Homework # 5

0 1 0		0	11	1.1 1		C	1 1	c •	•	1
3.1.6	There	are 8	equally	likely	outcomes	tor	three	tair	com	tosses:
· · · · · · ·	TIOIO			TTTTTT	00001100	TOT		TOUT	COILL	000000
			• •/	•/						

outcome	probability	X	Y	X + Y
HHH	1/8	2	2	4
HHT	1/8	2	1	3
HTH	1/8	1	1	2
HTT	1/8	1	0	1
THH	1/8	1	2	3
THT	1/8	1	1	2
TTH	1/8	0	1	1
TTT	1/8	0	0	0

a) Joint distribution table for (X, Y): (the entries clearly sum to 1)

X			
Y	0	1	2
0	1/8	1/8	0
1	1/8	2/8	1/8
2	0	1/8	1/8

- b) X and Y are not independent. For instance, P(X = 2, Y = 0) = 0, which is clearly not the same as P(X = 2)P(Y = 0) = (1/4)(1/4).
- **3.1.14** a) For team A to win in g games, it must win 3 of the first g-1 games and also win the gth game. The chance is $\binom{g-1}{3}p^3q^{g-1-3} \cdot p = \binom{g-1}{3}p^4q^{g-4}$ for g = 4, 5, 6, 7.
 - b) The event is the disjoint union of "Team A wins in g games" as g ranges from 4 to 7. So the answer is $\sum_{g=4}^{7} {g-1 \choose 3} p^4 q^{g-4}$.
 - c) P(A wins) = 1808 / 2187 = 0.8267
 - d) You have to compare the current World Series scheme of playing only until one team has one four games with an alternative scheme of playing all 7 games and declaring the winner to be the team that wins at least 4 out of the 7. The same team will be declared the winner under both schemes. For the details, let X be the number of times that A wins if all 7 games are played. Then X has binomial (7, p) distribution. If $X \ge 4$ then A has won the World series, since B can have won at most 3 games. And if A won the World Series, then A won four games before B did, so $X \ge 4$. So $P(A \text{ wins}) = P(X \ge 4)$.

To check algebraically, notice that

$$P(A \text{ wins}) = p^{4}[1 + \binom{4}{3}q + \binom{5}{3}q^{2} + \binom{6}{3}q^{3}] = p^{4}[1 + 4q + 10q^{2} + 20q^{3}] = p^{4}f(q)$$

where f(q) is the given polynomial in q. And

$$P(X \ge 4) = p^4 \begin{bmatrix} \binom{7}{4}q^3 + \binom{7}{5}pq^2 + \binom{7}{6}p^2q + \binom{7}{7}p^3 \end{bmatrix}$$
$$= p^4 \begin{bmatrix} 35q^3 + 21(1-q)q^2 + 7(1-q)^2q + (1-q)^3 \end{bmatrix} = p^4 g(q)$$

where g(q) is also a polynomial in q. So all we need to do is to check that the coefficients are the same in the two polynomials:

term1
$$q$$
 q^2 q^3 coefficient in f 141020coefficient in g 17-3 = 421 - $(2 \times 7) + 3 = 10$ 35 - 21 + 7 - 1 = 20So the two polynomials are the same.

e) G has range {4, 5, 6, 7}. P(G = g) = P(A wins in g games) + P(B wins in g games)= $\binom{g-1}{3}p^4q^{g-4} + \binom{g-1}{3}q^4p^{g-4}$. If p = 1/2, then G and the winner are independent. Check that for p = 1/2 the answer in (b) reduces to P(A wins) = 1/2, and also for each g,

$$P(G = g) = 2P(A \text{ wins in } g \text{ games})$$

which is the same as saying

$$P(G = g \text{ and } A \text{ wins}) = P(G = g) \cdot \frac{1}{2}$$

Therefore when p = 1/2, for each g you have P(G = g and A wins) = P(G = g)P(A wins). So G and the winner are independent.

3.4.12 Write $q_1 = 1 - p_1, q_2 = 1 - p_2$.

- a) $P(W_1 = W_2) = \sum_{k=1}^{\infty} P(W_1 = k, W_2 = k)$ = $\sum_{k=1}^{\infty} P(W_1 = k) P(W_2 = k) = \sum_{k=1}^{\infty} q_1^{k-1} p_1 q_2^{k-1} p_2 = \frac{p_1 p_2}{1 - q_1 q_2}$
- b) $P(W_1 < W_2) = \sum_{k=1}^{\infty} P(W_1 = k, W_1 < W_2)$ = $\sum_{k=1}^{\infty} P(W_1 = k, W_2 > k) = \sum_{k=1}^{\infty} q_1^{k-1} p_1 q_2^k = \frac{p_1 q_2}{1 - q_1 q_2}$
- c) By symmetry, it's $\frac{p_2q_1}{1-q_2q_1}$. Check: (a) + (b) + (c) = 1.
- d) There are many ways to find and to express the answers in (c) and (d). Here are some of the ways. Put $X = \min(W_1, W_2)$. For k = 0, 1, 2, ... we have

$$P(X > k) = P(W_1 > k \text{ and } W_2 > k) = P(W_1 > k)P(W_2 > k) = q_1^k q_2^k = (q_1 q_2)^k.$$

So X is geometric with parameter $1 - q_1q_2 = p_1 + p_2 - p_1p_2$. You can also do this as follows:

$$P(X = k) = P(W_1 = k, W_2 > k) + P(W_1 > k, W_2 = k) + P(W_1 = k, W_2 = k)$$

= $q_1^{k-1} p_1 q_2^k + q_1^k q_2^{k-1} p_2 + q_1^{k-1} p_1 q_2^{k-1} p_2$

Check by algebra that this is equal to $(q_1q_2)^{k-1}(1-q_1q_2)$.

e) Put $Y = \max(W_1, W_2)$. Y has range $\{1, 2, 3, ...\}$. For n = 0, 1, 2, ... we have

$$P(Y \le n) = P(W_1 \le n \text{ and } W_2 \le n) = P(W_1 \le n)P(W_2 \le n)$$
$$= [1 - P(W_1 > n)][1 - P(W_2 > n)] = (1 - q_1^n)(1 - q_2^n).$$

For $n = 1, 2, 3, \dots$ we then have

$$P(Y = n) = P(Y \le n) - P(Y \le n - 1) = (1 - q_1^n)(1 - q_2^n) - (1 - q_1^{n-1})(1 - q_2^{n-1}).$$

3.4.14 Let $n \ge 1$. V_n is a random variable having range $\{n, \ldots, 2n-1\}$. For $k = n, \ldots, 2n-1$ we have

 $(V_n=k)=(V_n=k,\,k\text{th trial is success})\cup(V_n=k$, kth trial is failure)

The two events on the right are mutually exclusive. The first event is

 $(V_n = k, k$ th trial is success) = (exactly n - 1 successes in first k - 1 trials, kth trial is success) and has probability

P(exactly n-1 successes in first k-1 rials, kth trial is success)

= P(exactly n-1 successes in first k-1 trials)P(kth trial is success)

 $=\binom{k-1}{n-1}p^{n-1}q^{k-n}\cdot p=\binom{k-1}{n-1}p^nq^{k-n}$. Similarly the second event has probability $\binom{k-1}{n-1}q^np^{k-n}$. Hence

$$P(V_n = k) = {\binom{k-1}{n-1}}(p^n q^{k-n} + q^n p^{k-n}), \ k = n, \dots, 2n-1.$$

3.6.2 a) 1/13 b) 1/4 c) $(13 \times 12 \times 11 \times 10 \times 9)/(52 \times 51 \times 50 \times 49 \times 48)$ d) $(48 \times 47 \times 46 \times 45 \times 4)/(52 \times 51 \times 50 \times 49 \times 48)$