claim that any coloring of the board contains a monochromatic cross-

ing is actually the discrete analog of the 2-dimensional Brouwer fixed-point
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theorem, which we will prove in section 3.8. In this section, we provide a

direct proof.

In the following discussion, pre-colored hexagons are referred to as bound-

ary. Uncolored hexagons are called interior. Without loss of generality, we

may assume that the edges of the board are made up of pre-colored hexagons

(see figure). Thus, the interior hexagons are surrounded by hexagons on all

sides.

Theorem 10.2.6. For a completed standard Hex board with non-empty in-

terior and with the boundary divided into two disjoint yellow and two disjoint

blue segments, there is always at least one crossing between a pair of seg-

ments of like color.

Proof. Along every edge separating a blue hexagon and a yellow one, insert

an arrow so that the blue hexagon is to the arrow’s left and the yellow one

to its right. There will be four paths of such arrows, two directed toward

the interior of the board (call these entry arrows) and two directed away

from the interior (call these exit arrows), see Fig. 10.12.

Fig. 10.12. On an empty board the entry and exit arrows are marked. On
a completed board, a blue chain lies on the left side of the directed path.

Now, suppose the board has been arbitrarily filled with blue and yellow

hexagons. Starting with one of the entry arrows, we will show that it is

possible to construct a continuous path by adding arrows tail-to-head always

keeping a blue hexagon on the left and a yellow on the right.

In the interior of the board, when two hexagons share an edge with an

arrow, there is always a third hexagon which meets them at the vertex

toward which the arrow is pointing. If that third hexagon is blue, the next

arrow will turn to the right. If the third hexagon is yellow, the arrow will

turn to the left. See (a,b) of Fig. 10.13.

Loops are not possible, as you can see from (c) of Fig. 10.13. A loop cir-

cling to the left, for instance, would circle an isolated group of blue hexagons
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ba c

Fig. 10.13. In (a) the third hexagon is blue and the next arrow turns to
the right; in (b) — next arrow turns to the left; in (c) we see that in order
to close the loop an arrow would have to pass between two hexagons of the
same color.

surrounded by yellow ones. Because we started our path at the boundary,

where yellow and blue meet, our path will never contain a loop. Because

there are finitely many available edges on the board and our path has no

loops, it eventually must exit the board using via of the exit arrows.

All the hexagons on the left of such a path are blue, while those on the

right are yellow. If the exit arrow touches the same yellow segment of the

boundary as the entry arrow, there is a blue crossing (see Fig. 10.12). If it

touches the same blue segment, there is a yellow crossing.

10.2.3 Hex and Y

That there cannot be more than one crossing in the game of Hex seems

obvious until you actually try to prove it carefully. To do this directly, we

would need a discrete analog of the Jordan curve theorem, which says that

a continuous closed curve in the plane divides the plane into two connected

components. The discrete version of the theorem is slightly easier than the

continuous one, but it is still quite challenging to prove.

Thus, rather than attacking this claim directly, we will resort to a trick:

We will instead prove a similar result for a related, more general game —

the game of Y, also known as Tripod. Y was introduced in the 1950s by the

famous information theorist, Claude Shannon.

Our proof for Y will give us a second proof of the result of the last section,

that each completed Hex board contains a monochromatic crossing. Unlike

that proof, it will also show that there cannot be more than one crossing in

a complete board.

Example 10.2.7 (Game of Y). Y is played on a triangular board tiled

with hexagons. As in Hex, the two players take turns coloring in hexagons,

each using his assigned color. The goal for both players is to establish a Y,

a monochromatic connected region that meets all three sides of the triangle.

Thus, the terminal positions are the ones that contain a monochromatic Y.
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We can see that Hex is actually a special case of Y: Playing Y, starting

from the position shown in Fig. 10.14 is equivalent to playing Hex in the

empty region of the board.

Blue has a winning Y here. Reduction of Hex to Y.

Fig. 10.14. Hex is a special case of Y.

We will first show below that a filled-in Y board always contains a sin-

gle Y. Because Hex is equivalent to Y with certain hexagons pre-colored, the

existence and uniqueness of the chain crossing is inherited by Hex from Y.

Once we have established this, we can apply the strategy-stealing argu-

ment we gave for Hex to show that the first player to move has a winning

strategy.

Theorem 10.2.8. Any blue/yellow coloring of the triangular board contains

either contains a blue Y or a yellow Y, but not both.

Proof. We can reduce a colored board with sides of size n to one with sides of

size n− 1 as follows: Think of the board as an arrow pointing right. Except

for the left-most column of cells, each cell is the tip of a small arrow-shaped

cluster of three adjacent cells pointing the same way as the board. Starting

from the right, recolor each cell the majority color of the arrow that it tips,

removing the left-most column of cells altogether.

Continuing in this way, we can reduce the board to a single, colored cell.

Fig. 10.15. A step-by-step reduction of a colored Y board.
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We claim that the color of this last cell is the color of a winning Y on the

original board. Indeed, notice that any chain of connected blue hexagons

on a board of size n reduces to a connected blue chain of hexagons on the

board of size n − 1. Moreover, if the chain touched a side of the original

board, it also touches the corresponding side of the smaller board.

The converse statement is harder to see: if there is a chain of blue hexagons

connecting two sides of the smaller board, then there was a corresponding

blue chain connecting the corresponding sides of the larger board. The proof

is left as an exercise (Ex. 10.3).

Thus, there is a Y on a reduced board if and only if there was a Y on

the original board. Because the single, colored cell of the board of size one

forms a winning Y on that board, there must have been a Y of the same

color on the original board.

Because any colored Y board contains one and only one winning Y, it

follows that any colored Hex board contains one and only one crossing.

10.2.4 More general boards*

The statement that any colored Hex board contains exactly one crossing is

stronger than the statement that every sequence of moves in a Hex game

always leads to a terminal position. To see why it’s stronger, consider the

following variant of Hex, called Six-sided Hex.

Example 10.2.9 (Six-sided Hex). Six-sided Hex is just like ordinary Hex,

except that the board is hexagonal, rather than square. Each player is as-

signed 3 non-adjacent sides and the goal for each player is to create a crossing

in his color between any pair of his assigned sides.

Thus, the terminal positions are those that contain one and only one monochro-

matic crossing between two like-colored sides.

Note that in Six-sided Hex, there can be crossings of both colors in a com-

pleted board, but the game ends before a situation with these two crossings

can be realized.

The following general theorem shows that, as in standard Hex, there is

always at least one crossing.

Theorem 10.2.10. For an arbitrarily shaped simply-connected completed

Hex board with non-empty interior and the boundary partitioned into n blue

and and n yellow segments, with n ≥ 2, there is always at least one crossing

between some pair of segments of like color.
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Fig. 10.16. A filled-in Six-sided Hex board can have both blue and yellow
crossings. In a game when players take turns to move, one of the crossings
will occur first, and that player will be the winner.

The proof is very similar to that for standard Hex; however, with a larger

number of colored segments it is possible that the path uses an exit arrow

that lies on the boundary between a different pair of segments. In this case

there is both a blue and a yellow crossing (see Fig. 10.16).

Remark. We have restricted our attention to simply-connected boards (those

without holes) only for the sake of simplicity. With the right notion of entry

and exit points the theorem can be extended to practically any finite board

with non-empty interior, including those with holes.

10.2.5 Other partisan games played on graphs

We now discuss several other partisan games which are played on graphs.

For each of our examples, we can describe an explicit winning strategy for

the first player.

Example 10.2.11 (The Shannon Switching Game). The Shannon Switch-

ing Game, a partisan game similar to Hex, is played by two players, Cut and

Short, on a connected graph with two distinguished nodes, A and B. Short,

in his turn, reinforces an edge of the graph, making it immune to being cut.

Cut, in her turn, deletes an edge that has not been reinforced. Cut wins if
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she manages to disconnect A from B. Short wins if he manages to link A

to B with a reinforced path.

Short

AA

BBB

A

ShortCut

Fig. 10.17. Shannon Switching Game played on a 5 × 6 grid (the top and
bottom rows have been merged to the points A and B). Shown are the
first three moves of the game, with Short moving first. Available edges
are indicated by dotted lines, and reinforced edges by thick lines. Scissors
mark the edge that Short deleted.

There is a solution to the general Shannon Switching Game, but we will

not describe it here. Instead, we will focus our attention on a restricted,

simpler case: When the Shannon Switching Game is played on a graph that

is an L× (L+ 1) grid with the vertices of the top side merged into a single

vertex, A, and the vertices on the bottom side merged into another node, B,

then it is equivalent to another game, known as Bridg-It (it is also referred

to as Gale, after its inventor, David Gale).

Example 10.2.12 (Bridg-It). Bridg-It is played on a network of green and

black dots (see Fig. 10.18). Black, in his turn, chooses two adjacent black

dots and connects them with a line. Green tries to block Black’s progress

by connecting an adjacent pair of green dots. Connecting lines, once drawn,

may not be crossed.

Black’s goal is to make a path from top to bottom, while Green’s goal is

to block him by building a left-to-right path.

In 1956, Oliver Gross, a mathematician at the RAND Corporation, proved

that the player who moves first in Bridg-It has a winning strategy. Several

years later, Alfred B. Lehman [Leh64] (see also [Man96]), a professor of

computer science at the University of Toronto, devised a solution to the

general Shannon Switching Game.

Applying Lehman’s method to the restricted Shannon Switching Game
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B

A

Fig. 10.18. A completed game of Bridg-It and the corresponding Shannon
Switching Game. In Bridg-It, the black dots are on the square lattice, and
the green dots are on the dual square lattice. Only the black dots appear
in the Shannon Switching Game.

that is equivalent to Bridg-It, we will show that Short, if he moves first, has

a winning strategy. Our discussion will elaborate on the presentation found

in ([BCG82b]).

Before we can describe Short’s strategy, we will need a few definitions

from graph theory:

Definition 10.2.13. A tree is a connected undirected graph without cycles.

(i) Every tree must have a leaf, a vertex of degree one.

(ii) A tree on n vertices has n− 1 edges.

(iii) A connected graph with n vertices and n− 1 edges is a tree.

(iv) A graph with no cycles, n vertices, and n− 1 edges is a tree.

The proofs of these properties of trees are left as an exercise (Ex. 10.4).

Theorem 10.2.14. In a game of Bridg-It on an L× (L + 1) board, Short

has a winning strategy if he moves first.

Proof. Short begins by reinforcing an edge of the graph G, connecting A to

an adjacent dot, a. We identify A and a by “fusing” them into a single new

A. On the resulting graph, there are two edge-disjoint trees such that each

tree spans (contains all the nodes of) G.

Observe that the blue and red subgraphs in the 4 × 5 grid in Fig. 10.19

are such a pair of spanning trees: The blue subgraph spans every node, is

connected, and has no cycles, so it is a spanning tree by definition. The

red subgraph is connected, touches every node, and has the right number of

edges, so it is also a spanning tree by property (iii). The same construction

could be repeated on an arbitrary L× (L+ 1) grid.
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B

BB

A

A

a A

Fig. 10.19. Two spanning trees — the blue one is constructed by first join-
ing top and bottom using the left-most vertical edges, and then adding
other vertical edges, omitting exactly one edge in each row along an imag-
inary diagonal; the red tree contains the remaining edges. The two circled
nodes are identified.

B

A

Fig. 10.20. Cut separates the
blue tree into two compo-
nents.

e

A

B

Fig. 10.21. Short reinforces a
red edge to reconnect the two
components.

Using these two spanning trees, which necessarily connect A to B, we can

define a strategy for Short.

The first move by Cut disconnects one of the spanning trees into two

components (see Fig. 10.20), Short can repair the tree as follows: Because

the other tree is also a spanning tree, it must have an edge, e, that connects

the two components (see Fig. 10.21). Short reinforces e.

If we think of a reinforced edge e as being both red and blue, then the

resulting red and blue subgraphs will still be spanning trees for G. To see

this, note that both subgraphs will be connected, and they will still have n

edges and n−1 vertices. Thus, by property (iii) they will be trees that span

every vertex of G.

Continuing in this way, Short can repair the spanning trees with a rein-
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forced edge each time Cut disconnects them. Thus, Cut will never succeed

in disconnecting A from B, and Short will win.

Example 10.2.15 (Recursive Majority). Recursive Majority is played

on a complete ternary tree of height h (see Fig. 10.22). The players take

turns marking the leaves, player I with a “+” and player II with a “−.”
A parent node acquires the majority sign of its children. Because each

interior (non-leaf) has an odd number of children, its sign is determined

unambiguously. The player whose mark is assigned to the root wins.

This game always ends in a win for one of the players, so one of them has

a winning strategy.

1
2 3

1 2 31 2 31 2 3

Fig. 10.22. A ternary tree of height 2; the left-most leaf is denoted by 11.
Here player I wins the Recursive Majority game.

To describe our analysis, we will need to give each node of the tree a

name: Label each of the three branches emanating from a single node in

the following way: 1 denotes the left-most edge, 2 denotes the middle edge

and 3, the right-most edge. Using these labels, we can identify each node

below the root with the “zip-code” of the path from the root that leads to

it. For instance, the left-most edge is denoted by 11 . . . 1, a word of length h

consisting entirely of ones.

A strategy-stealing argument implies that the first player to move has the

advantage. We can describe his winning strategy explicitly: On his first

move, player I marks the leaf 11 . . . 1 with a plus. For the remaining even

number of leaves, he uses the following algorithm to pair them: The partner

of the left-most unpaired leaf is found by moving up through the tree to

the first common ancestor of the unpaired leaf with the leaf 11 . . . 1, moving

one branch to the right, and then retracing the equivalent path back down

(see Fig. 10.23). Formally, letting 1k be shorthand for a string of ones of

fixed length k ≥ 0 and letting w stand for an arbitrary fixed word of length

h− k − 1, player I pairs the leaves by the following map: 1k2w 7→ 1k3w.

Once the pairs have been identified, for every leaf marked with a “−” by

player II, player I marks its mate with a “+”.
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2

1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

1 3

1
2 3 1

2 3 1
2

3

Fig. 10.23. Red marks the left-most leaf and its path. Some sample pair-
mates are marked with the same shade of green or blue.

We can show by induction on h that player I is guaranteed to be the

winner in the left subtree of depth h− 1.

As for the other two subtrees of the same depth, whenever player II wins

in one, player I wins the other because each leaf in one of those subtrees is

paired with the corresponding leaf in the other. Hence, player I is guaranteed

to win two of the three subtrees, thus determining the sign of the root. A

rigorous proof of this statement is left to Exercise 10.5.

10.3 Brouwer’s fixed-point theorem via Hex

In this section, we present a proof of Theorem 3.8.2 via Hex. Thinking of

a Hex board as a hexagonal lattice, we can construct what is known as a

dual lattice in the following way: The nodes of the dual are the centers of

the hexagons and the edges link every two neighboring nodes (those are a

unit distance apart).

Coloring the hexagons is now equivalent to coloring the nodes.

Fig. 10.24. Hexagonal lattice and its dual triangular lattice.

This lattice is generated by two vectors u, v ∈ R2 as shown in the left of

Figure 10.25. The set of nodes can be described as {au + bv : a, b ∈ Z}.
Let’s put u = (0, 1) and v = (

√
3
2 ,

1
2). Two nodes x and y are neighbors if

‖x− y‖ = 1.
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T(u)

T(v)

u

v

Fig. 10.25. Action of G on the generators of the lattice.

We can obtain a more convenient representation of this lattice by applying

a linear transformation G defined by:

G(u) =

(

−
√
2

2
,

√
2

2

)

; G(v) = (0, 1).

Fig. 10.26. Under G an equilateral triangular lattice is transformed to an
equivalent lattice.

The game of Hex can be thought of as a game on the corrseponding

graph (see Fig. 10.26). There, a Hex move corresponds to coloring of one

of the nodes. A player wins if she manages to create a connected subgraph

consisting of nodes in her assigned color, which also includes at least one

node from each of the two sets of her boundary nodes.

The fact that any colored graph contains one and only one such subgraph

is inherited from the corresponding theorem for the original Hex board.

Proof of Brouwer’s theorem using Hex. As we remarked in section 10.2.1,

the fact that there is a winner in any play of Hex is the discrete analogue

of the two-dimensional Brouwer fixed-point theorem. We now use this fact

about Hex (proved as Theorem 10.2.6) to prove Brouwer’s theorem, at least

in dimension two. This is due to David Gale.

By an argument similar to the one in the proof of the No-Retraction

Theorem, we may restrict our attention to a unit square. Consider a con-

tinuous map T : [0, 1]2 −→ [0, 1]2. Component-wise we write: T (x) =

(T1(x), T2(x)). Suppose it has no fixed points. Then define a function
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f(x) = T (x)−x. The function f is never zero and continuous on a compact

set, hence ‖f‖ has a positive minimum ε > 0. In addition, as a continuous

map on a compact set, T is uniformly continuous, hence ∃ δ > 0 such that

‖x − y‖ < δ implies ‖T (x) − T (y)‖ < ε. Take such a δ with a further

requirement δ < (
√
2− 1)ε. (In particular, δ < ε√

2
.)

Consider a Hex board drawn in [0, 1]2 such that the distance between

neighboring vertices is at most δ, as shown in Fig. 10.27. Color a vertex v

on the board blue if |f1(v)| is at least ε/
√
2. If a vertex v is not blue, then

‖f(v)‖ ≥ ε implies that |f2(v)| is at least ε/
√
2; in this case, color v yellow.

We know from Hex that in this coloring, there is a winning path, say, in blue,

a

b

 [0,1]2

a

b

*

*

Fig. 10.27.

between certain boundary vertices a and b. For the vertex a∗, neighboring
a on this blue path, we have 0 < a∗1 ≤ δ. Also, the range of T is in [0, 1]2.

Hence, since |T1(a∗) − a∗1| ≥ ε/
√
2 (as a∗ is blue), and by the requirement

on δ, we necessarily have T1(a
∗) − a∗1 ≥ ε/

√
2. Similarly, for the vertex b∗,

neighboring b, we have T1(b
∗) − b∗1 ≤ −ε/

√
2. Examining the vertices on

this blue path one-by-one from a∗ to b∗, we must find neighboring vertices

u and v such that T1(u)− u1 ≥ ε/
√
2 and T1(v)− v1 ≤ −ε/

√
2. Therefore,

T1(u)− T1(v) ≥ 2
ε√
2
− (v1 − u1) ≥

√
2ε− δ > ε.

However, ‖u−v‖ ≤ δ should also imply ‖T (u)−T (v)‖ < ε, a contradiction.

Exercises

10.1 In the game of Chomp, what is the Sprague-Grundy function of the

2× 3 rectangular piece of chocolate?
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10.2 Recall the game of Y , shown in Fig. 10.14. Blue puts down blue

hexagons, and Yellow puts down yellow hexagons. This exercise

is to prove that the first player has a winning strategy by using

the idea of strategy stealing that was used to solve the game of

Chomp. The first step is to show that from any position, one of

the players has a winning strategy. In the second step, assume that

the second player has a winning strategy, and derive a contradiction.

10.3 Consider the reduction of a Y board to a smaller one described in

section 10.2.1. Show that if there is a Y of blue hexagons connecting

the three sides of the smaller board, then there was a corresponding

blue Y connecting the sides of the larger board.

10.4 Prove the following statements. Hint: use induction.

(a) Every tree must have a leaf — a vertex of degree one.

(b) A tree on n vertices has n− 1 edges.

(c) A connected graph with n vertices and n− 1 edges is a tree.

(d) A graph with no cycles, n vertices and n− 1 edges is a tree.

10.5 For the game of Recursive majority on a ternary tree of depth h,

use induction on the depth to prove that the strategy described in

Example 10.2.15 is indeed a winning strategy for player I.

10.6 Consider a game of Nim with four piles, of sizes 9, 10, 11, 12.

(a) Is this position a win for the next player or the previous player

(assuming optimal play)? Describe the winning first move.

(b) Consider the same initial position, but suppose that each player

is allowed to remove at most 9 chips in a single move (other rules

of Nim remain in force). Is this an N- or P-position?

10.7 Consider a game where there are two piles of chips. On a players

turn, he may remove between 1 and 4 chips from the first pile, or

else remove between 1 and 5 chips from the second pile. The person,

who takes the last chip wins. Determine for which m,n ∈ N it is

the case that (m,n) ∈ P.

10.8 For the game of Moore’s Nim, the proof of Lemma 10.1.16 gave a

procedure which, for N-position x, finds a y which is P-position

and for which it is legal to move to y. Give an example of a legal
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move from an N-position to a P-position which is not of the form

described by the procedure.

10.9 In the game of Nimble, a finite number of coins are placed on a row

of slots of finite length. Several coins can occupy a given slot. In any

given turn, a player may move one of the coins to the left, by any

number of places. The game ends when all the coins are at the left-

most slot. Determine which of the starting positions are P-positions.

10.10 Recall that the subtraction game with subtraction set {a1, . . . , am}
is that game in which a position consists of a pile of chips, and

in which a legal move is to remove ai chips from the pile, for

some i ∈ {1, . . . ,m}. Find the Sprague-Grundy function for the

subtraction game with subtraction set {1, 2, 4}.

10.11 Let G1 be the subtraction game with subtraction set S1 = {1, 3, 4},
G2 be the subtraction game with S2 = {2, 4, 6}, and G3 be the

subtraction game with S3 = {1, 2, . . . , 20}. Who has a winning

strategy from the starting position (100, 100, 100) in G1 +G2 +G3?

10.12 (a) Find a direct proof that equivalence for games is a transitive

relation.

(b) Show that it is reflexive and symmetric and conclude that it is

indeed an equivalence relation.

10.13 Prove that the sum of two progressively bounded impartial combi-

natorial games is a P-position if and only if the games are equivalent.

10.14 Show that if G1 and G2 are equivalent, and G3 is a third game,

then G1 +G3 and G2 +G3 are equivalent.

10.15 By using the properties of mex, show that a position x is in P if

and only if g(x) = 0. This is the content of Lemma 10.1.27 and the

proof is outlined in the text.

10.16 Consider the game which is played with piles of chips like Nim, but

with the additional move allowed of breaking one pile of size k > 0

into two nonempty piles of sizes i > 0 and k − i > 0. Show that

the Sprague-Grundy function g for this game, when evaluated at

positions with a single pile, satisfies g(3) = 4. Find g(1000), that is,
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g evaluated at a position with a single pile of size 1000.

Given a position consisting of piles of sizes 13, 24, and 17, how

would you play?

10.17 Yet another relative of Nim is played with the additional rule that

the number of chips taken in one move can only be 1, 3 or 4. Show

that the Sprague-Grundy function g for this game, when evaluated

at positions with a single pile, is periodic: g(n+ p) = g(n) for some

fixed p and all n. Find g(75), that is, g evaluated at a position with

a single pile of size 75.

Given a position consisting of piles of sizes 13, 24, and 17, how

would you play?

10.18 Consider the game of up-and-down rooks played on a standard chess-

board. Player I has a set of white rooks initially located at level 1,

while player II has a set of black rooks at level 8. The players take

turns moving their rooks up and down until one of the players has

no more moves, at which point the other player wins. This game is

not progressively bounded. Yet an optimal strategy exists and can

be obtained by relating this game to a Nim with 8 piles.

h

a b c d e f g h

a b c d e f g

10.19 Two players take turns placing dominos on an n×1 board of squares,

where each domino covers two squares, and dominos cannot overlap.

The last player to play wins.

(a) Find the Sprague-Grundy function for n ≤ 12.

(b) Where would you place the first domino when n = 11?

(c) Show that for n even and positive, the first player can guarantee

a win.
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Random-turn and auctioned-turn games

In Chapter 10 we considered combinatorial games, in which the right to

move alternates between players; and in Chapters 2 and 3 we considered

matrix-based games, in which both players (usually) declare their moves

simultaneously, and possible randomness decides what happens next. In

this chapter, we consider some games which are combinatorial in nature,

but the right to make the next move depends on randomness or some other

procedure between the players. In a random-turn game the right to make

a move is determined by a coin-toss; in a Richman game, each player offers

money to the other player for the right to make the next move, and the

player who offers more gets to move. (At the end of the Richman game, the

money has no value.) This chapter is based on the work in [LLP+99] and

[PSSW07].

11.1 Random-turn games defined

Suppose we are given a finite directed graph — a set of vertices V and a

collection of arrows leading between pairs of vertices — on which a distin-

guished subset ∂V of the vertices are called the boundary or the terminal

vertices, and each terminal vertex v has an associated payoff f(v). Vertices

in V \ ∂V are called the internal vertices. We assume that from every

node there is a path to some terminal vertex.

Play a two-player, zero-sum game as follows. Begin with a token on some

vertex. At each turn, players flip a fair coin, and the winner gets to move the

token along some directed edge. The game ends when a terminal vertex v

is reached; at this point II pays I the associated payoff f(v).

Let u(x) denote the value of the game begun at vertex x. (Note that

since there are infinitely many strategies if the graph has cycles, it should be

proved that this exists.) Suppose that from x there are edges to x1, . . . , xk.

212
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Claim:

u(x) =
1

2

(

max
i
{u(xi)}+min

j
{u(xj)}

)

. (11.1)

More precisely, if SI denotes strategies available to player I, and SII those

available to player II, τ is the time the game ends, and Xτ is the terminal

state reached, write

uI(x) =

{

supSI
{infSII

{Ef(Xτ )}} , if τ <∞
−∞, if τ =∞.

Likewise, let

uII(x) =

{

inf SII
{

supSI
{Ef(Xτ )}

}

, if τ <∞
+∞, if τ =∞.

Then both uI and uII satisfy (11.1).

We call functions satisfying (11.1) “infinity-harmonic”. In the original

paper by Lazarus, Loeb, Propp, and Ullman, [LLP+99] they were called

“Richman functions”.

11.2 Random-turn selection games

Now we describe a general class of games that includes the famous game of

Hex. Random-turn Hex is the same as ordinary Hex, except that instead of

alternating turns, players toss a coin before each turn to decide who gets to

place the next stone. Although ordinary Hex is famously difficult to analyze,

the optimal strategy for random-turn Hex turns out to be very simple.

Let S be an n-element set, which will sometimes be called the board, and

let f be a function from the 2n subsets of S to R. A selection game is

played as follows: the first player selects an element of S, the second player

selects one of the remaining n−1 elements, the first player selects one of the

remaining n − 2, and so forth, until all elements have been chosen. Let S1
and S2 signify the sets chosen by the first and second players respectively.

Then player I receives a payoff of f(S1) and player II a payoff of −f(S1).
(Selection games are zero-sum.) The following are examples of selection

games:

11.2.1 Hex

Here S is the set of hexagons on a rhombus-shaped L×L hexagonal grid, and

f(S1) is 1 if S1 contains a left-right crossing, −1 otherwise. In this case, once
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S1 contains a left-right crossing or S2 contains an up-down crossing (which

precludes the possibility of S1 having a left-right crossing), the outcome is

determined and there is no need to continue the game.

1
2

3

4
5

6
7

8
9

10
11

12

13
14
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16

17
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19
20

21
22

23

24
25

26
27

28
29

30
31

32
33

34
35

36

37
38

Fig. 11.1. A game between a human player and a program by David Wilson
on a 15× 15 board.

We will also sometimes consider Hex played on other types of boards. In

the general setting, some hexagons are given to the first or second players

before the game has begun. One of the reasons for considering such games

is that after a number of moves are played in ordinary Hex, the remaining

game has this form.

11.2.2 Bridg-It

Bridg-It is another example of a selection game. The random-turn version is

just like regular Bridg-It, but the right to move is determined by a coin-toss.

Player I attempts to make a vertical crossing by connecting the blue dots

and player II — a horizontal crossing by bridging the red ones.

10

8

7

5

6

5
4

3

2 1

4

3

1

13

12

11
9

8

107
11

2

6

12

13

9

Fig. 11.2. The game of random-turn Bridgit and the corresponding Shan-
non’s edge-switching game; circled numbers give the order of turns.

In the corresponding Shannon’s edge-switching game, S is a set of edges

connecting the nodes on an (L + 1) × L grid with top nodes merged into

one (similarly for the bottom nodes). In this case, f(S1) is 1 if S1 contains

a top-to-bottom crossing and −1 otherwise.
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11.2.3 Surround

The famous game of “Go” is not a selection game (for one, a player can

remove an opponent’s pieces), but the game of “Surround,” in which, as in

Go, surrounding area is important, is a selection game. In this game S is

the set of n hexagons in a hexagonal grid (of any shape). At the end of

the game, each hexagon is recolored to be the color of the outermost cluster

surrounding it (if there is such a cluster). The payoff f(S1) is the number

of hexagons recolored black minus the number of hexagons recolored white.

(Another natural payoff function is f∗(S1) = sign(f(S1)).)

Fig. 11.3. A completed game of Surround before recoloring surrounded
territory (on left), and after recoloring (on right). 10 black spaces were
recolored white, and 12 white spaces were recolored black, so f(S1) = 2.

11.2.4 Full-board Tic-Tac-Toe

Here S is the set of spaces in a 3 × 3 grid, and f(S1) is the number of

horizontal, vertical, or diagonal lines in S1 minus the number of horizontal,

vertical, or diagonal lines in S\S1. This is different from ordinary tic-tac-toe

in that the game does not end after the first line is completed.

11.2.5 Recursive majority

Suppose we are given a complete ternary tree of depth h. S is the set of

leaves. Players will take turns marking the leaves, player I with a + and

player II with a −. A parent node acquires the same sign as the major-

ity of its children. The player whose mark is assigned to the root wins. In

the random-turn version the sequence of moves is determined by a coin-toss.

Let S1(h) be a subset of the leaves of the complete ternary tree of depth h

(the nodes that have been marked by I). Inductively, let S1(j) be the set of

nodes at level j such that the majority of their children at level j +1 are in
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Fig. 11.4. Random-turn tic-tac-toe played out until no new rows can be
constructed. f(S1) = 1.

3

1

2 3 1 2 3 1 2

5

1
2 3

1

42 3 6

Fig. 11.5. Here player II wins; the circled numbers give the order of the
moves.

S1(j +1). The payoff function f(S1) for the recursive three-fold majority is

−1 if S1(0) = ∅ and +1 if S1(0) = {root}.

11.2.6 Team captains

Two team captains are choosing baseball teams from a finite set S of n play-

ers for the purpose of playing a single game against each other. The payoff

f(S1) for the first captain is the probability that the players in S1 (together

with the first captain) would beat the players in S2 (together with the sec-

ond captain). The payoff function may be very complicated (depending on

which players know which positions, which players have played together be-

fore, which players get along well with which captain, etc.). Because we

have not specified the payoff function, this game is as general as the class of

selection games.

Every selection game has a random-turn variant in which at each turn a

fair coin is tossed to decide who moves next.

Consider the following questions:
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(i) What can one say about the probability distribution of S1 after a

typical game of optimally played random-turn Surround?

(ii) More generally, in a generic random-turn selection game, how does

the probability distribution of the final state depend on the payoff

function f?

(iii) Less precise: Are the teams chosen by random-turn Team captains

“good teams” in any objective sense?

The answers are surprisingly simple.

11.3 Optimal strategy for random-turn selection games

A (pure) strategy for a given player in a random-turn selection game is a

function M which maps each pair of disjoint subsets (T1, T2) of S to an

element of S. Thus, M(T1, T2) indicates the element that the player will

pick if given a turn at a time in the game when player I has thus far picked

the elements of T1 and player II — the elements of T2. Let’s denote by

T3 = S\(T1 ∪ T2) the set of available moves.

Denote by E(T1, T2) the expected payoff for player I at this stage in the

game, assuming that both players play optimally with the goal of maximiz-

ing expected payoff. As is true for all finite perfect-information, two-player

games, E is well defined, and one can compute E and the set of possi-

ble optimal strategies inductively as follows. First, if T1 ∪ T2 = S, then

E(T1, T2) = f(T1). Next, suppose that we have computed E(T1, T2) when-

ever |T3| ≤ k. Then if |T3| = k + 1, and player I has the chance to move,

player I will play optimally if and only if she chooses an s from T3 for which

E(T1 ∪ {s}, T2) is maximal. (If she chose any other s, her expected payoff

would be reduced.) Similarly, player II plays optimally if and only if she

minimizes E(T1, T2 ∪ {t}) at each stage. Hence

E(T1, T2) =
1

2
(max
s∈T3

E(T1 ∪ {s}, T2) + min
t∈T3

E(T1, T2 ∪ {t}).

We will see that the maximizing and the minimizing moves are actually the

same.

The foregoing analysis also demonstrates a well-known fundamental fact

about finite, turn-based, perfect-information games: both players have op-

timal pure strategies (i.e., strategies that do not require flipping coins),

and knowing the other player’s strategy does not give a player any advan-

tage when both players play optimally. (This contrasts with the situation in

which the players play “simultaneously” as they do in Rock-Paper-Scissors.)

We should remark that for games such as Hex the terminal position need
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not be of the form T1 ∪ T2 = S. If for some (T1, T2) for any T̃ such that

T̃ ⊃ T1 and T̃ ∩ T2 = ∅ we have that f(T̃ ) = C, then E(T1, T2) = C.

Theorem 11.3.1. The value of a random-turn selection game is the expec-

tation of f(T ) when a set T is selected randomly and uniformly among all

subsets of S. Moreover, any optimal strategy for one of the players is also

an optimal strategy for the other player.

Proof. If player II plays any optimal strategy, player I can achieve the ex-

pected payoff E[f(T )] by playing exactly the same strategy (since, when

both players play the same strategy, each element will belong to S1 with

probability 1/2, independently). Thus, the value of the game is at least

E[f(T )]. However, a symmetric argument applied with the roles of the play-

ers interchanged implies that the value is no more than E[f(T )].
Suppose that M is an optimal strategy for the first player. We have seen

that when both players use M , the expected payoff is E[f(T )] = E(∅,∅).

Since M is optimal for player I, it follows that when both players use M

player II always plays optimally (otherwise, player I would gain an advan-

tage, since she is playing optimally). This means thatM(∅,∅) is an optimal

first move for player II, and therefore every optimal first move for player I

is an optimal first move for player II. Now note that the game started at

any position is equivalent to a selection game. We conclude that every op-

timal move for one of the players is an optimal move for the other, which

completes the proof.

If f is identically zero, then all strategies are optimal. However, if f is

generic (meaning that all of the values f(S1) for different subsets S1 of S

are linearly independent over Q), then the preceding argument shows that

the optimal choice of s is always unique and that it is the same for both

players. We thus have the following result:

Theorem 11.3.2. If f is generic, then there is a unique optimal strategy

and it is the same strategy for both players. Moreover, when both players

play optimally, the final S1 is equally likely to be any one of the 2n subsets

of S.

Theorem 11.3.1 and Theorem 11.3.2 are in some ways quite surprising. In

the baseball team selection, for example, one has to think very hard in order

to play the game optimally, knowing that at each stage there is exactly one

correct choice and that the adversary can capitalize on any miscalculation.

Yet, despite all of that mental effort by the team captains, the final teams

look no different than they would look if at each step both captains chose

players uniformly at random.
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Also, for illustration, suppose that there are only two players who know

how to pitch and that a team without a pitcher always loses. In the alternat-

ing turn game, a captain can always wait to select a pitcher until just after

the other captain selects a pitcher. In the random-turn game, the captains

must try to select the pitchers in the opening moves, and there is an even

chance the pitchers will end up on the same team.

Theorem 11.3.1 and Theorem 11.3.2 generalize to random-turn selection

games in which the player to get the next turn is chosen using a biased

coin. If player I gets each turn with probability p, independently, then

the value of the game is E[f(T )], where T is a random subset of S for

which each element of S is in T with probability p, independently. For the

corresponding statement of the proposition to hold, the notion of “generic”

needs to be modified. For example, it suffices to assume that the values of

f are linearly independent over Q[p]. The proofs are essentially the same.

11.4 Win-or-lose selection games

We say that a game is a win-or-lose game if f(T ) takes on precisely two

values, which we may as well assume to be −1 and 1. If S1 ⊂ S and s ∈ S,
we say that s is pivotal for S1 if f(S1∪{s}) 6= f(S1 \{s}). A selection game

is monotone if f is monotone; that is, f(S1) ≥ f(S2) whenever S1 ⊃ S2.

Hex is an example of a monotone, win-or-lose game. For such games, the

optimal moves have the following simple description.

Lemma 11.4.1. In a monotone, win-or-lose, random-turn selection game,

a first move s is optimal if and only if s is an element of S that is most

likely to be pivotal for a random-uniform subset T of S. When the position

is (S1, S2), the move s in S \ (S1 ∪ S2) is optimal if and only if s is an

element of S \ (S1 ∪ S2) that is most likely to be pivotal for S1 ∪ T , where T
is a random-uniform subset of S \ (S1 ∪ S2).
The proof of the lemma is straightforward at this point and is left to the

reader.

For win-or-lose games, such as Hex, the players may stop making moves

after the winner has been determined, and it is interesting to calculate how

long a random-turn, win-or-lose, selection game will last when both players

play optimally. Suppose that the game is a monotone game and that, when

there is more than one optimal move, the players break ties in the same way.

Then we may take the point of view that the playing of the game is a (pos-

sibly randomized) decision procedure for evaluating the payoff function f

when the items are randomly allocated. Let ~x denote the allocation of the
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items, where xi = ±1 according to whether the ith item goes to the first or

second player. We may think of the xi as input variables, and the playing

of the game is one way to compute f(~x). The number of turns played is the

number of variables of ~x examined before f(~x) is computed. We may use

some inequalities from the theory of Boolean functions to bound the average

length of play.

Let Ii(f) denote the influence of the i
th bit on f (i.e., the probability that

flipping xi will change the value of f(~x)). The following inequality is from

O’Donnell and Servedio [OS04]:

∑

i

Ii(f) = E

[

∑

i

f(~x)xi

]

= E

[

f(~x)
∑

i

xi1xi examined

]

≤ (by Cauchy-Schwarz)

√

√

√

√

√E[f(~x)2]E









∑

i: xi examined

xi





2



=

√

√

√

√

√E









∑

i: xi examined

xi





2

 =
√

E[# bits examined] . (11.2)

The last equality is justified by noting that E[xi xj 1xi and xj both examined] = 0

when i 6= j, which holds since conditioned on xi being examined before xj,

conditioned on the value of xi, and conditioned on xj being examined, the

expected value of xj is zero. By (11.2) we have

E[# turns] ≥
[

∑

i

Ii(f)

]2

.

We shall shortly apply this bound to the game of random-turn Recursive

Majority. An application to Hex can be found in the notes for this chapter.

11.4.1 Length of play for random-turn Recursive Majority

In order to compute the probability that flipping the sign of a given leaf

changes the overall result, we can compute the probability that flipping the

sign of a child will flip the sign of its parent along the entire path that

connects the given leaf to the root. Then, by independence, the probability

at the leaf will be the product of the probabilities at each ancestral node on

the path.

For any given node, the probability that flipping its sign will change the
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sign of the parent is just the probability that the signs of the other two

siblings are distinct.

2

2
1 3 2

1 3 2
1 3 2

1 3

?

?

?

?

?

1 3

Fig. 11.6.

When none of the leaves are filled this probability is p = 1/2. This holds

all along the path to the root, so the probability that flipping the sign of

leaf i will flip the sign of the root is just Ii(f) =
(

1
2

)h
. By symmetry this is

the same for every leaf.

We now use (11.2) to produce the bound:

E[# turns] ≥
[

∑

i

Ii(f)

]2

=

(

3

2

)2h

.

11.5 Richman games

Richman games were suggested by the mathematician David Richman, and

analyzed by Lazarus, Loeb, Propp, and Ullman in 1995 [LLPU96]. Begin

with a finite, directed, acyclic graph, with two distinguished terminal ver-

tices, labeled b and r. Player Blue tries to reach b, and player Red tries to

reach r. Call the payoff function R, and let R(b) = 0, R(r) = 1. Play as

in the random-turn game setup above, except instead of a coin flip, players

bid for the right to make the next move. The player who bids the larger

amount pays that amount to the other, and moves the token along a directed

edge of her choice. In the case of a tie, they flip a coin to see who gets to

buy the next move. In these games there is also a natural infinity-harmonic

(Richman) function, the optimal bids for each player.

Let R+(v) = maxv w R(w) and R
−(v) = minv w R(w), where the max-

ima and minima are over vertices w for which there exists a directed path

leading from v to w. Extend R to the interior vertices by

R(v) =
1

2
(R+(v) +R−(v)).

Note that R is a Richman function.
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Fig. 11.7.

Theorem 11.5.1. Suppose Blue has $x, Red has $y, and the current posi-

tion is v. If
x

x+ y
> R(v) (11.3)

holds before Blue bids, and Blue bids [R(v)−R(u)](x+y), where v  u and

R(u) = R−(v), then the inequality (11.3) holds after the next player moves,

provided Blue moves to u if he wins the bid.

Proof. There are two cases to analyze.

Case I: Blue wins the bid. After this move, Blue has $x′ = x − [R(v) −
R(u)](x+ y) dollars. We need to show that x′

x+y > R(u).

x′

x+ y
> R(u) =

x

x+ y
− [R(v) −R(u)] > R(v)− [R(v) −R(u)] = R(u).

Case II: Red wins the bid. Now Blue has $x′ ≥ x + [R(v) − R(u)](x + y)

dollars. Note that if R(w) = R+(v), then [R(v)−R(u)] = [R(w) −R(v)].
x′

x+ y
≥ x

x+ y
+ [R(w)−R(v)] ≥ R(w),

and by definition of w, if z is Red’s choice, R(w) ≥ R(z).

Corollary 11.5.2. If (11.3) holds at the beginning of the game, Blue has a

winning strategy.

Proof. When Blue loses, R(v) = 1, but x
x+y ≤ 1.
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Corollary 11.5.3. If

x

x+ y
< R(v)

holds at the beginning of the game, Red has a winning strategy.

Proof. Recolor the vertices, and replace R with 1−R.

Remark. The above strategy is, in effect, to assume the opponent has the

critical amount of money, and apply the first strategy. There are, in fact,

many winning strategies if (11.3) holds.

Exercises

11.1 Generalize the proofs of Theorem 11.3.1 and Theorem 11.3.2 further

so as to include the following two games:

a) Restaurant selection

Two parties (with opposite food preferences) want to select a dinner

location. They begin with a map containing 2n distinct points in R2,

indicating restaurant locations. At each step, the player who wins a

coin toss may draw a straight line that divides the set of remaining

restaurants exactly in half and eliminate all the restaurants on one

side of that line. Play continues until one restaurant z remains, at

which time player I receives payoff f(z) and player II receives −f(z).

b) Balanced team captains

Suppose that the captains wish to have the final teams equal in size

(i.e., there are 2n players and we want a guarantee that each team

will have exactly n players in the end). Then instead of tossing coins,

the captains may shuffle a deck of 2n cards (say, with n red cards and

n black cards). At each step, a card is turned over and the captain

whose color is shown on the card gets to choose the next player.

11.2 Recursive Majority on b-ary trees Let b = 2r + 1, r ∈ N. Consider

the game of recursive majority on a b-ary tree of deapth h. For

each leaf, determine the probability that flipping the sign of that

leaf would change the overall result.

11.3 Even if y is unknown, but (11.3) holds, Blue still has a winning
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strategy, which is to bid

(

1− R(u)

R(v)

)

x.

Prove this.

11.6 Additional notes on random-turn Hex

11.6.1 Odds of winning on large boards under biased play.

In the game of Hex, the propositions discussed earlier imply that the proba-

bility that player I wins is given by the probability that there is a left-right

crossing in independent Bernoulli percolation on the sites (i.e., when the

sites are independently and randomly colored black or white). One perhaps

surprising consequence of the connection to Bernoulli percolation is that,

if player I has a slight edge in the coin toss and wins the coin toss with

probability 1/2 + ε, then for any r > 0 and any ε > 0 and any δ > 0, there

is a strategy for player I that wins with probability at least 1 − δ on the

L× rL board, provided that L is sufficiently large.

We do not know if the correct move in random-turn Hex can be found

in polynomial time. On the other hand, for any fixed ε a computer can

sample O(L4ε−2 log(L4/ε)) percolation configurations (filling in the empty

hexagons at random) to estimate which empty site is most likely to be pivotal

given the current board configuration. Except with probability O(ε/L2),

the computer will pick a site that is within O(ε/L2) of being optimal. This

simple randomized strategy provably beats an optimal opponent (50 − ε)%
of time.
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Fig. 11.8. Random-turn Hex on boards of size 11× 11 and 63 × 63 under
(near) optimal play.
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Typical games under optimal play.

What can we say about how long an average game of random-turn Hex

will last, assuming that both players play optimally? (Here we assume that

the game is stopped once a winner is determined.) If the side length of

the board is L, we wish to know how the expected length of a game grows

with L (see Figure 11.8 for games on a large board). Computer simulations

on a variety of board sizes suggest that the exponent is about 1.5–1.6. As

far as rigorous bounds go, a trivial upper bound is O(L2). Since the game

does not end until a player has found a crossing, the length of the shortest

crossing in percolation is a lower bound, and empirically this distance grows

as L1.1306±0.0003 [Gra99], where the exponent is known to be strictly larger

than 1. We give a stronger lower bound:

Theorem 11.6.1. Random-turn Hex under optimal play on an order L

board, when the two players break ties in the same manner, takes at least

L3/2+o(1) time on average.

Proof. To use the O’Donnell-Servedio bound (11.2), we need to know the

influence that the sites have on whether or not there is a percolation crossing

(a path of black hexagons connecting the two opposite black sides). The

influence Ii(f) is the probability that flipping site i changes whether there is

a black crossing or a white crossing. The “4-arm exponent” for percolation

is 5/4 [SW01] (as predicted earlier in [Con89]), so Ii(f) = L−5/4+o(1) for

sites i “away from the boundary,” say in the middle ninth of the region.

Thus
∑

i Ii(f) ≥ L3/4+o(1), so E[# turns] ≥ L3/2+o(1).

An optimally played game of random-turn Hex on a small board may oc-

casionally have a move that is disconnected from the other played hexagons,

as the game in Figure 11.9 shows. But this is very much the exception

rather than the rule. For moderate- to large-sized boards, it appears that in

almost every optimally played game, the set of played hexagons remains a

connected set throughout the game (which is in sharp contrast to the usual

game of Hex). We do not have an explanation for this phenomenon, nor is

it clear to us if it persists as the board size increases beyond the reach of

simulations.

11.7 Random-turn Bridg-It

Next we consider the random-turn version of Bridg-It or the Shannon Switch-

ing Game. Just as random-turn Hex is connected to site percolation on the

triangular lattice, where the vertices of the lattice (or equivalently faces of
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Fig. 11.9. A rare occurrence — a game of random-turn Hex under (near)
optimal play with a disconnected play.

the hexagonal lattice) are independently colored black or white with prob-

ability 1/2, random-turn Bridg-It is connected to bond percolation on the

square lattice, where the edges of the square lattice are independently col-

ored black or white with probability 1/2. We don’t know the optimal strat-

egy for random-turn Bridg-It, but as with random-turn Hex, one can make

a randomized algorithm that plays near optimally. Less is known about

bond percolation than site percolation, but it is believed that the cross-

ing probabilities for these two processes are asymptotically the same on

“nice” domains [LPSA94], so that the probability that Cut wins in random-

turn Bridg-It is well approximated by the probability that a player wins in

random-turn Hex on a similarly shaped board.
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1935–36.
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