Homework \# 10

5.1.6 a) $P($ Jack arrives at least two minutes before Jill $)=\frac{(1 / 2) 13^{2}}{15^{2}} \approx 0.376$
b) Let $F=\{$ first person arrives before $12: 05\}$ and $L=\{$ last person arrives after 12:10\} Then,

$$
\begin{aligned}
P(F L) & =1-P\left((F L)^{c}\right)=1-P\left(F^{c} \cup L^{c}\right) \\
& =1-P\left(F^{c}\right)-P\left(L^{c}\right)+P\left(F^{c} \cap L^{c}\right) \\
& =1-\left(\frac{10}{15}\right)^{10}-\left(\frac{10}{15}\right)^{10}+\left(\frac{5}{15}\right)^{10} \\
& =0.965
\end{aligned}
$$

5.1.9 Standardise the length of the stick to be 1 (the solution clearly will not depend on the length of the stick!). Look at one end of the stick, and let X and Y denote the distances from that end of the stick to the break points. Then X and Y are independent uniform $(0,1)$ random variables. Let L denote the minimum of X and Y, and R the maximum. (L to suggest left, R to suggest right.) Then the lengths of the broken pieces can be expessed as $L, R-L, 1-R$. To form a triangle, the maximum of these three should be less than the sum of the rest. That is,

$$
\text { triangle } \Longleftrightarrow \max \{L, R-L, 1-R\}<1-\max \{L, R-L, 1-R\}
$$

$\Longleftrightarrow \max \{L, R-L, 1-R\}<1 / 2$
$\Longleftrightarrow L<1 / 2$ and $R-L<1 / 2$ and $1 / 2<R$
$\Longleftrightarrow(X<1 / 2$ and $Y-X<1 / 2$ and $1 / 2<Y) \quad$ or $\quad(Y<1 / 2$ and $X-Y<$ $1 / 2$ and $1 / 2<X)$.

Conclude: $P($ triangle $)=\frac{\text { shaded area }}{\text { total area }}=\frac{1}{4}$.
5.2.14 a) Let $V=\min \left(U_{1}, \ldots, U_{5}\right)$ and $W=\max \left(U_{1}, \ldots, U_{5}\right)$. Then $R=W-V$.

$$
\begin{aligned}
P(W \geq w) & =1-P(W<w)=1-w^{5} \\
E(W) & =\int_{0}^{1} P(W \geq w) d w=\int_{0}^{1} 1-w^{5} d w=\frac{5}{6} \\
P(V \geq v) & =(1-v)^{5} \\
E(V) & =\int_{0}^{1} P(V \geq v) d v=\int_{0}^{1}(1-v)^{5} d v=\frac{1}{6} \\
E(R) & =E(W)-E(V)=\frac{2}{3}
\end{aligned}
$$

b) For $0<v<w<1$,

$$
\begin{aligned}
P(V \in d v, W \in d w) & =P\left(\operatorname{no} U_{i} \text { in }(0, v), 1 \text { in } d v, 3 \text { in }(v, w), 1 \text { in } d w\right) \\
& =20 P\left(U_{1} \in d v, v<U_{2}, U_{3}, U_{4}<w, U_{5} \in d w\right) \\
& =20 d v(w-v)^{3} d w \\
f(v, w) & =20(w-v)^{3} \quad(0<v<w<1)
\end{aligned}
$$

c)

$$
\begin{aligned}
P(R>0.5) & =\int_{0.5}^{1} \int_{0}^{w-0.5} 20(w-v)^{3} d v d w \\
& =20 \int_{0.5}^{1}\left[-\left.\frac{(w-v)^{4}}{4}\right|_{v=0} ^{w-0.5} d w\right. \\
& =5 \int_{0.5}^{1} w^{4}-(0.5)^{4} d w \\
& =5\left[\frac{w^{5}}{5}-\left.w(0.5)^{4}\right|_{w=0.5} ^{1}\right. \\
& =\frac{26}{32}
\end{aligned}
$$

5.2.16 Considering the three-dimensional space which corresponds to triplets $\left(X_{1}, X_{2}, X_{3}\right)$
we wish to find the volume which gives us $X_{1}<X_{2}<X_{3}$. This volume is given by:

$$
\begin{aligned}
P\left(X_{1}<X_{2}<X_{3}\right) & =\int_{0}^{\infty} \int_{x_{1}}^{\infty} \int_{x_{2}}^{\infty} f\left(x_{3}\right) f\left(x_{2}\right) f\left(x_{1}\right) d x_{3} d x_{2} d x_{1} \\
& =\int_{0}^{\infty} \int_{x_{1}}^{\infty} \int_{x_{2}}^{\infty} \lambda_{3} e^{-\lambda_{3} x_{3}} \lambda_{2} e^{-\lambda_{2} x_{2}} \lambda_{1} e^{-\lambda_{1} x_{1}} d x_{3} d x_{2} d x_{1} \\
& =\int_{0}^{\infty} \int_{x_{1}}^{\infty} e^{-\lambda_{3} x_{2}} \lambda_{2} e^{-\lambda_{2} x_{2}} \lambda_{1} e^{-\lambda_{1} x_{1}} d x_{2} d x_{1} \\
& =\int_{0}^{\infty} \int_{x_{1}}^{\infty} \lambda_{2} e^{-\left(\lambda_{3}+\lambda_{2}\right) x_{2}} \lambda_{1} e^{-\lambda_{1} x_{1}} d x_{2} d x_{1} \\
& =\int_{0}^{\infty} \frac{\lambda_{1} \lambda_{2}}{\lambda_{2}+\lambda_{3}} e^{-\left(\lambda_{3}+\lambda_{2}\right) x_{1}} e^{-\lambda_{1} x_{1}} d x_{1} \\
& =\frac{\lambda_{1} \lambda_{2}}{\left(\lambda_{2}+\lambda_{3}\right)\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)}
\end{aligned}
$$

5.4 .10

$$
f_{Y}(y)= \begin{cases}1 / 2 & \text { if } 0<y<1 \\ 1 /\left(2 y^{2}\right) & \text { if } y \geq 1 \\ 0 & \text { otherwise }\end{cases}
$$

