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Abstract

Erdős-Rényi Binomial Random Graph is a Random graph
with a fixed number of vertices and each edge of that graph
being present with some probability, independent of each
other. Vertex Percolation is a process where each vertex
in a graph is present with some probability, independent
of the other vertices. Needless to say, if a vertex is absent
in a graph, all edges emerging from it are also absent. In
this project we have carried out simulations to study the
behaviour of an Erdős-Rényi Binomial Random Graph after
performing Vertex Percolation, in terms of connectivity.
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1 Introduction

Consider the following problem. There is a large state with several cities. There
is a road between every pair of cities. Suddenly, the state administration decides
to block a few randomly chosen roads for maintenance. Also, some of the cities
randomly decide not to allow travel through them, independently of the other cities.
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This clearly means that each those cities has blocked all roads that have one end in
that city. Now, a traveller standing in one of the remaining cities wants to know the
chances that he can travel to all of the remaining cities without having to break any
rule.

We are now in a position to frame our objective mathematically. Let G be
a random graph obtained by erasing vertices of the complete graph Kn indepen-
dently with probability 1 − qn; where 0 < qn < 1 and edges with probability
1 − pn; where 0 < pn < 1. The main goal of the project is to study the connec-
tivity properties and structure of such random graphs for large n. Note that, pn and
qn may depend on n and need not be equal. Deletion of edges from Kn gives us an
Erdős-Rényi Binomial random graph, while deleting vertices is vertex percolation.

2 Formal Definitions

Let Kn be the complete graph with n vertices. We define

Vn := V (Kn) En := E(Kn)

=⇒ Vn = [n] En = {{u, v}|u 6= v ; u, v ∈ [n]}

Let

(Xv)v∈ Vn ∼ i.i.d. Bernoulli (qn)

(Ye)e∈ En ∼ i.i.d. Bernoulli (pn)

Xv & Ye are independent ∀ v ∈ Vn & e ∈ En

Let G be random graph such that

V (G) := {v|v ∈ Vn & Xv = 1}
E(G) := {e := {u, v}|e ∈ En & Xv = 1, Xu = 1, Ye = 1}

Such a G is our graph of interest. We will denote such a graph as

G ∼ G(n, pn, qn)

3 Methodology

For a graph G ∼ G(n, pn, qn), we have the following results. The proofs are provided
in Appendix-1.
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Result 3.1. E [|V (G)|] = nqn

Result 3.2. P (e ∈ E(G)) = q2npn ∀e ∈ En

Result 3.3. P (e = {u, v} ∈ E(G)|Xu = 1, Xv = 1) = pn

Result 3.4. If vertex percolation is done first, the graph obtained is an Erdős-
Rényi Binomial Random Graph on the remaining set of vertices i.e., G|(Xv)v∈Vn ∼
G (|V (G)|, pn)

3.1 Connectivity in Erdős-Rényi Binomial Random Graph

There are two important results about connectivity in Erdős-Rényi Binomial Random
Graph depending on edge probability. One of them gives the idea of Threshold
for connectivity property and the other is about probability of connectivity around
connectivity threshold.

Connectivity Threshold

Theorem 3.1 (Connectivity Threshold). Let G ∼ G (n, pn). Then,

lim
n→∞

PG(n,pn) (G is connected) =


0 ;

pn
log(n)/n

→ 0

1 ;
pn

log(n)/n
→∞

Critical Window

For an Erdős-Rényi Binomial Random Graph , if edge probability is ‘around’ thresh-
old then we can state the following about its connectivity,

Theorem 3.2. Fix t ∈ R and λn = log n+ t;

lim
n→∞

PG(n,λnn )(G is connected) = exp {− exp {−t}}

Corollary 3.2.1. Fix p ∈ (0, 1);

PG(n,p)(G is connected) = exp

{
− exp

{
−n
(
p− log n

n

)}}
(1 + o(1))
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3.2 Connectivity in the graph of our interest

From Result 3.4, we know that if vertex percolation is done ,i.e. all (Xv)v∈Vn are
given, our graph of interest is an Erdős-Rényi Binomial Random Graph with edge
probability pn and number of vertices is |V (G)|, which, from Result 3.1 is ‘expected’
to be nqn. Also, connectivity is an increasing property for Erdős-Rényi Binomial
Random Graphs while it has no such characteristics for Random Graphs obtained
by Vertex Percolation. Hence, for now, we shall restrict ourselves to studying the
connectivity properties with respect to p for given values of n and qn.

3.2.1 Idea of a threshold

Keeping the theorem 3.1 and corollary 3.2.1 in mind, for a given n and qn, if expected
number of vertices goes to∞ as n goes to∞, for the plot of PG(n,p,qn)(G is connected)
vs p, we expect to observe the same behavior as in case of Erdős-Rényi Binomial
Random Graph i.e., connectivity probability is 0 up to a certain value of p after
which, it rapidly increases to 1.
If the graph were Erdős-Rényi Binomial Random Graph, for a given n, the increase
takes place when p is around log n/n, which is the threshold. After percolation
our graph is also an Erdős-Rényi Binomial Random Graph with |V (G)| vertices,
which is (unconditionally) ‘expected’ to be nqn. We thus, also want to verify if, for
a given n and qn, the graph of our interest follows a similar trend when p is around
log(nqn)/(nqn).

Simulation 1 Our goal is to check whether after percolation, the connectivity
of the graph behaves like it has a threshold. For that, we have plotted estimated
probability of connectivity, p̂con.(p) vs p for some fixed “large” value of n and different
constant values of qn.

Scheme

• Fix a ‘large enough’ n.

• Fix a qn ∈ (0, 1)

• Fix a set of values of p ∈ (0, 1). For each of these values, we shall estimate the
probability of connectivity.

• For each value of p,
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i (Vertex Percolation) Since we are performing vertex percolation first,
removing the vertices for which Xv = 0 gives us a smaller, yet com-
plete graph with

∑
v∈Vn Xv vertices. This is invariant under permuta-

tion of values of Xv. Hence, it is sufficient to simulate the value of∑
v∈Vn Xv, which follows Binomial(n, qn). So, we draw a random vari-

able from Binomial(n, qn) ,say m.

ii We simulate a graph G from G(m, p).

iii Check if G is connected.

iv Repeat steps (i) to (iii) 1000 times and find the proportion of graphs
that are connected. This gives the estimated probability of connectivity,
p̂con.(p).

• Plot p̂con.(p) against p.
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Figure 1: Plots of simulations of connectivity probability, p̂con.(p) vs p for given n
and qn. The vertical line in each graph corresponds to p = log(nqn)/(nqn)

Observations

• The connectivity probability apparently stays 0 up to a certain value of p and
then increases steadily to 1, for some values of qn.

• The transition of the connectivity probability from 0 to 1 appears to take place
around log(nqn)/(nqn) as expected.

Simulation 2 In order to confirm our observations from Simulation 1, we need to
simulate for a wide range of qn for a fixed n. We want to put all the plots obtained
for a different qn for a fixed value of n in a single plot.

Scheme

• For each value of n, fix a set of values for qn to simulate.

• For each qn

– Follow the scheme for Simulation 1 to obtain values of p̂con.(p) vs p.
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– Fit p̂con.(p) = exp {− exp {−δn (p− cn)}} using IRLS to obtain estimates
ĉn and δ̂n.

– Plot p̂con.(p) vs p∗ := p− ĉn in the same plot.

Figure 2: Plots corresponding to various qn values for n = 500

qn Multiple Correlation

0.125 0.9997871
0.250 0.9998905
0.375 0.9998995
0.500 0.9999568
0.625 0.9999508
0.750 0.9999827
0.875 0.9999582

Table 1: Multiple Correlation of the fitted model is presented against qn for n = 500
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Figure 3: Plots corresponding to various qn values for n = 1000

qn Multiple Correlation

0.125 0.9998685
0.250 0.9999298
0.375 0.9999158
0.500 0.9999595
0.625 0.9999591
0.750 0.9999464
0.875 0.9999696

Table 2: Multiple Correlation of the fitted model is presented against qn for n = 1000

Observations

• The connectivity probability stays 0 up to a certain value of p and then increases
steadily to 1, confirming observation from Simulation 1.
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• The connectivity probability behaves like it has a threshold.

• For increasing value of qn, the transition from 0 to 1 gets steeper.

3.2.2 Fitting a functional form to the connectivity probability

By now, we have observed that the connectivity probability for our graph of interest
behaves much like that for an Erdős-Rényi Binomial Random Graph. We are now
interested to see if it conforms to a functional form similar to that stated in Corollary
3.2.1. In view of the previous results and simulations, for p ∈ (0, 1), we expect it to
be

PG(n,p,qn)(G is connected) = exp

{
− exp

{
−nq

(
p− log nq

nq

)}}
(1 + o(1))

Simulation 1 We shall estimate the connectivity probability using p̂con.(p) as ear-
lier. We shall then fit it against a model of the form exp {− exp {−δn (p− cn)}} to
see whether it conforms to the functional form.

Scheme

• Fix n and qn.

• For various values of p, estimate the connectivity probability following the same
scheme as in Section 3.2.1 and plot p̂con.(p) against p.

• Fit p̂con.(p) ≈ exp {− exp {−δn (p− cn)}}.

• Draw the fitted curve in the same plot.

• For a fixed functional form of qn, for different values of n, we plot p̂con.(p)
against p∗ in the same plot.
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Figure 4: Plot of p̂con.(p) against p for various n and qn. The fitted curve according
to the model are also plotted.
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Figure 5: Plot of connectivity probability vs p∗ for various values of n for a fixed
functional form corresponding to qn.
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Observations

• It is evident from the plots that the fitted model provides a very good estimate
of the original data.

• For increasing values of n, the transition from 0 to 1 gets steeper. Together
with the previous observations, it seems that the transition gets steeper with
increasing value of nqn, which is the expected number of vertices of G.

Simulation 2 We now need to estimate the parameters, cn and δn in the model.
Further we shall check whether ĉn ≈ log nqn/nqn and δ̂n ≈ nqn.

Scheme

• Fix an n− qn relationship.

• For n ∈ {1000, 1001, · · · , 1500},

– Simulate values for p̂con.(p) vs p for different values of p according to the
scheme in Section 3.2.1.

– Fit p̂con.(p) ≈ exp {− exp {−δn (p− cn)}}.
– Find the estimates ĉn and δ̂n

• Plot n vs ĉn and n vs δ̂n.

• Calculate Cor({ĉn}, {log nqn/nqn}) and Cor({δ̂n}, {nqn}).
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Plots

• n = 1000− 1500 and qn = n−
1
8

n vs ĉn plot
Cor (ĉn, log nqn/nqn) 0.9998316

n vs δ̂n plot

Cor
(
δ̂n, nqn

)
0.9936192
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• n = 1000− 1500 and qn = 0.3

n vs ĉn plot
Cor (ĉn, log nqn/nqn) 0.9996224

n vs δ̂n plot

Cor
(
δ̂n, nqn

)
0.9905715
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• n = 1000− 1500 and qn = (n+ 1)(n+1)
7
8 − n 7

8

n vs ĉn plot
Cor (ĉn, log nqn/nqn) 0.9998839

n vs δ̂n plot

Cor
(
δ̂n, nqn

)
0.9968299
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• n = 1000− 1500 and qn = (n+ 1)
3
4 − n 3

4

n vs ĉn plot
Cor (ĉn, log nqn/nqn) 0.9996602

n vs δ̂n plot

Cor
(
δ̂n, nqn

)
0.9945886
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Observations

• Cor (ĉn, log nqn/nqn) and Cor
(
δ̂n, nqn

)
are quite high.

• Linear association of δ̂n, nqn and ĉn, log(nqn)/(nqn) is positive in all the cases.

4 Discussion and Conclusions

In view of the above simulations we propose the following conjectures under the
following set-up

(Xv)v∈ Vn ∼ i.i.d. Bernoulli (qn)

(Ye)e∈ En ∼ i.i.d. Bernoulli (pn)

Xv & Ye are independent ∀v ∈ Vn & e ∈ En

Conjecture 4.1 (Connectivity “Threshold” after Percolation). Let G be random
graph such that

V (G) := {v|v ∈ Vn & Xv = 1}
E(G) := {e := {u, v}|e ∈ En & Xv = 1, Xu = 1, Ye = 1}

and

lim
n→∞

E[|V (G)|] =∞

i.e. nqn →∞ as n→∞

Then,

lim
n→∞

P (G is connected) =


0 ;

pn
log nqn/nqn

→ 0

1 ;
pn

log nqn/nqn
→∞

Conjecture 4.2. Fix t ∈ R and λn = log nqn + t. Provided that nqn → ∞ as
n→∞,

lim
n→∞

PG(n, λnnqn ,qn)(G is connected) = exp {− exp {−t}}
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Appendix-1

Proof of the Results, Stated in Section 3

Result 3.1. E [|V (G)|] = nqn

Proof. We know,

(Xv)v∈ Vn ∼ i.i.d. Bernoulli (qn)

=⇒ E[Xv] = qn ∀ v ∈ Vn

and,

V (G) := {v|v ∈ Vn & Xv = 1}

∴ |V (G)| =
∑
v∈Vn

Xv

∴ E [|V (G)|] = E

[∑
v∈Vn

Xv

]
=
∑
v∈Vn

E [Xv] = |Vn| · E[X1] = nqn

Result 3.2. P (e ∈ E(G)) = q2npn ∀e ∈ En

Proof. An edge e := {u, v} is present in the set E(G) if

Xu = 1, Xv = 1 & Ye = 1, where Xu, Xv ∼ Bernoulli(qn) & Ye ∼ Bernoulli(pn)

Xu, Xv, Ye are independent Random Variables.

Therefore,

P (e ∈ E(G)) = P (Xu = 1, Xv = 1, Ye = 1)

= P (Xu = 1)P (Xv = 1)P (Ye = 1)

= qn · qn · pn
= q2npn
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Result 3.3. P (e = {u, v} ∈ E(G)|Xu = 1, Xv = 1) = pn

Proof.

P (e = {u, v} ∈ E(G)|Xu = 1, Xv = 1) = P (Xu = 1, Xv = 1, Ye = 1|Xu = 1, Xv = 1)

= P (Ye = 1) [∵ Xu, Xv, Ye are independent]

= pn

Result 3.4. If vertex percolation is done first, the graph obtained is an Erdős-
Rényi Binomial Random Graph on the remaining set of vertices i.e., G|(Xv)v∈Vn ∼
G (|V (G)|, pn)

Proof. Given, (Xv)v∈Vn , V (G) is a fixed set.

V (G) = {v|Xv = 1}

|V (G)| =
∑
v∈Vn

Xv

and

e := {s, t} ∈ En such that Xs = 0;Xt = 0

=⇒ e /∈ E(G)

i.e., v, u (v 6= u) /∈ V (G) =⇒ {u, v} /∈ E(G)

and if u, v (u 6= v) ∈ V (G),

P({u, v} ∈ E(G)|Xu = 1, Xv = 1) = pn [by previous result]

(Ye)e∈En are i.i.d. Bernoulli(pn)

=⇒ G|(Xv)v∈Vn ∼ G (|V (G)|, pn)
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