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Introduction

The Problem
There is a large state with several cities with a road between every pair of cities. Suddenly, the state
decides to block a few randomly chosen roads for maintenance. Also, some of the cities randomly
decide not to allow travel through roads that have one end in that city, independently of the other
cities. Now, a traveller standing in one of the remaining cities wants to know the chances that he can
travel to all of the remaining cities without having to break any rule.

Complete Graph,Kn

→

Edge Deletion

→

Vertex Percolation

1 9
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Mathematical Formulation of The Problem
Let, the following be defined,

Vn := V(Kn) = [n]
En := E(Kn) = {{u, v}|u 6= v ; u, v ∈ [n]}

Let

(Xv)v∈ Vn
∼ i.i.d. Bernoulli (qn)

(Ye)e∈ En
∼ i.i.d. Bernoulli (pn)

Xv & Ye are independent ∀ v ∈ Vn & e ∈ En

Let G be random graph such that

V(G) := {v|v ∈ Vn & Xv = 1}
E(G) := {e := {u, v}|e ∈ En & Xv = 1, Xu = 1, Ye = 1}

Such a G is our graph of interest. We will denote such a graph as

G ∼ G(n,pn,qn)

2 9



Relation with Erdős-Rényi Binomial Random Graph

For such a G ∼ G(n,pn,qn) we have the following results.

Result
P (e ∈ E(G)) = q2

npn ∀e ∈ En

Result
P (e = {u, v} ∈ E(G)|Xu = 1, Xv = 1) = pn

Result
If vertex percolation is done first, the graph obtained is an Erdős-Rényi Binomial Random Graph on
the remaining set of vertices i.e., G|(Xv)v∈Vn ∼ G (|V(G)|,pn)

Result
E [|V(G)|] = nqn
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Relation with Erdős-Rényi Binomial Random Graph

Keeping these results in mind, we compare connectivity probability of G(n,pn,qn) with that of
G(bnqnc ,pn)
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Connectivity in Erdős-Rényi Binomial Random Graph

Theorem (Connectivity Threshold)
Let G ∼ G (n,pn). Then,

lim
n→∞

PG(n,pn) (G is connected) =


0 ;

pn

log(n)/n → 0

1 ;
pn

log(n)/n →∞

Theorem (Critical Window)
Fix t ∈ R and λn = log n + t;

lim
n→∞

PG(n,λn
n )(G is connected) = exp {− exp {−t}}

4 9



Connectivity in G(n,pn,qn)

We have already seen the relation between our graph of interest and Erdős-Rényi Binomial Random
Graph, We proceed to check the relation between the estimated probability of connectivity in
G(n,pn,qn) (denoted as p̂con. ) and edge probability, pn.

In this direction, we have done some simulations, with the following objectives,
Estimating the connectivity probability for di�erent values constant sequence qn and pn.
Fitting a functional form of p on estimated probability of connectivity.
Estimating the parameters.
Checking the relation between the estimated parameters and n.
Compare those relations with our guess.
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Fitting of Functional Form
In Erdős-Rényi Binomial Random Graph, we also have an another version of the theorem related to
Critical window,

Theorem
Fix p ∈ (0, 1),then PG(n,p)(G is connected) = exp {− exp {−n(p− log n/n)}}(1 + o(1))

Our guess is that, in case of connectivity it should behave like Erdős-Rényi Binomial Random Graph
but with number of vertices as its expected number of vertices, nqn.
Hence, we have done various simulations, to

Plot p̂con. vs p for wide range of qn.
Fit the functional form, p̂con. ≈ exp {− exp {−δn(p− cn)}}
Estimate δn and cn

Our observations from these simulations are,
The rapid increase in connectivity probability, are mostly around log(nqn)/nqn for several qn
values.
Fit of the functional form, p̂con. ≈ exp {− exp {−δn(p− cn)}} produces a very high value of
multiple correlation.

6 9



Estimated Parameters and Their Relation with n and qn

Let, the estimated value of cn be ĉn and that of δn be δ̂n.
Previous simulation suggests , that ĉn is "around" log(nqn)/nqn as cn is the parameter which
represents the value around which the rapid increase from 0 to 1 takes place.
Whereas, δn is the parameter which represents the rate of that rapid increase. It is clear from the
functional from, that if we increase δn then the rapidity will be faster.

To check the change of δn w.r.t. qn as well as n we have done the following simulations,

Simulation 1[Change in δ̂n with qn]

Fix a ’large enough’ value of n.
Fix a wide range of value for qn distributed
over the region (0, 1).
For each value of qn, plot p̂con. vs p∗ := p− ĉn
on same plot.

Simulation 2[Change in δ̂n with n]

Fix a constant value of qn.
Fix a set of value for large enough n.[In our
case {1000, 1001, · · · , 1500}]
For each value of n, plot p̂con. vs p∗ on same
plot.
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Change in δ̂n with qn

Figure: Change in δ̂n w.r.t. qn Figure: Change in δ̂n w.r.t. qn
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Estimating the Parameters as Function of n

In view of the connection between G(n,pn,qn) and G(nqn,pn) and connectivity results in Erdős-Rényi
Binomial Random Graph, our guess is that, when we fit p̂con. ≈ exp {− exp {−δn(p− cn)}} there,

cn =
log(nqn)

nqn
and δn = nqn

To check the relation between the estimated parameters and n and compare that with our guess, we
perform the following simulation,

Simulation 3
Fix an n− qn relationship.

For n ∈ {1000, 1001, · · · , 1500},
I Simulate values for p̂con.(p) for di�erent values of p.
I Fit p̂con.(p) ≈ exp {− exp {−δn (p− cn)}} and estimate ĉn and δ̂n

Plot n vs ĉn and n vs log nqn/nqn in same plot and plot n vs δ̂n and n vs nqn in another same plot.
Calculate Cor({ĉn}, {log nqn/nqn}) and Cor({δ̂n}, {nqn}).
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Plot n vs ĉn and n vs log nqn/nqn in same plot and plot n vs δ̂n and n vs nqn in another same plot.
Calculate Cor({ĉn}, {log nqn/nqn}) and Cor({δ̂n}, {nqn}).
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Calculate Cor({ĉn}, {log nqn/nqn}) and Cor({δ̂n}, {nqn}).

8 9



Estimating the Parameters as Function of n
In view of the connection between G(n,pn,qn) and G(nqn,pn) and connectivity results in Erdős-Rényi
Binomial Random Graph, our guess is that, when we fit p̂con. ≈ exp {− exp {−δn(p− cn)}} there,

cn =
log(nqn)

nqn
and δn = nqn

To check the relation between the estimated parameters and n and compare that with our guess, we
perform the following simulation,

Simulation 3
Fix an n− qn relationship.

For n ∈ {1000, 1001, · · · , 1500},
I Simulate values for p̂con.(p) for di�erent values of p.
I Fit p̂con.(p) ≈ exp {− exp {−δn (p− cn)}} and estimate ĉn and δ̂n
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Estimating the Parameters as Function of n [qn = 1/n 1
8 ]

Figure: Plot of n vs ĉn and n vs log nqn/nqn

Cor (ĉn, log nqn/nqn) = 0.9998316

Figure: Plot of n vs δ̂n and n vs nqn

Cor
(
δ̂n,nqn

)
= 0.9936192



Estimating the Parameters as Function of n [qn = 1/n 1
8 ]

Figure: Plot of n vs ĉn and n vs log nqn/nqn
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Conclusion

In view of the simulations and observations, we propose the following conjectures.

Conjecture (Connectivity ‘Threshold’ after Percolation)
Let G ∼ G(n,pn,qn) such that, nqn →∞ as n→∞,

lim
n→∞

P (G is connected) =


0 ;

pn

log nqn/nqn
→ 0

1 ;
pn

log nqn/nqn
→∞

Conjecture (‘Critical Window’ for G(n,qn,pn) )
Fix t ∈ R and λn = log nqn + t. Provided that nqn →∞ as n→∞,

lim
n→∞

PG
(

n, λn
nqn

,qn
)(G is connected) = exp {− exp {−t}}
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Thank You


