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Introduction

Consider the Erdős-Rényi binomial random graph model, which we
shall denote by ER(n, p).
The object of our study is the typical distance Hn in ER(n, p), which
is defined as the graph-distance between any two randomly selected
vertices.
It is well-known that a graph G ∼ ER(n, p) is connected with high
probability when p is above the connectivity threshold log n/n.

In the sparse but super-critical regime (p = c/n, c > 1), the graph
has a giant cluster of size O(n) and second largest cluster of size
O(log n).

We considered p to be mainly in these two regimes, but also had a
look at the case when p is constant.
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Introduction

Suppose that G ∼ ER(n, p). The average distance of G is defined as
the average of all distances d(u, v) for pairs of u and v which belong
to the same connected component.
Clearly, the average distance is the expected value of the typical
distance Hn, conditioned upon the event that Hn is finite.

Theorem 1. (Chung and Lu, 2002)

If G ∼ ER(n, p) where np ≥ c > 1 for some constant c , then almost surely
the average distance in G is (1+ o(1))(log n/ log np), provided that
(log n/ log np) goes to infinity as n→∞.
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Introduction

We simulated ER(n, p) for different choices of n and p and discarded
the simulated distances that were infinite, so that we could compare
our simulated results with the above theorem.
Our major observation from the simulations is that the o(1) term in
the theorem is quite ambiguous, both in the sparse regime and the
connectivity regime.
We also studied how the standard deviation of the typical distance
varies and performed tests for normality and symmetry of the
distribution of the typical distance.
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Histograms

We simulated ER(n, c/n) for each pair of (c , n) where c = 1.1, 1.3, . . . , 2.5
and various values of n. A sampling of the histograms are shown below.

The red and blue curves are normal densities with means log n/ log np and
the sample mean respectively, and s.d. equal to the sample s.d.
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The o(1) term

The following diagram shows the o(1) term as a function of n.

Observe that the o(1) term falls at a faster rate for higher values of c ,
especially when c > 2.
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The o(1) term

The following diagram shows the o(1) term as a function of c .

We can see that for higher values of c , the o(1) term do not differ much
with the graph size n.
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The standard deviations

The following diagram shows the standard deviations as a function of n.

We can see a steady increase for c = np > 2, while for the values of c near
1, the s.d. increases much rapidly.
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The standard deviations

The following diagram shows the standard deviations as a function of c .

Again, we can see that for higher values of c , the standard deviations do
not differ much with the graph size n.
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Testing Normality

First we had a look at the histograms for the standardized data and
Q-Q plots, for a visual assessment. Then on the standardized samples,
we performed Pearson’s χ2 goodness of fit test, Kolmogorv-Smirnov
test, and Shapiro-Wilk test for each pair of c and n.

The table of the p-values for each of these tests showed the following
trend: the p-values get bigger towards the lower left corner of the
table, which corresponds to small values of c and large values of n.
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Testing Normality

Surprizingly, when n and c both large, despite the standardized
histograms being close enough (at least visually) to the standard
normal density, the p-values corresponding to them are quite low.
A possible reason for this might be that the number of observations
being large, the tests for normality become more sensitive.
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Testing Symmetry

We performed the Randles-Fligner-Policello-Wolfe test of symmetry on
the standardized data. The p-values are shown in the following table.

A general pattern here is that the p-values tend to increase as we
move towards the bottom. This pattern is also visible from the
standardized histogram plots, the histograms are more symmetric
around the mean for larger values of n.
It is really strange that some of the samples for larger n and smaller c
(e.g. c = 1.1, n = 675) are accepted with high p-values in the tests of
normality but rejected poorly in tests of symmetry.
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Histograms

We took p = 0.1, 0.3, . . . , 0.9, and various values of n. A small sampling
of the histograms are shown below.

We noted that the typical distance Hn in this case is either 1 or 2 most of
the times, which is understandable since P(Hn > 2) = (1− p)(1− p2)n−2.
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The sample mean

The following diagram shows the sample mean as a function of p.

This curve shows that for a fixed p, and sufficiently large n, the sample
mean is close to 2− p, which is just E[1+ X ] where X ∼ Ber(1− p).
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The standard deviations

The following diagram shows the standard deviations as a function of p.

Again, for large enough n, the distribution of Hn being close to 1+ X
where X ∼ Ber(1− p), its standard deviation is close to

√
p(1− p).
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The standard deviations

The following diagram shows the standard deviations as a function of n.

We can see that although the sample s.d. is pretty high for small n and
p = 0.1, it quickly decreases for higher values of n. The sample s.d. for p
close to 0.5 seems to be much steady.
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Testing Normality and Symmetry

It is immediate from the histograms that the distribution of Hn in this
case is not anywhere close to normal. Indeed, all the p-values we get
for the tests for normality are extremely small.
The p-values for the RFPW test of symmetry are summarized below.

We noted above that even for moderately large n, we have
P(Hn = 1) = p, and P(Hn = 2) ≈ 1− p. When p = 1/2, these two
become almost equal, bringing symmetry in the distribution of Hn.
When p < 0.5 or p > 0.5, one of the two sides gets heavier.
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Concluding remarks

The o(1) term in theorem 1 is quite ambiguous. More work needs to
be done, specially regarding the rate at which it shrinks.
The sample s.d. of the typical distance has not been studied in great
detail, we suggest a comprehensive study of that.
Throughout this project we tried to find patterns about how different
rates depend on the parameter c . Our simulations suggest that the
effects of c on the o(1) term and s.d. needs further study.
In the sparse but super-critical regime, we suspect from the plots that
there is a phase transition at c = 2. The rates of decay seem to be
different for values of c close to 1 and values of c greater than 2.
We think that lots of work remain for understanding the limiting
distribution of the typical distance as n→∞.
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Thank you for your attention!
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