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Abstract
Consider the Erdős-Rényi binomial random graph model. We studied through
simulations the typical graph distance between two randomly selected vertices,
when p is above the connectivity threshold or in the sparse but super-critical
regime. We also studied the typical distance in square lattice percolation
where p is constant and greater than 1/2.

1 Introduction

Consider the Erdős-Rényi binomial random graph model, which we shall denote by ER(n, p). The
object of our study is the typical distance in ER(n, p), which is defined as the graph-distance
between any two randomly selected vertex. We shall denote the typical distance in ER(n, p) by
Hn, following the notation in van der Hofstad [2].

Suppose that G ∼ ER(n, p). If G is connected, the average distance of G is defined as the
average of all distances d(u, v) for u and v in G. If G is not connected, we define the average
distance to be the average of all distances d(u, v) for pairs of u and v both belonging to the
same connected component. Clearly, the average distance is the expected value of the typical
distance Hn, conditioned upon the event that Hn is finite. Following is a famous result on the
average distance of G ∼ ER(n, p).

Theorem. (Chung and Lu, [1]) If np ≥ c >1 for some constant c, then almost surely the
average distance of ER(n, p) is (1+o(1))(log n/ log np), provided (log n/ log np) goes to infinity
as n→∞.

It is well-known that the graph G ∼ ER(n, p) is connected with high probability when p is
above the connectivity threshold logn

n . In the sparse but super-critical regime (p = c/n where
c > 1), the graph has a giant cluster of size O(n) and second largest cluster of size O(log n).

We considered p to be mainly in these two regimes, but also had a look at the case when p is
constant.

We simulated ER(n, p) for different choices of n and p and discarded the simulated distances
that were infinite, so that we could compare our simulated results with the above theorem. What
we found is that the o(1) term in the theorem is quite ambiguous and shows some strange
behaviour when we look at the simulations. We also studied the standard deviation of the
typical distance and performed tests for normality and symmetry of the distribution of the typical
distance.

Finally we also studied the typical distance in the square lattice percolation, which is defined
as follows. We consider the square lattice with vertices {(i, j) : −n ≤ i, j ≤ n} and the edges
connecting each pair of points that are exactly one unit of distance apart. We join each edge
with a constant probability p and hence obtain a random graph. It is known that the connectivity
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threshold for this graph is p = 1/2. We studied the typical distance for this random graph when
p > 1/2.

The simulations were done in R, mainly using the igraph package. The R code used for these
simulations is available in the following Github repository: https://github.com/ghoshadi/random-
graphs/.

2 Sparse but super-critical regime

We simulated ER(n, c/n) for 1000 times for each pair of (c, n) where c = 1.1, 1.3, 1.7, . . . , 2.5

and n = 20, 60, 100, 150, 250, 400, 675, 1000, 2000. These graph sizes are chosen so that log n

varies almost linearly, which may help us revealing some patterns. Not all distances we observed
were finite, but we threw away the infinite ones during our analysis.

2.1 Histograms

For each of the values np = c = 1.3, 1.7, 1.9, 2.1, 2.5, the histograms of the observed (finite)
typical distances in ER(n, c/n) for each choice of the graph size n are given below (histograms
for the other values of c show similar pattern, those are omitted here). The blue line shows the
normal density with mean and s.d. estimated by the sample mean and sample s.d. The red line
shows the normal density with mean equal to log n/ log c and s.d. estimated by the sample s.d.
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Observations: For the smaller values of c and n we notice that the difference between sample
mean and log n/ log np is so high that the central part of the red curve is missing from the plot.
We also see that this difference between sample mean and log n/ log np decreases gradually as c

and n both increases. This difference we observed suggests that we should plot the o(1) term =

(the sample mean − log n/ log c) · log c/ log n and see how fast does it fall.
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2.2 Studying the o(1) term

Plot of the o(1) term = (the sample mean · log c/ log n)− 1 is given below. Different colors are
used for indicating different values of c = np.

Observe that the o(1) term falls at a faster rate when the value of c is more than 2. For
smaller values of c, the error term is much larger and falls at a slower rate.

2.3 Studying the standard deviations
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We can see a steady increase for c = np > 2, and for the values of c near 1, the s.d. in fact
increases rapidly. Note that here the sample s.d. is calculated without any scaling. But even if
after scaling the s.d. for smaller values of c will go to zero, the plot suggests that this decay
would happen at a much slower rate than the decay for the higher values of c.

2.4 Testing normality

Before the formal tests for normality, we had a look at the histograms for the standardized data
and Q-Q plots, for a visual assessment. The histograms for standardized samples are given below,
but the Q-Q plots are omitted.

2.4.1 Histogram for the standardized samples

Each sample is standardized using sample mean and s.d. The blue line is the standard normal
density. Here we include the histograms for every pair of c and n that we simulated, because
that will accompany us while comprehending the p-values of the tests of normality and symmetry
which will be performed next.
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2.4.2 Table of p-values for different tests

On the standardized samples, we perform Pearson’s chi-square goodness of fit test, Kolmogorv-
Smirnov test, and Shapiro-Wilk test for each pair of c and n. The table of the p-values for these
tests are given below.
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Observations: We observe that the p-values get bigger towards the lower left corner of the table.
This means that for small values of c and large values of n, our data passes the test of normality
with great confidence! On the other hand, the cases for n and c both large are quite surprizing.
Despite the standardized histograms being close enough (at least visually) to the standard normal
density (e.g. look at the standardized histogram for n = 400, c = 2.3, or for n = 1000, c = 2.5),
the p-values corresponding to them are quite low. A possible reason for this might be that the
number of observations being large, the tests for normality become more sensitive to the data, in
the sense that even very small deviations from the standard lead to much decrease in the p-value.

2.5 Testing symmetry

We perform the Randles-Fligner-Policello-Wolfe test of symmetry on the standardized data and
record the p-values in the following table.

Table of the p-values

Comments: A general pattern in the above table is that the p-values increase gradually as we
move towards the lower right corner. This pattern is also visible from the standardized histogram
plots – those histograms are more symmetric around the mean for larger values of n and c. Note
that this is somewhat contradictory to the table of p-values of the normality tests, where we
saw the p-values to increase towards the lower left corner. It is really strange that the samples
for larger n and smaller c are accepted with high p-values in the tests of normality but rejected
poorly in tests of symmetry.

2.6 Proportion of times the observed distance is finite

Plot of the proportion of times the observed typical distance is finite is given below.
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Comments: It is clear from the above plot that the proportion of times the typical distance is
finite depends more on the value of c = np than on the graph size n itself.

Remark

We repeated all the above calculations also for the graph distance in ER(n, p) between a fixed
vertex (say vertex 1) and another randomly chosen vertex. The results we found were similar to
the case for typical distance, as expected. Hence we do not include them in this report.

3 Connectivity regime

We simulated ER(n, c log n/n) for 500 times for each pair of (c, n) where c = 1.1, 1.3, 1.7, . . . , 2.5

and n = 20, 60, 100, 150, 250, 400, 675, 1000, 2000. As noted earlier, these graph sizes are chosen
so that log n varies almost linearly. Since these graphs are connected with high probabilities, we
got only a few infinite ones, which were thrown away during our analysis.

3.1 Histograms

For each of the values np = c = 1.1, 1.5, 1.9, 2.3, the histograms of the observed (finite) typical
distances in ER(n, c log n/n) for each choice of the graph size n are given below (histograms
for the other values of c show similar pattern, those are omitted here). The blue line shows the
normal density with mean and s.d. estimated by the sample mean and sample s.d. The red
line shows the normal density with mean equal to log n/ log(c log n) and s.d. estimated by the
sample s.d.
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Observations: We notice that the red curve is always behind the blue curve, indicating that the
sample mean is always more than log n/ log np, which is exactly opposite to the previous case
of p = c/n, c > 1. Another observation here is that the difference between sample mean and
log n/ log(c log n) is not much even for smaller values of c and n. In fact, this difference slightly
increases as c or n increases, which it should, because this difference is not just the o(1) term, it
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equals the sample mean − log n/ log(c log n) = (the o(1) term)× log n/ log(c log n).

3.2 Studying the o(1) term

By ‘o(1) term’ we mean (the sample mean × log(c log n)/ log n) − 1. Just as earlier, we use
different colors in the following plot of the o(1) term for indicating different values of c.

Note that this plot does not exhibit any prominent difference among the different values of c.
Comparing this plot with the plot of the o(1) term in the p = c/n case, we can see that not only
the sign of the o(1) term is changed, but its magnitude is also much less than the p = c/n case.

3.3 Studying the standard deviations
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Observations: It is notable that the standard deviations are decreasing, and the rate of its decay
is much faster for the higher values of c.

3.4 Testing normality

Each sample is standardized using sample mean and s.d. and the histograms for the standardized
samples are shown below. The blue line is the standard normal density. Here we include the
histograms for every pair of c and n that we simulated, because that will accompany us while
comprehending the p-values of the tests of normality and symmetry which will be performed next.
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Comments: It is clear from the above histograms that the distribution of the typical distance
in the connectivity regime does not come any close to the normal distribution, because of its
discrete nature. This is also reflected by the tests for normality: when we performed the tests
(same list as in the previous section), all the p-values we got were very much close to 0. (So
small that when we printed them for 5 places of decimal, all of them were reported as 0; hence
we do not include those tables here.)

3.5 Testing symmetry

Just as earlier, we perform the Randles-Fligner-Policello-Wolfe test of symmetry on the standard-
ized data and record the p-values in the following table.

Table of the p-values

Comments: No major pattern is observed in this table of p-values, except for that the p-values
along the ‘diagonal’ are very small. We suspect that the absence of any pattern is due to the
discrete nature of the data. For instance, consider the case n = 250, c = 2.5. We don’t find the
histogram to be so symmetric that it should produce the p-value 0.8907. But looking closely, we
note that there are only three values that are observed, namely 1, 2 and 3, and the frequencies
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of 2 and 3 are nearly same, while the frequency of 1 is negligible to them. Perhaps this is the
reason why we get such a large p-value in this case.

4 Constant probability case

We considered p = 0.1, 0.3, 0.5, 0.7, 0.9, and varied the graph size n same as earlier. Since these
random graphs are connected with very high probabilities, we simulated these graphs just 200

times for each choice of n and p. Among the observed distances, we threw away the infinite ones
(only a few though).

4.1 Histograms

For each of values of p we plot the histogram of the observed (finite) typical distance in ER(n, p)
for each choice of the graph size n. The blue line shows the normal density with mean and s.d.
estimated by the sample mean and sample s.d. The red line shows the normal density with mean
equal to log n/ log np and s.d. estimated by the sample s.d.
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It is notable that the typical distance Hn in this case equals either 1 or 2 most of the times.
This is actually not so surprizing if one observes the following.
Observations: We have Pr(Hn > 2) = (1− p)(1− p2)n−2. Clearly, this probability falls rapidly
as n increases, for any 0 < p < 1.

Proof. From the n vertices we are choosing 2 vertices, say X and Y, uniformly at random
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(without replacement). First let us condition upon the event that the chosen two vertices are
(i, j) respectively. To compute the probability Pr(Hn > 2|X = i, Y = j), note that for this
event to occur, the edge i − j must not be present and for any k other than i and j, the path
i− k − j must not be present. Probability that the edge i− j is absent is just (1− p); and the
probability that the path i−k− j is absent, is (1−p2). Note that there are (n−2) many choices
for this middle vertex k. Since any these paths and the edge i − j are all formed independently
in ER(n, p), it follows that Pr(Hn > 2|X = i, Y = j) = (1− p)(1− p2)n−2. Since this holds for
any 1 ≤ i 6= j ≤ n, we conclude that Pr(Hn > 2) = (1− p)(1− p2)n−2. �

4.2 Testing normality and symmetry

It is immediate from the histograms that the distribution of Hn for ER(n, p) where p is constant,
is far from being close to normal. Indeed, if we perform the tests for normality as we did earlier,
all the p-values we get are extremely small.

On the other hand, the p-values for the tests of symmetry are quite interesting. They are
summarized in the following table.

Note that the p-values are much higher for p = 0.5 than the others. Following is a plausible
explanation for this pattern. We noted above that Pr(Hn > 2) = (1− p)(1− p2)n−2, which falls
off rapidly as n increases. This tells us that Pr(Hn = 1 or 2) ≈ 1. But Pr(Hn = 1) = p, which
gives Pr(Hn = 2) ≈ 1− p. When p = 1/2, these two become (almost) equal, bringing symmetry
in the distribution of Hn. When p < 0.5 or p > 0.5, one of the two sides gets heavier (compare
the histograms for p = 0.3 and p = 0.7). What about the first column? Look at the histograms
for p = 0.1. When n is in the middle range (100 − 200), the symmetry in the histogram is due
to the classes 1 and 3 having nearly equal frequencies. When n increases further, the class for 3
disappears, and the symmetry is lost.
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4.3 Studying the o(1) term

Observations: We observe that the o(1) term takes both positive and negative values (unlike
the previous two cases) and the magnitudes are not as small as the connectivity regime. In fact
for p = 0.1 and 0.3 we can see a slightly increasing pattern, which is strange.

4.4 Studying the standard deviations

Observations: We can see that although the sample s.d. is pretty high for small n and p = 0.1,
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it quickly decreases for higher values of n. Surprizingly enough, the lines for p close to 0.5 seem
to be much steady.

5 Studying the lattice random graph

For n ∈ N consider all the points with integer coordinates lying on the boundary or inside of the
square with vertices (n, n), (−n, n), (−n,−n) and (n,−n). In other words we consider all those
points with coordinates (x, y) where x and y are integers satisfying −n ≤ x, y ≤ n. Clearly total
number of points considered is (2n+ 1)2. A graph is created using these points as vertices. We
join the vertices which are unit distance apart with an edge. This will form a square grid which we
will consider as our complete lattice. Now we consider a subgraph of the complete lattice where
each edge of the complete lattice occurs in the subgraph with probability p independently of
occurrence of all other edges. We denote this model of random graph by Lat(n, p). A simulation
from Lat(10, 0.4) is shown below.

Here we will study the typical distance in Lat(n, p) which is same as the one studied for the
Erdős-Rényi binomial random graph model, except one thing. We select two vertices randomly
with replacement and observe their graph distance. If we select the same vertex twice, the
distance is defined to be 0. Again we will denote this distance by Hn. Even if the vertices were
selected without replacement, the results would have been same asymptotically. The connectivity
threshold for Lat(n, p) is known to be p = 1/2. Here we studied Hn for p > 1/2.

5.1 Histograms

We simulated from the model Lat(n, p) for 1000 times for each pair of (n, p) where n =

5, 10, 15, . . . , 40 and p = 0.55, 0.6, 0.65, . . . , 0.95. So the number of vertices in the graphs
varied from 112 = 121 to 812 = 6561. We dropped the observations when the chosen vertices
belonged to different connected components.

For each of the values p = 0.55, 0.65, 0.75, 0.85, 0.95 the histograms of the observed (finite)
typical distances in Lat(n, p) for each choice of the graph size n are given below (histograms
for the other values of p show similar pattern; those are omitted here). The blue line shows the
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normal density with mean and s.d. estimated by the sample mean and sample s.d.
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Observations: For smaller values of n and p, we notice that the left tail of the distribution is
not visible. As n increases, the mode shifts rightward and hence the left tail becomes more and
more visible. Hence the test of symmetry is more likely to get accepted for large n. Also, for
large n, the histograms of Hn look more or less like the normal density (shown as a blue curve).

5.2 Testing normality

For each choices of (n, p) we performed the Kolmogorov-Smirnov test for Gaussianity on the data
standardized by sample mean and sample s.d. To break the ties, we jittered the data by adding
random noise to the observations. The noises are drawn from a normal distribution with mean 0

and s.d. 0.001.

The lower left corner of the above table shows more acceptance of normality than the other
corners. So if n increases, it is more likely that normality will get accepted by the test. If we fix n

and take p close to 1 we may get deviations from normality due to large number of observations.
We also performed Pearson’s chi-square goodness of fit test and Shapiro-Wilk test on stan-

dardized data for each pair (n, p). Since these tests are much more sensitive, we got almost all
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the p-values very close to 0. We are omitting those p-value tables.
Next let us take a closer look at the sample mean and s.d. for different choices of (n, p).

5.3 Studying the sample mean

The sample means of the typical distances are plotted against different values of n. For different
choices of p, we have used different colours.

Observations: We notice that as p increases, keeping n fixed, the sample mean decreases in
general, which is intuitive. The plot suggests that the sample mean grows more or less linearly
with n. If p is taken closer to 1, the slope of the curve of sample mean vs. n approaches a
constant which is close to 4/3. This can be observed in the plot.

To explain this, we consider the case p = 1 where we have the complete lattice. We select two
points randomly with replacement. Let the coordinates of the selected points are (X1, Y1) and
(X2, Y2) respectively. Then observe that X1, X2, Y1, Y2 are i.i.d. observations from the uniform
distribution on the set {−n, −n+1, . . . , −1, 0, 1, . . . , n−1, n}. Also Hn = |X1−X2|+|Y1−Y2|.
We have:

Pr(|X1 −X2| = k) =

 1
2n+1 when k = 0.

2(2n+1−k)
(2n+1)2

when k ∈ {1, 2, . . . , 2n}.

This implies

E(|X1 −X2|) =
4n(n+ 1)

3(2n+ 1)
=⇒ E(Hn) = 2E(|X1 −X2|) =

8n(n+ 1)

3(2n+ 1)
.

Thus E(Hn)/n→ 4/3 as n→∞. This agrees with what we observed in the above plot.
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5.4 Studying the standard deviation

The sample s.d.’s of the typical distances are plotted against different values of n. For different
choices of p, we have used different colours.

Observations: We notice that as p increases, keeping n fixed, the sample s.d.’s decreases in
general. The plot suggests that the sample s.d. grows more or less linearly with n. If p is taken
closer to 1, the slope of the curve of sample mean vs. n approaches a constant which is close to
2/3. This can be observed in the plot.

Again, to explain this, we take p = 1. Define X1, X2, Y1, Y2 as before. Since X1, X2, Y1, Y2

are independent, Var(Hn) = 2Var(|X1−X2|). From the p.m.f. of |X1−X2|, we can show that

E(|X1 −X2|2) =
2n(n+ 1)

3
=⇒ Var(Hn) = 2Var(|X1 −X2|) =

4n(n+ 1)(4n2 + 4n+ 3)

9(2n+ 1)2
.

Now it is easy to see that Var(Hn)/n
2 → 4/9, i.e., sd(Hn)/n→ 2/3, as n→∞.

6 Concluding remarks

Given limited time and resources, there are lots of things that could not be done. However, we
think, the following directions might serve as good future scopes of this project.

1. The o(1) term in [1] is quite ambiguous. More work needs to be done, specially regarding the
rate at which it shrinks.

2. The sample s.d. of the typical distance has not been studied in great detail, we suggest that
it should be studied in a comprehensive manner.

3. Throughout this project we tried to find patterns about how different rates or characteristics
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depend on the parameter c, for all the cases (p = c/n, c log n/n, or just c). Our simulation
study suggests that the effects of c on the o(1) term and s.d. need further study.

4. In the sparse but super-critical regime, we suspect from the plots that there is a phase transition
at c = np = 2. The rates of decay seem to be different for values of c close to 1 and values
of c greater than 2.

5. The histograms in connectivity regime or constant probability case showed a discrete nature,
hence rejecting the hypothesis of normality with very low p-values. We think that lots of work
remain for understanding the limiting distribution of the typical distance as n→∞.

6. For Lat(n, p), our simulations tried to reveal the nature of Hn when n→∞ and p→ 1. The
normality tests were rejected most of the times. Nothing could be said from here about Hn

if we fix p ∈ (1/2, 1) and let n→∞. The limiting distribution of Hn for fixed p is yet to be
studied.

7. We have only worked for square lattices. A similar study could be done for typical distances
in triangular or hexagonal lattices or even higher dimensional lattice structures.
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