4.4.4 The density of X is $f_X(x) = 1/2$ for $x \in (-1, 1)$, so by the *change of variable formula* the density of Y is

$$f_Y(y) = \frac{f_X(\sqrt{y}) + f_X(-\sqrt{y})}{2\sqrt{y}} = \frac{\frac{1}{2} + \frac{1}{2}}{2\sqrt{y}} = \frac{1}{2\sqrt{y}}, y \in (0, 1).$$

Note: This distribution is called the beta (1/2, 1) distribution.

Homework # 9

4.4.6 Notice that $Y = \tan \Phi$. Its range is $(-\infty, \infty)$. The function $y = \tan \phi$ is strictly increasing with derivative $\sec^2 \phi$ for $\phi \in (-\pi/2, \pi/2)$. Also note that $\phi = \tan^{-1}(y)$, and (draw the right-angled triangle!) $\sec \phi = \sqrt{1+y^2}$. By the one to one change of variable formula for densities, the density of Y is, for all y,

$$f_Y(y) = f_{\Phi}(\phi) \left/ \left| \frac{dy}{d\phi} \right| \right.$$
$$= \frac{1}{\pi} / \sec^2 \phi$$
$$= \frac{1}{\pi (1+y^2)}$$

The Cauchy distribution is symmetric since $f_Y(y) = f_Y(-y)$.

Even though the density is symmetric about 0, the expectation of a Cauchy random variable is undefined. To check whether the integral is absolutely convergent:

$$\int_{-\infty}^{\infty} |yf_Y(y)| dy = \int_{-\infty}^{\infty} \frac{|y|}{\pi(1+y^2)} dy$$
$$= \int_{0}^{\infty} \frac{2y}{\pi(1+y^2)} dy$$
$$= \frac{1}{\pi} \log(1+y^2)|_0^{\infty} = \infty$$

so the required integral does not converge absolutely. Thus the expectation is undefined.

4.5.2 a)

b) Since $P(k) = (1/2)^k$ for k = 1, 2, 3, ..., we have: If $x \ge 1$ then $F(x) = \sum_{k \le x} P(k) = \sum_{k=1}^{int} {}^{(x)}(1/2)^k = 1 - (1/2)^{int} {}^{(x)}$; If x < 1 then F(x) = 0.

4.5.6 a)
$$P(X \ge 1/2) = 1 - F(1/2) = 7/8$$
.
b) $f(x) = \frac{d}{dx}F(x) = \begin{cases} 0 & x \le 0\\ 3x^2 & 0 \le x < 1\\ 0 & x \ge 1 \end{cases}$
c) $E(X) = \int xf(x)dx = \int_0^1 x 3x^2 dx = \int_0^1 3x^3 dx = 3/4$.
d) Let Y_1, Y_2, Y_3 be independent uniform (0, 1) random variables. Then for $i = 1, 2, 3$

$$P(Y_i \le x) = \begin{cases} 0 & x \le 0\\ x & 0 \le x \le 1\\ 1 & x \ge 1 \end{cases}$$

so if $X=\max(Y_1,Y_2,Y_3)$, then

$$P(X \le x) = P(Y_1 \le x, Y_2 \le x, Y_3 \le x)$$

= $[P(Y_1 \le x)]^3$
= $\begin{cases} 0 & x \le 0 \\ x^3 & 0 \le xl \\ 1 & x \ge 1 \end{cases}$
= $F(x).$