Homework \# 8

3.3.24 a)

x	0	1	2	3	4
$P\left(S_{2}=x\right)$.0625	.25	.375	.25	.0625

b) $E\left(S_{50}\right)=50$ and $\operatorname{Var}\left(S_{50}\right)=50(.5)=25$. Thus by normal approximation,

$$
P\left(S_{50}=50\right) \approx \Phi\left(\frac{50.5-50}{5}\right)-\Phi\left(\frac{49.5-50}{5}\right)=0.0797
$$

c) $S_{n}=X_{1}+\cdots+X_{n}$ where the X_{i} are independent, each with binomial $(2,1 / 2)$ distribution. It follows that S_{n} has binomial $(2 n, 1 / 2)$ distribution:

$$
P\left(S_{n}=k\right)=\binom{2 n}{k}\left(\frac{1}{2}\right)^{2 n}
$$

3.3.30 D_{i}^{2} takes the values $0,1,4,9,16,25,36,49,64,81$ with equal probability, so the X_{i} are independent with common distribution

x	0	1	4	5	6	9
$P\left(X_{i}=x\right)$.1	.2	.2	.1	.2	.2

So $E\left(X_{i}\right)=9 / 2$ and $\operatorname{Var}\left(X_{i}\right)=9.05 \Longrightarrow S D\left(X_{i}\right)=3.008$.
a) By the law of averages, you expect \bar{X}_{n} to be close to $E\left(\bar{X}_{n}\right)=4.5$ for large n. So predict 4.5.
b) $P\left(\left|\bar{X}_{n}-4.5\right|>\epsilon\right)$
$=P\left(\frac{\sqrt{n}\left|\bar{X}_{n}-4.5\right|}{3.008}>\frac{\sqrt{n} \epsilon}{3.008}\right) \approx P\left(|Z|>\frac{\sqrt{n} \epsilon}{3.008}\right)=2 P\left(Z>\frac{\sqrt{n} \epsilon}{3.008}\right)$,
where Z has standard normal distribution. For $n=10000$, we need ϵ such that $P\left[Z>\frac{\sqrt{n} \epsilon}{3.008}\right]=\frac{1}{400}=0.0025 \Longrightarrow \frac{\sqrt{n} \epsilon}{3.008}=2.81$,
therefore $\epsilon=2.81 \times 3.008 / 100=0.085$.
c) Need n such that $P\left(\left|\bar{X}_{n}-4.5\right| \leq 0.01\right) \geq 0.99$ i.e.,
$P\left[|Z| \leq \frac{\sqrt{n} \times 0.01}{3.008}\right] \geq 0.99 \Longrightarrow \frac{\sqrt{n}}{300.8} \geq 2.58$
therefore $n \geq 602276$.
d) We have calculated $E\left(X_{i}\right)=9 / 2$ and $\operatorname{Var}\left(X_{i}\right)=9.05$. From the previous problem, we have $E\left(D_{i}\right)=9 / 2$ and $\operatorname{Var}\left(D_{i}\right)=33 / 4=8.25$. Since D_{i} has smaller variance than does X_{i}, the value of \bar{D}_{n} can be predicted more accurately.
e) Since $E\left(\bar{X}_{100}\right)=4.5$, you should predict the first digit of \bar{X}_{100} to be 4 . The chance of being correct is

$$
P\left(4 \leq \bar{X}_{100}<5\right) \approx P\left(\left|\frac{\sqrt{100}\left(\bar{X}_{100}-4.5\right)}{3.008}\right| \leq \frac{\sqrt{100}}{2 \times 3.008}\right) \approx P(|Z| \leq 1.66)=0.903
$$

4.1.2 a)

$$
\int_{1}^{\infty} \frac{c}{x^{4}} d x=\left.\frac{-c}{3 x^{3}}\right|_{1} ^{\infty}=\frac{c}{3}
$$

and since $f(x)$ is a density function, it must integrate to 1 , so $c=3$.
b)

$$
E(X)=\int_{1}^{\infty} x \frac{3}{x^{4}} d x=\left.\frac{-3}{2 x^{2}}\right|_{1} ^{\infty}=\frac{3}{2}
$$

c)

$$
E\left(X^{2}\right)=\int_{1}^{\infty} x^{2} \frac{3}{x^{4}} d x=\left.\frac{-3}{x}\right|_{1} ^{\infty}=3
$$

Thus $\operatorname{Var}(X)=E\left(X^{2}\right)-(E(X))^{2}=3-\frac{9}{4}=\frac{3}{4}$.
4.1.4 a) We know that $\int_{0}^{1} c x^{2}(1-x)^{2} d x=1$, and

$$
\int_{0}^{1} c x^{2}(1-x)^{2} d x=c \int_{0}^{1}\left(x^{2}-2 x^{3}+x^{4}\right) d x=\left.c\left(\frac{x^{3}}{3}-\frac{x^{4}}{2}+\frac{x^{5}}{5}\right)\right|_{0} ^{1}=\frac{c}{30}
$$

$$
\text { so } c=30
$$

b)

$$
E(X)=\int_{0}^{1} 30 x^{3}(1-x)^{2} d x=30 \int_{0}^{1}\left(x^{3}-2 x^{4}+x^{5}\right) d x=30\left(\frac{1}{4}-\frac{2}{5}+\frac{1}{6}\right)=\frac{1}{2}
$$

c)

$$
E\left(X^{2}\right)=\int_{0}^{1} 30 x^{4}(1-x)^{2} d x=30 \int_{0}^{1}\left(x^{4}-2 x^{5}+x^{6}\right) d x=30\left(\frac{1}{5}-\frac{1}{3}+\frac{1}{7}\right)=\frac{2}{7}
$$

and so

$$
\operatorname{Var}(X)=\frac{2}{7}-\frac{1}{4}=\frac{1}{28}
$$

4.1.12 These are best done by folding the shape over the horizontal axis. You don't need to find an equation for the density if you can give a precise description of the shape of its graph.
a) Possible values of X : the interval $[-2,2]$. The graph of the density will be a triangle whose base is $[-2,2]$ and whose peak is over $x=0$. For the area to be 1 the height must be $1 / 2$. Done. If you want to write a formula:
For $-2 \leq x \leq 2, f(x) d x=P(X \in d x)=\frac{2 \times(2-|x|) d x}{4 \times\left(\frac{1}{2} \times 2 \times 2\right)}=\frac{1}{4}(2-|x|) d x$, so for $x \in[-2,2], f(x)=(2-|x|) / 4$. Elsewhere $f(x)=0$.
b) Possible values of X : the interval $[-2,1]$. Here there isn't even any folding to do. The graph of the density is a triangle whose base is $[-2,1]$ and whose peak is over $x=0$. For the area to be 1 the height must be $2 / 3$. For those who like equations:
If $-2 \leq x<0$, then
$f(x) d x=P(X \in d x)=\frac{(2+x) d x}{\frac{1}{2} \times 3 \times 2}=\frac{1}{3}(2+x) d x$, so $f(x)=\frac{1}{3}(2+x)$.
If $0 \leq x \leq 1$, then $f(x) d x=\frac{2(1-x) d x}{\frac{1}{2} \times 3 \times 2}$, so $f(x)=\frac{2}{3}(1-x)$.
Elsewhere $f(x)=0$.
c) This one requires folding and a little observation. Possible values of $X:[-1,2]$.

The density will be linear on $[-1,0]$, constant on $[0,1]$, linear on $[1,2]$. That's a trapezoid.

For the area to be $1, h$ must satisfy $2 h=1$, or $h=1 / 2$.

