Homework \# 3

1.4.10 a) Let A_{i} be the event that the i th source works.
$P($ zero work $)=P\left(A_{1}^{c} A_{2}^{c}\right)=0.6 \times 0.5=0.3$
$P($ exactly one works $)=P\left(A_{1} A_{2}^{c}\right)+P\left(A_{1}^{c} A_{2}\right)=0.4 \times 0.5+0.6 \times 0.5=0.5$
$P($ both work $)=P\left(A_{1} A_{2}\right)=0.4 \times 0.5=0.2$
b) $P($ enough power $)=0.6 \times 0.5+1 \times 0.2=0.5$
1.6.6 a) $p_{8}=p_{9}=\cdots=0$. (Never need to roll more than seven times)
$p_{1}=0$
$p_{2}=1 / 6$
$p_{3}=(5 / 6) \cdot(2 / 6) \quad$ (2nd different from first, third the same as first or second)
$p_{4}=(5 / 6) \cdot(4 / 6) \cdot(3 / 6)$
$p_{5}=(5 / 6) \cdot(4 / 6) \cdot(3 / 6) \cdot(4 / 6)$
$p_{6}=(5 / 6) \cdot(4 / 6) \cdot(3 / 6) \cdot(2 / 6) \cdot(5 / 6)$
$p_{7}=(5 / 6) \cdot(4 / 6) \cdot(3 / 6) \cdot(2 / 6) \cdot(1 / 6) \cdot 1$
b) $p_{1}+\cdots+p_{10}=1$: you must stop before the tenth roll, and the events determining p_{1}, p_{2}, etc., are mutually exclusive.
c) Of course you can compute them and add them up. Here's another way. In general, let A_{i} be the event that the first i rolls are different, then $p_{i}=P\left(A_{i-1}\right)-$ $P\left(A_{i}\right)$ for $i=2, \ldots, 7$, with $P\left(A_{1}\right)=1$, and $P\left(A_{7}\right)=0$. Adding them up, you can easily check that the sum is 1 .
1.6.8 a) $P\left(B_{12}\right.$ and $\left.B_{23}\right)=P($ all three have the same birthdates $)=\frac{365}{365} \cdot \frac{1}{365} \cdot \frac{1}{365}=\frac{1}{(365)^{2}}$. $P\left(B_{12}\right)=\frac{365}{365} \cdot \frac{1}{365}=\frac{1}{365}=P\left(B_{23}\right)$.
So $P\left(B_{12}\right.$ and $\left.B_{23}\right)=\frac{1}{(365)^{2}}=\frac{1}{365} \cdot \frac{1}{365}=P\left(B_{12}\right) P\left(B_{23}\right)$.
Therefore, B_{12} and B_{23} are independent!
b) No. If you tell me B_{12} and B_{23} have occurred, then all three have the same birthday, so B_{13} also has occurred. That is, $P\left(B_{12} B_{23} B_{31}\right)=\frac{1}{365^{2}} \neq \frac{1}{365^{3}}=$ $P\left(B_{12}\right) P\left(B_{23}\right) P\left(B_{31}\right)$.
c) Yes, each pair is independent by the same reason as a).

2.1.4

$$
\begin{gathered}
P(2 \text { sixes in first five rolls } \mid 3 \text { sixes in all eight rolls }) \\
=\frac{P(2 \text { sixes in first } 5, \text { and } 3 \text { sixes in all eight })}{P(3 \text { sixes in all eight })} \\
=\frac{P(2 \text { sixes in first five, and } 1 \text { six in next three })}{P(3 \text { sixes in all eight })} \\
=\frac{\binom{5}{2}(1 / 6)^{2}(5 / 6)^{3} \cdot\binom{3}{1}(1 / 6)(5 / 6)^{2}}{\binom{8}{3}(1 / 6)^{3}(5 / 6)^{5}}=\frac{\binom{5}{2}\binom{3}{1}}{\binom{8}{3}}=\frac{10 \times 3}{56}=0.535714
\end{gathered}
$$

2.5.12 There are $\binom{52}{5}=2,598,960$ distinct poker hands.
a) There are 52 cards in a pack: $A, 2,3, \ldots, 10, J, Q, K$ in each of the four suits: spades, clubs, diamonds and hearts. A straight is five cards in sequence. Assume that an A can be at the begining or the end of a sequence, but never in the middle. That is $A, 2,3,4,5$ and $10, J, Q, K, A$ are legitimate straights, but $K, A, 2,3,4$ (a "round-the-corner" straight) is not. So there are are 10 possible starting points for the straight flush, (A through 10) and 4 suits for it to be in, giving a total of 40 hands.
[This answer will be different under different asssumptions about what constitutes a straight. For example if you don't allow $A, 2,3,4,5$, then the numerator is $4 \times 9=36$. If you allow wrap-around straights then the numerator is $4 \times 13=52$.]
Thus $P($ straight flush $)=\frac{40}{\binom{52}{5}}=0.0000154$.
b) $P($ four of a kind $)=\frac{13 \times 12 \times\binom{ 4}{4}\binom{4}{1}}{\binom{52}{5}}=\frac{624}{2598960}=0.000240$
c) $P($ full house $)=\frac{13 \times 12 \times\binom{ 4}{3} \times\binom{ 4}{2}}{\binom{52}{5}}=\frac{3744}{2598960}=0.00144$
d) This answer depends on the definition of straight, again. $P($ flush $)=P$ (all same suit) P (straight flush)
$=\frac{4 \times\binom{ 13}{5}-4 \times 10}{\binom{52}{5}}=\frac{5108}{2598960}=0.00197$
e) And again, this depends on your definition of straight. P (straight $)=P(5$ consec. ranks $)-$
$P($ straight flush $)=\frac{10 \times\binom{ 4}{1}^{5}-10 \times 4}{\binom{52}{5}}=\frac{10200}{2598960}=0.00392$
f) $P($ three of a kind $)=\frac{13 \times\binom{ 4}{3} \times\binom{ 12}{2} \times\binom{ 4}{1} \times\binom{ 4}{1}}{\binom{52}{5}}=\frac{54912}{2598960}=0.0211$
g) P (two pairs $)=\frac{\binom{13}{2} \times\binom{ 4}{2} \times\binom{ 4}{2} \times 11 \times\binom{ 4}{1}}{\binom{52}{5}}=\frac{123552}{2598960}=0.0475$
h) P (one pair) $=\frac{13 \times\binom{ 4}{2} \times\binom{ 12}{3} \times\binom{ 4}{1} \times\binom{ 4}{1} \times\binom{ 4}{1}}{\binom{52}{5}}=\frac{1098240}{2598960}=0.423$
i) Since the events are mutually exclusive, the probability of none of the above is $1-\operatorname{sum}$ of (a) through $(\mathrm{h})=0.501$.

