
This is a project under Prof. Antar Bandyopadhyay
for the course Random Graphs

Studying the Structure of the Local Neighbourhood
of a Randomly Selected Vertex of a Large but
Sparse Erdős-Rényi Binomial Random Graph

Soham Das

June 2, 2020

Abstract

The main goal of this project is to statistically study local neighbourhood of
a randomly selected vertex of a large but sparse Erdős-Rényi random graph.
Given any d, the project tries to identify the statistical properties of the d-depth
neighbourhood for large but sparse Erdős-Rényi random graphs.

1 Definitions

Erdős-Rényi random graph: If a graph has n vertices and probability of joining
any two vertices by an edge is p. The set of all such graphs is noted as G(n, p). Any
graph that belongs to this set is called Erdős-Rényi binomial random graph.

Sparse graph: A graph is called sparse if the ratio of its total number of edges to
the total number of possible edges tends to zero when the total number of vertices
tends to infinity. In other words, if a graph has n many vertices and it has edges
of order o(n2) then the graph is called sparse.

Large graph: When total number pf vertices in a graph i.e., n is very large.
Sparse Erdős-Rényi random graph: If the parameter p of the set ER random

graph G(n, p) is of the form p = c/n then the random graph is called sparse, where
c is any positive constant and n is the total number of vertices.

Galton-Watson process: A Galton–Watson process is a stochastic process {Xn}
which evolves according to the recurrence formula
X0 = 1 and Xn+1 =

∑Xn
j=1 ξ

(n)
j , where {ξ(n)j : n, j ∈ N} is a set of independent and

identically-distributed natural number-valued random variables.
This project is about identifying the property of a d-neighbourhood in a large but

sparse Erdős-Rényi random graph statistically(through simulation). I have simu-
lated random graphs from G(n, p) with p = c/n where c is some positive constant,
fixed a vertex randomly, and studied the properties of its d-depth neighbourhood
in those graphs.
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2 Simulations and observations

2.1 Probability of the d-neighbourhood being a tree

Let be the probability of the d-neighbourhood being tree be ptree. ptree de-
pends on c, d and n simultaneously. In this section, I have fixed d = 4. Then I
have simulated 20 graphs gi, i = 1, 2, · · · , 20 from G(n, p), chosen a vertex vi ran-
domly from gi and named its d-neighbourhood as nghi. An estimate of ptree is
p̂tree = 1

20

∑20
i=1 I(nghi is a tree), I(·) is indicator function. In this way, I have sim-

ulated p̂tree 100 times and plotted the histogram for different values of c and n,
c = 0.5, 1, 1.5, 2;n = 1000, 3000, 6000, 10000, 30000, 60000.

Figure 1: For c = 0.5

Figure 2: For c = 1
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Figure 3: For c = 1.5

Figure 4: For c = 2

Observation:

• We see that for each of c, as n increases, standard error of p̂tree decreases,
confidence interval shrinks and p̂tree becomes closer to 1. So, we can say that
for a fixed d and sufficiently large n, the d-neighbourhood becomes a tree.

• Also if we increase c, the above property holds true but it is visible only for
larger and larger n as c increases. This is obvious because probability of
having an edge between two vertices i.e., c/n increases with c.
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2.2 Expected number of cycles in d-neighbourhood

In the same spirit, I simulated the expected number of cycles in d-neighbourhood.
I counted the total no. of cycles for 500 random graphs from G(n, p) and took their
average for d fixed at 4.
Note: Here I have counted only triangles, quadrilaterals and pentagons. Total no.
of cycles should not be much different from this count as these three constitute
most of the cycles.

Figure 5: Expected no. of cycles for different c

Observation:

• It follows from the last observation as a corollary that this expectation value
goes to zero as n tends to infinity for any fixed c.
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2.3 Probability of the d-neighbourhood being a tree(contd.)

In section 3.1, I estimated ptree for different values of c fixing d = 4. Now I esti-
mated ptree for different values of d fixing c = 3. And plotted the histograms of p̂tree
as in 3.1, for d = 3, 4, 5;n = 1000, 3000, 6000, 10000, 50000, 100000.

Figure 6: For d = 3

Figure 7: For d = 4
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Figure 8: For d = 5

Figure 9: For d = 6

Observation:

• We can see that p̂tree becomes close to 1 as n increases as before for any
fixed c. Also this property is visible for larger values of n as d increases. The
distribution of p̂tree moves towards left and mean of p̂tree decreases drastically
as d increases keeping n fixed. This is evident from the fact that for larger d
we are considering larger subgraph with more vertices and more chance of
finding a cycle.

• From here we understand that the probability of d-neighbourhood being a
tree, i.e., ptree decreases with increase in c or d and increases with increase
in n.
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In this project we concentrate on the properties of d-neighbourhood of a random
vertex v for large and sparse graph. We can observe the opposing effect of c and d
against n for the d-neighbourhood being a tree. That is why from now on we fix d
at a standard value, say 4, so that the d-neighbourhood is a tree and observe its
properties for different c and n. And sufficiently large n is taken for simulation.
Also from here on, we assume that for any random vertex we choose from a graph
in G(n.p), with p = c/n, its d-neighbourhood is a tree.

2.4 Degree of a random vertex

In this section we will investigate the distribution of degree of a randomly cho-
sen vertex in d-neighbourhood. I have chosen a vertex v randomly from a graph
in G(n, p). Let its degree be Deg0.
A random vertex v can be connected with n − 1 many other vertices each with
probability p = c/n. This implies the degree Deg0 ∼ Poi(c).
To check the Poisson distribution through simulation, I have formed histograms
of 1000 simulated values of Deg0 for different c and n, c = 0.5, 1, 1.5, 2, 3, 5;
n = 1000, 3000, 6000, 10000, 30000, 60000. Also the p-values of Kolmogorov-Smirnov
test, Chi-squared test and t-test for each of the histograms are also mentioned in
the following figure.

Figure 10: For c = 0.5 Figure 11: For c = 1
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Figure 12: For c = 1.5 Figure 13: For c = 2

Figure 14: For c = 3 Figure 15: For c = 4

Observation:

• It is clear from the histograms that Deg0 indeed follows Poi(c) as expected and
the p-values of each of the histograms also validate that.
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2.5 Degree of a random vertex at t-depth form a random vertex

Similarly, I also formed a histogram of 1000 simulated values of degree of a
random vertex at t-depth from initially selected random vertex v, for different val-
ues of t, t = 1, 2, 3. Let the degree of a vertex at t-depth be Degt.
I have only shown the histograms for t = 1.

Figure 16: For c = 0.5 Figure 17: For c = 1

Figure 18: For c = 1.5 Figure 19: For c = 2

9



Figure 20: For c = 3 Figure 21: For c = 4

Observation:

• We observe that, Deg1 ∼ 1 + Poi(c) and also for t = 2, 3, Degt ∼ 1 + Poi(c). We
have easy explanation to it. Let us say the initially selected random vertex is
v. Given that a vertex is at depth t, we know it is not connected to the vertex
v and any vertex at depth 1, 2, · · · , t − 2 from v in the subgraph. Let the set
of such vertices be S. A vertex at depth t can be connected with any vertex
which is not in S with probability p = c/n. Though the cardinality of S may
vary, its expected value is almost negligible to large n. Also it is clear that
this vertex is definitely connected to a vertex at depth t− 1. Hence, its degree
follows distribution 1 + Poi(c).

• I also noted the p-values of Kolmogorov-Smirnov test, Chi-squared test and
t-test for each of the histograms in the figures. As we see the p-values are
pretty high.
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2.6 Independence of degrees of two random vertices in d-neighbourhood

Next we check the independence of the degrees of vertices in the d-neighbourhood
subgraph. I have collected 100 pairs of degrees of two randomly selected vertices
from d-neighbourhood of random vertex v in a graph from G(n, p). Then I calcu-
lated Kendall and Pearson correlation coefficient and p-value of Chi-squared test
of independence of these pairs for different values of c and n.

Figure 22: Kendall and Pearson correlation coefficient

Figure 23: p-value of Chi-square test of independence
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Observation:

• As we see, correlation between degrees of any two randomly selected vertices
is very low in both Pearson and Kendall method and p-values for chi-square
independence test are greater than 0.05. Hence, we can infer that the degrees
of the vertices in d-neighbourhood are independent.

Theorem. Let X and Y be two random variables such that X ∼ Poi(µ) and
Y ∼ Poi(λ) then X + Y ∼ Poi(µ+ λ) if X and Y are independent but not vice versa.

Proof. Let characteristic functions of X, Y and X + Y are φX = exp[µ(eit − 1)],
φY = exp[λ(eit − 1)] and φX+Y respectively. If X and Y are independent, then
φX+Y = φXφY = exp[(µ+ λ)(eit − 1)] which says X + Y ∼ Poi(µ+ λ).

For the other part we have to produce a counter example. Lets start with the
given joint distribution table of X and Y .

Total Y
q0 q1 q2 q3 q4 q5 · · ·

p0 p0q0 p0q1 p0q2 p0q3 − δ p0q4 + δ p0q5 · · ·
p1 p1q0 p1q1 p1q2 p1q3 + δ p1q4 − δ p1q5 · · ·

X p2 p2q0 p2q1 + δ p2q2 − δ p2q3 p2q4 p2q5 · · ·
p3 p3q0 p3q1 − δ p3q2 + δ p3q3 p3q4 p3q5 · · ·
p4 p4q0 p4q1 p4q2 p4q3 p4q4 p4q5 · · ·
...

...
...

...
...

...
... . . .

Table 1: Joint distribution table

In table 1, px = Pr(X = x), py = Pr(Y = y) are given and δ is some suitably small
positive number.
As the marginal distribution of X and Y are given by Poi(µ) and Poi(λ) respectively,
the row and column sums match with the marginal distributions: pi =

∑
j piqj and

qj =
∑

i piqj. Also the off diagonal sums also match with X + Y ∼ Poi(µ + λ) as:
Pr(X + Y = k) =

∑
i piqk−i.

According to the last theorem, if X, Y , X+Y follows Poi(µ), Poi(λ) and Poi(µ+λ)
respectively then we cannot necessarily say that X and Y are independent but it
eliminates one possible way to disprove independence.
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Earlier in this section we took 100 pairs of observations to check independence.
Similarly, now we took 1000 such pairs, added each pairs and tested if those 1000
sums follow 2 + Poi(2c) or not.

Figure 24: For c = 1 Figure 25: For c = 1.5

Figure 26: For c = 2 Figure 27: For c = 3

Observation:

• From the histograms it is clear that the sum of two randomly chosen vertices
from d-neighbourhood follows 2 + Poi(2c).

• It has also been checked that sum of degrees of three such vertices follows
3 + Poi(3c).
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3 Results

Lets summarize the observations we got from the previous section:

• For fixed d, c and suitably large n, the d depth neighbourhood of a randomly
chosen vertex in a Erdős-Rényi binomial random graph from G(n, p) with p =
c/n is a tree.

• The degree of that randomly chosen vertex follows Poisson distribution with
parameter c.

• The degree of any other vertex from that tree follows distribution 1 + Poi(c).

• Degrees of all the vertices in this tree are independent

From these observations we can conclude that the d-depth neighbourhood of a
randomly slected vertex is a tree which has distribution same as a d-depth neigh-
bourhood of a Galton-Watson process with progeny distribution Poi(c).

4 R codes

Use the following link to get the R codes for all the simulations:
https://github.com/Sohamdas-stat/Random-graphs.
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