Homework \# 2

1.3.10 a) $P($ exactly 2 of $A, B, C)=P\left(A B C^{c}\right)+P\left(A B^{c} C\right)+P\left(A^{c} B C\right)$

$$
\begin{aligned}
& =(P(A B)-P(A B C))+(P(A C)-P(A B C))+(P(B C)-P(A B C)) \\
& =P(A B)+P(A C)+P(B C)-3 P(A B C)
\end{aligned}
$$

b) $P($ exactly 1 of $A, B, C)=P\left(A B^{c} C^{c}\right)+P\left(A^{c} B^{c} C\right)+P\left(A^{c} B^{c} C\right)$

$$
\begin{aligned}
& =P(A)-P(A \cap(B \cup C))+P(B)-P(B \cap(A \cup C))+P(C)-P(C \cap(A \cup B)) \\
& =\ldots \\
& =P(A)+P(B)+P(C)-2(P(A B)+P(A C)+P(B C))+3 P(A B C)
\end{aligned}
$$

c) $P($ exactly none $)=1-P(A \cup B \cup C)$

$$
=1-(P(A)+P(B)+P(C))+(P(A B)+P(A C)+P(B C))-P(A B C)
$$

1.3.14 Use the identity $P(A \cup B)=P(A)+P(B)-P(A B)$ and the fact that $P(A \cup B) \leq 1$.
1.4.6 P (second spade | first black)
$=\frac{P(\text { first black and second spade })}{P(\text { first black })}$
$=\frac{P(\text { first spade and second spade })+P(\text { first club and second spade })}{P(\text { first black })}$
$=\frac{(13 / 52)(12 / 51)+(13 / 52)(13 / 51)}{(26 / 32)}=\frac{25}{102}$.
Or you may use a symmetry argument as follows:
$P($ second black \mid first black $)=25 / 51$,
and P (second spade \mid first black $)=P($ second club \mid first black $)$
by symmetry. Therefore $P($ second spade \mid first black $)=25 / 102$.
Discussion. The frequency interpretation is that over the long run, out of every 102 deals yielding a black card first, about 25 will yield a spade second.
1.4.8 Assume n cards and all $2 n$ faces are equally likely to show on top.
$P($ white on bottom \mid black on top)
$=\frac{P(\text { white on bottom and black on top })}{P(\text { black on top })}=\frac{50 \% \times \frac{1}{2}}{50 \% \times \frac{1}{2}+20 \%}=5 / 9$
1.5.6 a) The experimenter is assuming that before the experiment, H_{1}, H_{2}, and H_{3} are equally likely. That is, prior probabilities are given by $P\left(H_{1}\right)=P\left(H_{2}\right)=P\left(H_{3}\right)=$ $1 / 3$.
b) No, because the above assumption is being made. Since the prior probabilities are subjective, so are the posterior probabilities.
c) Prior probabilities: $P\left(H_{1}\right)=.5, P\left(H_{2}\right)=.45, P\left(H_{3}\right)=.05$.

Likelihoods of $A: P\left(A \mid H_{1}\right)=.1, P\left(A \mid H_{2}\right)=.01, P\left(A \mid H_{3}\right)=.39$.
[Now all these probabilities have a long run frequency interpretation, so the posterior probabilities will as well.]
Posterior probabilities are proportional to: . $05, .0045, .0195$. So H_{3} is no longer the most likely hypothesis; H_{1} is, and $P\left(H_{3} \mid A\right)=\frac{.0195}{.05+.0045+.0195}=.263$.

