Homework \# 9

4.4.4 The density of X is $f_{X}(x)=1 / 2$ for $x \in(-1,1)$, so by the change of variable formula the density of Y is

$$
f_{Y}(y)=\frac{f_{X}(\sqrt{y})+f_{X}(-\sqrt{y})}{2 \sqrt{y}}=\frac{\frac{1}{2}+\frac{1}{2}}{2 \sqrt{y}}=\frac{1}{2 \sqrt{y}}, y \in(0,1) .
$$

Note: This distribution is called the beta $(1 / 2,1)$ distribution.
4.4.6 Notice that $Y=\tan \Phi$. Its range is $(-\infty, \infty)$. The function $y=\tan \phi$ is strictly increasing with derivative $\sec ^{2} \phi$ for $\phi \in(-\pi / 2, \pi / 2)$. Also note that $\phi=\tan ^{-1}(y)$, and (draw the right-angled triangle!) $\sec \phi=\sqrt{1+y^{2}}$. By the one to one change of variable formula for densities, the density of Y is, for all y,

$$
\begin{aligned}
f_{Y}(y) & =f_{\Phi}(\phi) /\left|\frac{d y}{d \phi}\right| \\
& =\frac{1}{\pi} / \sec ^{2} \phi \\
& =\frac{1}{\pi\left(1+y^{2}\right)}
\end{aligned}
$$

The Cauchy distribution is symmetric since $f_{Y}(y)=f_{Y}(-y)$.
Even though the density is symmetric about 0 , the expectation of a Cauchy random variable is undefined. To check whether the integral is absolutely convergent:

$$
\begin{aligned}
\int_{-\infty}^{\infty}\left|y f_{Y}(y)\right| d y & =\int_{-\infty}^{\infty} \frac{|y|}{\pi\left(1+y^{2}\right)} d y \\
& =\int_{0}^{\infty} \frac{2 y}{\pi\left(1+y^{2}\right)} d y \\
& =\left.\frac{1}{\pi} \log \left(1+y^{2}\right)\right|_{0} ^{\infty}=\infty
\end{aligned}
$$

so the required integral does not converge absolutely. Thus the expectation is undefined.

4.5.2 a)

x	0	1	2	3
$F_{X}(x)$	$1 / 8$	$1 / 2$	$7 / 8$	1

b) Since $P(k)=(1 / 2)^{k}$ for $k=1,2,3, \ldots$, we have:

If $x \geq 1$ then $F(x)=\sum_{k \leq x} P(k)=\sum_{k=1}^{\text {int }(x)}(1 / 2)^{k}=1-(1 / 2)^{\text {int }(x)} ;$ If $x<1$ then $F(x)=0$.
4.5.6 a) $P(X \geq 1 / 2)=1-F(1 / 2)=7 / 8$.
b) $f(x)=\frac{d}{d x} F(x)=\left\{\begin{array}{ll}0 & x \leq 0 \\ 3 x^{2} & 0 \leq x<1 \\ 0 & x \geq 1\end{array}\right.$.
c) $E(X)=\int x f(x) d x=\int_{0}^{1} x 3 x^{2} d x=\int_{0}^{1} 3 x^{3} d x=3 / 4$.
d) Let Y_{1}, Y_{2}, Y_{3} be independent uniform $(0,1)$ random variables. Then for $i=1,2,3$

$$
P\left(Y_{i} \leq x\right)= \begin{cases}0 & x \leq 0 \\ x & 0 \leq x \leq 1 \\ 1 & x \geq 1\end{cases}
$$

so if $X=\max \left(Y_{1}, Y_{2}, Y_{3}\right)$, then

$$
\begin{aligned}
P(X \leq x) & =P\left(Y_{1} \leq x, Y_{2} \leq x, Y_{3} \leq x\right) \\
& =\left[P\left(Y_{1} \leq x\right)\right]^{3} \\
& =\left\{\begin{array}{ll}
0 & x \leq 0 \\
x^{3} & 0 \leq x l \\
1 & x \geq 1
\end{array}\right\} \\
& =F(x) .
\end{aligned}
$$

