Homework \# 4

2.2.4 Let X be the number of patients helped by the treatment. Then $E(X)=100$, $S D(X)=8.16$ and
$P(X>120)=P(X \geq 120.5) \approx 1-\Phi(2.51)=.006$.
2.2.6 The number of opposing voters in the sample has the binomial $(200, .45)$ distribution. This gives $\mu=90$ and $\sigma=\sqrt{200 \times .45 \times .55}=7.035$. Use the normal approximation:
a) The required chance is approximately

$$
\Phi\left(\frac{90.5-90}{7.035}\right)-\Phi\left(\frac{89.5-90}{7.035}\right)=.5283-.4717=.0567(\text { about } 6 \%)
$$

b) Now the required chance is approximately

$$
1-\Phi\left(\frac{100.5-90}{7.035}\right)=1-\Phi(1.49)=1-.9319=0.0681(\text { about } 7 \%)
$$

2.2.10 The number of heads that Student A gets has the binomial $(200,0.5)$ distribution, which is approximately normal with $\mu=100$ and $\sigma=\sqrt{200 \times 0.5 \times 0.5}=7.07$. The chance that this student gets exactly 100 heads is approximately

$$
P(100 \text { heads })=\Phi\left(\frac{(100.5)-100}{7.07}\right)-\Phi\left(\frac{(99.5)-100}{7.07}\right) \approx .5282-.4718=.0564
$$

The chance that Student A gets something other than exactly 100 heads is $1-0.0564=$ 0.9436 . The probability that none of the 30 students gets exactly 100 heads is the probability that all of the students get something other than exactly 100 heads, which is approximately $0.9436^{30}=0.1752$.
2.4.6 a) The number of black balls seen in a series of 100 draws with replacement has binomial (1000, 2/1000) distribution, which is approximately Poisson with $\mu=2$. So
$P($ fewer than 2 black balls $) \approx e^{-\mu} \frac{\mu^{0}}{0!}+e^{-\mu} \frac{\mu^{1}}{1!}=e^{-\mu}(1+\mu)=.406006$.

$$
P(\text { exactly } 2 \text { black balls }) \approx e^{-\mu} \frac{\mu^{2}}{2!}=.270671
$$

Calculate the probability of more than 2 black balls by subtraction, conclude that getting fewer than 2 black balls is most likely.
b) P (both series get the same number of black balls) $=\sum_{k=0}^{\infty} P$ (both series get k black balls)

$$
\begin{gathered}
\approx \sum_{k=0}^{\infty} e^{-\mu} \frac{\mu^{k}}{k!} e^{-\mu} \frac{\mu^{k}}{k!} \text { by Poisson approx and independence } \\
=e^{-4} \sum_{k=0}^{\infty} \frac{4^{k}}{(k!)^{2}} \approx 0.207002
\end{gathered}
$$

Only a few terms in the sum are noticeable. After that they are essentially 0.
2.4.10 Distribution of the number of successes is
$\operatorname{binomial}(n, 1 / N) \approx \operatorname{Poisson}(n / N) \approx \operatorname{Poisson}(5 / 3)$.

$$
P(\text { at least two })=1-P(0)-P(1) \approx 1-e^{-5 / 3}(1+5 / 3)=1-e^{-5 / 3} \cdot \frac{8}{3} \approx 0.49633 \approx 0.5
$$

