Homework \# 1

1.1.3 a) If the tickets are drawn with replacement, then, as in Example 1, there are n^{2} equally likely outcomes. There is just one pair in which the first number is 1 and the second number is 2 , so P (first ticket is 1 and second ticket is 2) $=1 / n^{2}$.
b) The event (the numbers on the two tickets are consecutive integers) consists of $n-1$ outcomes: $(1,2),(2,3), \ldots(n-1, n)$. So its probability is $(n-1) / n^{2}$.
c) Same as Problem 3 of Example 3. Answer: $(1-1 / n) / 2$
d) If the draws are made without replacement, then there are only $n^{2}-n$ equally likely possible outcomes, since we have to exclude the outcomes $(1,1),(2,2), \ldots$, (n, n). So replace the denominators in a) through c) by $n(n-1)$.
1.1.6 a) $52 \times 52=2704$
b) $(52 \times 4) /(52 \times 52)=1 / 13$
c) Same as b)
d) $(4 \times 4) /(52 \times 52)=1 / 169$
e) $P($ at least one ace $)=P($ first card ace $)+P($ second card ace $)-P$ (both cards aces) $=\frac{1}{13}+\frac{1}{13}-\frac{1}{169}=\frac{25}{169}$.
1.1.8 a-d) As in Example 1.1.3, the outcome space consists of n^{2} equally likely pairs of numbers, each number between 1 and n. The event "the maximum of the two numbers is less than or equal to $x "$ is represented by the set of pairs having both entries less than or equal to x. There are x^{2} possible pairs of this type, so for x $=0$ to $n, P($ maximum $\leq x)=x^{2} / n^{2}$; for $x=1$ to n,

$$
\begin{aligned}
P(x) & =P(\text { maximum is exactly } x) \\
& =P(\text { maximum } \leq x)-P(\text { maximum } \leq x-1) \\
& =x^{2} / n^{2}-(x-1)^{2} / n^{2} \\
& =(2 x-1) / n^{2} .
\end{aligned}
$$

e) Use the form $P(1)=1^{2} / n^{2}, P(2)=2^{2} / n^{2}-1^{2} / n^{2}, P(3)=3^{2} / n^{2}-2^{2} / n^{2}$, etc. to see that the sum telescopes to give $\sum_{x=1}^{n} P(x)=n^{2} / n^{2}=1$. So the formula for $P(x)$ results in a probability distribution.
Remark. It follows that $\sum_{x=1}^{n}(2 x-1)=n^{2}$. In other words, the sum of the first n odd numbers is n^{2}, a fact which you can check in other ways.
1.3.4 a) Yes: $\{0,1\}$
b) Yes: $\{1\}$
c) No. This is a subset of the event $\{1\}$ but it is not identical to $\{1\}$ because the event (first toss tails, second toss heads) also is a subset of $\{1\}$.
d) Yes: $\{1,2\}$
1.3.8 a) $A \cup B=$ "male or undeclared".

$$
P(A \cup B)=P(A)+P(B)-P(A B)=0.6+0.4-0.2=0.8
$$

b) $A^{c}=$ "female"

$$
P\left(A^{c}\right)=1-P(A)=0.4
$$

c) $B^{c}=$ "declared major"
$P\left(B^{c}\right)=0.6$
d) $A^{c} B=$ "female and undeclared"
$P\left(A^{c} B\right)=P(B)-P(A B)=0.4-0.2=0.2$
e) $A \cup B^{c}=$ "male or declared".
$P\left(A \cup B^{c}\right)=P\left[\left(A^{c} B\right)^{c}\right]=1-0.2=0.8$
f) $A^{c} B^{c}=$ "female and declared" $P\left(A^{c} B^{c}\right)=P\left[(A \cup B)^{c}\right]=1-0.8=0.2$

