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Abstract

We provide an axiomatic characterization of a family of criteria
for ranking completely uncertain and/or ambiguous decisions. A com-
pletely uncertain decision is described by the set of all its consequences
(assumed to be �nite). An ambiguous decisions is described as a �-
nite set of possible probabilities distributions over a �nite set of prices.
Every criterion in the family characterized can be thought of as as-
signing to every consequence - or to every probability distribution -
of a decision an equal probability of occurence and as comparing deci-
sions on the basis of the expected utility of their consequences - or their
probability distributions - for some utility function.

Keywords: complete uncertainty, ignorance,ranking sets, proba-
bility, expected utility, consequences

JEL classi�cation number: D81

1 Introduction

It is common to categorize decision problems by the structure of the envi-
ronment that is assumed to be known to the decision maker. In situations
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of certainty, the decision maker is assumed to know the unique consequence
of every decision which can, therefore, be usefully identi�ed by this unique
consequence. In situations of risk, studied along the lines of Neumann and
Morgenstern (1947), the decision maker knows the probability distribution
over all consequences that decisions can have so that the problem of choos-
ing the �right" decision amounts to that of choosing the �right" probability
distribution over the set of consequences. In situations of uncertainty, deci-
sions are described as functions - acts in Savage (1954) terminology - from a
set of states of nature to a set of consequences. Finally, in situations of com-
plete uncertainty, or ignorance as these are sometimes called, a decision is
described even more parsimoniously by the set of all its (foreseeable) conse-
quences. The problem of ranking decisions amounts therefore to a problem
of ranking sets of these consequences. A somewhat hybrid category of de-
cision problems is provided by the recent interesting literature on objective
ambiguity without state space, illustrated by Ahn (2008) and Olszewski
(2007), in which a decision is depicted as a set of probability distributions
over a set of consequences.

In the last twenty years or so, a sizeable literature, surveyed by Barberà,
Bossert, and Pattanaik (2004), has developed on the problem of ranking
sets of consequences in the context of choice under ignorance. With the
noticeable exception of Baigent and Xu (2004) and Nitzan and Pattanaik
(1984), all rankings of decisions that have emerged in this literature are
based on the best and the worst consequences of the decisions or on some
lexicographic extension thereof. The limitation of these "extremist" rankings
for understanding actual decision making under ignorance is clear enough.
Suppose we consider an investor facing two alternative investment strategies
in some completely uncertain environment. If strategy A is adopted, the
investor gains (net of the cost of investing) either one or one million dollars.
If strategy B is adopted, then the investor�s gain is either nothing, or any
(integer) amount between $900000 and $999999. Hence, the two investment
strategies can be described by:

A = f1; 1000000g
B = f0; 900000; 900001; :::; 999999g
Under the assumption that the ranking of certain (singletons) decisions is

increasing in money, most rules studied in the literature that are "monoton-
ically increasing" with respect to the worst and the best elements would
rank A above B. Yet it is not clear that an actual investor placed in that
circumstance would make the same ranking. For instance an investor who
would be somehow capable of assigning probabilities of occurrence to con-
sequences - even without being able to identify clearly the states of nature
and the mapping that associates consequences to states of nature - could
very plausibly rank B above A on the basis that the "expected utility" of
the consequences is higher in B than in A. The median-based ranking of
sets characterized in Nitzan and Pattanaik (1984), and which compares sets
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in terms of their median consequence with respect to the underlying rank-
ing of certain outcomes, would also consider B to be a better decision than
A in a situation like this. So would the average Borda rule characterized
in Baigent and Xu (2004) which ranks sets according to the average Borda
score of their elements.

Another limitation of many rankings considered in the literature, which
applies also to the median-based and the average Borda rule criteria, is that
they do not allow for a diversity of attitudes toward ignorance across indi-
viduals. Consider again the case of decisions with pecuniary consequences.
If all decision makers prefer more money received for sure to less and fol-
low any particular positional rule such as the maximin, the maximax, the
median or some lexicographic extension thereof, they will all rank uncertain
decisions in the same fashion. This feature of positional rankings is clearly
restrictive. After all, the fact that two individuals prefer more money to less
and have a choice behavior that obeys the same axioms should not imply
that they have the same attitude with respect to uncertainty.

The relative scarcity of criteria for comparing sets of consequences in
the context of decision making under ignorance is particularly striking when
compared with what is observed in classical (Savagian) situations of un-
certainty. In the later case one �nds, along with "extremist" criteria that
compare acts on the basis of their worst or best consequence, as character-
ized in Arrow and Hurwicz (1972) and Maskin (1979), the well-known Ex-
pected Utility (EU) criterion characterized in Savage (1954) as well as many
other "non-additive" criteria such as "Maximin Expected Utility over a Set
of Priors" (characterized in Gilboa and Schmeidler (1989) and Casadesus-
Masanell, Klibano¤, and Ozdenoren (2000)) or the "Choquet Expected Util-
ity" criterion characterized in Schmeidler (1989). Contrary to their "ex-
tremist" or positional counterparts, individuals whose behavior satis�es a
particular additive or non-additive EU criterion and who have the same
preferences for the consequences do not need to have the same attitude to-
ward uncertainty.

In this paper, we provide an axiomatic characterization of a family of
criteria of choice under ignorance that is quite close in spirit to the classical
EU family. Any criterion in this family can be viewed as ranking decisions
(sets) on the basis of the expected utility of their consequences for some
utility function, under the assumption that the decision maker assigns to
every consequence of a decision an equal probability of occurrence. For this
reason we refer to a criterion in this family as to a Uniform Expected Util-
ity (UEU) criterion. Beside the framework of analysis, the main di¤erence
between UEU criteria and standard EU ones lies in the uniform assumption
made on probabilities. In our view, the uniform assumption is not unreason-
able in the context of choice under complete uncertainty. A decision maker
who ignores the mechanism by which consequences are produced as a func-
tion of the states of nature, and who is only capable of identifying the set
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of possible consequences of a decision has a priori no reason to believe one
consequence to be more likely than another. This principle of insu¢ cient
reason, renamed "principle of indi¤erence" by Keynes (1921), has been, af-
ter all, the main justi�cation given by early probability theorists such as
Bernouilli and Laplace, to their assumption of uniform probabilities as ap-
plying to "games of chance" (see also Jaynes (2003) for a recent justi�cation
of this principle).

The framework used to characterize the family of UEU criteria is similar
to that assumed in the literature on choices under ignorance in the sense that
we describe decisions as �nite sets of consequences and we propose axioms
that apply to the ranking of these sets. We depart however from most of the
literature by assuming that the universe of all conceivable consequences has
a rich and Archimedean structure, as de�ned in Krantz, Luce, Suppes, and
Tversky (1971). While we do not, for the main result, endow our universe
of consequences with topological properties that would enable one to de�ne
appropriate continuity conditions on the ranking of decisions, our framework
is compatible with such a topological setting. We actually illustrate this
by characterizing, in our theorem 4 below, the UEU family of criteria for
decisions having their consequences in Rk. Assuming such an environment
enables us to replace the richness and Archimedean properties by a mild
continuity condition imposed on the ranking of decisions.

To that extent, our framework can be usefully compared to that of
Nehring and Puppe (1996) in which the universe of consequences is endowed
with a topology and a continuity property is imposed on the ranking of all
�nite subsets of the universe. Yet continuity is not a straightforward no-
tion when applied to rankings of sets of objects (as opposed to a ranking of
objects). For instance, a widely used notion of continuity for sets rankings,
adopted by Nehring and Puppe (1996), is continuity with respect to the
Hausdor¤ topology. However this notion of continuity fails to recognize as
continuous a UEU ranking, even though such a ranking is continuous when
characterized in a Savagian (uncertainty) framework. This remark explains
the di¤erence between our results and those of Nehring and Puppe (1996).
These authors characterize rankings that compare sets on the basis of their
maximal and minimal elements only using Hausdor¤ continuity and a mild
independence condition (satis�ed by UEU criteria). In contrast, we consider
an abstract setting that is compatible (as demonstrated by our theorem 4)
with many topological structures. We then characterize a family of rankings
that are continuous in a very natural sense, albeit not Hausdor¤ continuous,
and that are not based only on the maximal and minimal elements of the
sets.

To the best of our knowledge, there have been two other papers that
have provided axiomatic characterizations of UEU criteria for ranking sets
of objects. The �rst of them is Fishburn (1972) who characterizes the UEU
family of rankings of all non-empty subsets of a �nite universe without
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Archimedean structure. Yet the characterization provided by Fishburn is
a direct adaptation of the additivity axiom of Scott (1964), Adams (1965)
and Fishburn (1970). The unappealing nature of this axiom is well known
and is especially striking when adapted to the problem of comparing sets
on the basis of their average utility. This axiom involves the construction
of arbitrarily long sequences of set comparisons which are both di¢ cult to
motivate as primitive axioms as well as hard to verify in practice. By con-
trast, the structure of our model enables us to characterize the UEU family
of rankings of sets by means of axioms that are, in our opinion, considerably
easier to interpret and verify. We note that one of our axioms, "averaging",
is identi�ed by Fishburn (1972) as being satis�ed by any ranking in the UEU
family . We show in this paper that, along with another axiom - "restricted
independence" - averaging actually characterize the UEU family of rank-
ings of sets if an Archimedean structure is assumed. The other paper that
contains a characterization of a UEU criterion (but not of the whole family
of such criteria) for ranking �nite sets is the unpublished piece of Baigent
and Xu (2004). In this paper, the authors characterize, again without an
Archimedean structure, a ranking of �nite sets based on the average Borda
score of their elements. This ranking is clearly a member of the UEU family
for which the utility of a consequence is de�ned by its Borda score. It is,
here again, interesting to notice that Baigent and Xu (2004) uses, along with
other axioms, the averaging axiom in their characterization.

While the main interpretation given to our results is framed in terms of
choice under ignorance, it is clear that this interpretation is not necessary.
What we provide in this paper is an axiomatic characterization of a family
of rankings of all �nite subsets of some universe of objects that have the
property that each of these rankings can be interpreted as if it was assigning
utility to every object in the universe and as if it was comparing sets on
the basis of the (symmetric) average utility of these objects. There are at
least two other contexts where such an axiomatic characterization could be
useful.

The �rst is mechanism design, where several papers have used UEU
criteria to model preferences of individual agents over subsets of some fun-
damental set of alternatives, with the subsets interpreted as possible results
of a social choice correspondence. For example Barberà, Dutta, and Sen
(2001) have characterized strategy-proof social choice correspondences when
agents preferences are assumed to belong to the UEU family. Benoît (2002)
studies a similar problem and recently, Ozyürt and Sanver (2006) have re-
�ned and extended this analysis. UEU criteria have also been considered by
Peleg and Peters (2005) in their analysis of Nash consistent representation
of e¤ectivity functions

The second is the literature on objective ambiguity alluded to above,
in which decision makers rank sets of lotteries. These sets of lotteries are
interpreted as describing "ambiguous" decisions like those arising in the
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well-known Ellsberg paradox where the decision maker is uncertain about
the probability distribution associated with a particular uncertain decision.
In this setting, Ahn (2008) characterizes a family of criteria that contains
the UEU one. Any criterion in the family characterized by Ahn (2008)
can be thought of as resulting from the comparison of the expected utility
of their consequences conditional on the fact of being in the set, but with
expectation taken with respect to a probability measure that needs not
be uniform. Ahn (2008) analysis bears many formal similarities with the
somewhat non-standard Bolker-Je¤rey approach to decision making under
uncertainty (see e.g. Bolker (1966), Bolker (1967), Je¤rey (1965) or, for
a good discussion of this approach, Broome (1990)). While conceptually
di¤erent, the frameworks used by Ahn (2008) and Bolker-Je¤rey consider
sets that, except for singletons (considered in Ahn but excluded in Bolker-
Je¤rey), contain a continuum of elements. These frameworks di¤er therefore
substantially from ours in which attention is limited to �nite sets of objects,
which can be interpreted as lotteries with �nite supports. Another important
paper in the literature on objective ambiguity is that of Olszewski (2007)
who considers a framework in which sets of lotteries can be of any size: �nite,
countably in�nite or uncountably in�nite but where lotteries are restricted
to have a �nite and given support. He characterizes in that framework the
family of ranking of sets that can be expressed as a weighted average of the
utility of their best and their worst element. This family can be viewed as
an important subclass of the family of rankings characterized in Nehring
and Puppe (1996).

The plan of the rest of this paper is as follows. In the next section, we
present the formal framework and the de�nition of the axioms and the family
of rankings. The third section presents the main results and the fourth
section shows how the results can be obtained if topological properties are
imposed on the universe. The �fth section comments on the independence
of the axioms and the sixth section concludes.

2 Notation and basic concepts

2.1 Notation

The sets of integers, non-negative integers, real numbers and non-negative
real numbers are denoted respectively by N, N+, R and R+. The cardinality
of any set A is denoted by #A and the k-fold Cartesian product of a set A
with itself is denoted by Ak. If v is a vector in Rk for some strictly positive
integer k and � is a real number, we denote by �:v the scalar product of �
and v. Given a vector v in Rk and a positive real number ", we denote by
N"(v) an "-neighborhood around v de�ned by N"(v) = fx 2 Rk :j xh�vh j< "
for all h = 1; :::; kg. Our notation for vectors inequalities is =, � and >.
By a binary relation % on a set 
, we mean a subset of 
 � 
. Following
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the convention in economics, we write x % y instead of (x; y) 2 R. Given
a binary relation %, we de�ne its symmetric factor � by x � y () x % y
and y % x and its asymmetric factor � by x � y () x % y and not (y %
x). A binary relation % on 
 is re�exive if the statement x % x holds for
every x in 
, is transitive if x % z always follows x % y and y % z for any x,
y, z 2 
 and is complete if x % y or y % x holds for every distinct x and y in

. A re�exive, transitive and complete binary relation is called an ordering.

2.2 Basic concepts

LetX be the set of consequences. While we do not make any speci�c assump-
tions on X, it will be clear subsequently that the axioms that we impose
makes it natural to regard this set as in�nite. As an example, further consid-
ered in section 4 below, one could think of X as being R, interpreted as the
set of all conceivable �nancial returns (either negative or positive) of some
investment decision in a highly uncertain environment. As another example,
one could think of X as the set of all conceivable probability distributions
on a basic set of k di¤erent prices.

We denote by P(X) the set of all non-empty �nite subsets of X (with
generic elements A, B, C, D, etc.). Any such a subset is interpreted as a
description of all consequences of an uncertain decision or, for short, as a
decision. A certain decision with consequence x 2 X is identi�ed by the
singleton fxg.

Let % (with asymmetric and symmetric factors � and � respectively)
be an ordering on P(X). We interpret the statement A % B as meaning
�decision with consequences in A is weakly preferred to decision with con-
sequences in B�. A similar interpretation is given to the statements A � B
(�strictly preferred to�) and A � B (�indi¤erence�).

We want to identify the properties (axioms) of the ordering % that are
necessary and su¢ cient for the existence of a function u : X ! R such that,
for every A and B in P(X):

A % B ()
X
a2A

u(a)

#A
�
X
b2B

u(b)

#B
(1)

An ordering satisfying this property could therefore be thought of as result-
ing from the comparisons of the expected utility of the consequences of the
decision for some utility function under the assumption that the decision
maker assigns to every consequence of a decision an equal probability of oc-
currence. There are obviously many criteria like that, as many as there are
logically conceivable utility functions (up to an a¢ ne transform) de�ned on
X. We refer to any ranking that satis�es (1) for some function u as to a
Uniform Expected Utility (UEU) criterion.

We now introduce the two main axioms of our analysis which, as can be
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easily seen, are satis�ed by any UEU criterion. The �rst of these axioms,
that we call averaging, is stated as follows.

Axiom 1 (averaging) For all disjoint sets A and B 2 P(X), A % B ,
A % A [B , A [B % B.

In words, this axiom asserts that enlarging a set A with a (disjoint) set
B is worth doing (viz. not worth doing) if and only if the set B of added
consequence is better (viz worse) than the set A to which it is added. We
call this axiom "averaging" because it captures an intuitive property satis�ed
by calculations of "average" in various settings (e.g. adding a student to a
class will increase the average of the class if and only if the grade of the
added student is larger than the average of the class). The "only if" part
of the axiom is obviously very strong since it asserts that the only reason
for ranking a set B above (below) a set A is when the addition of B to A is
considered a good (bad) thing. The averaging axiom is a compact version
of the four averaging conditions AC1-AC4 discussed in Fishburn (1972) and
shown by him to be implied by the UEU family of criteria (as well as by a
variant of the additivity axiom of Scott (1964), Adams (1965) and Fishburn
(1970)). The averaging axiom has been used also by Baigent and Xu (2004)
in their characterization of the average Borda ranking of sets. This axiom is
also used by Ahn (2008) and Bolker (1966) (see also Bolker (1967)) in their
characterization of an important family of criteria, containing UEU ones,
for ranking atomless subsets of a universe. A weaker version of averaging
(that only requires the "if" part in its statement) is used by Olszewski (2007)
in his characterization of a ranking of sets based on the weighted average
of the utility of their best and their worst alternative, and by Gul and
Pesendorfer (2001) in their ranking of sets of objects, interpreted as menus
of alternatives, in a way that re�ects temptation and self-control. It is also
worth mentioning that the averaging axiom implies the Gärdenfors (1976)
principle discussed at length in the literature on ignorance as surveyed in .
Barberà, Bossert, and Pattanaik (2004). This Gärdenfors principle can be
stated formally as follows.

Condition 1 (Gärdenfors Principle) for all A 2 P(X), (x 2 XnA and
fxg � fag for all a 2 A)) A [ fxg � A and (y 2 XnA and fag � fyg for
all a 2 A)) A � A [ fyg.

This principle says that is always (never) worth adding to a set a conse-
quence which, if certain, is better (worse) than all consequences in the set.
For further reference, we record in the following proposition, whose proof
is left the reader, the fact that the averaging axiom implies the Gärdenfors
principle when it is applied to a transitive ranking of P(X).
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Proposition 1 Let % be a transitive binary relation on P(X) that satis�es
averaging. Then % satis�es the Gärdenfors principle

The second axiom that enters into the characterization of the family of
UEU rankings is the following restricted independence axiom.

Axiom 2 (restricted independence) For all A, B and C 2 P(X) satisfying
#A = #B and A \ C = B \ C = ;, A % B , A [ C % B [ C.

This axiom requires that the ranking of sets with the same number of
elements be independent of any elements that they have in common. Adding
or subtracting these common elements from the two sets should not a¤ect
their ranking. A weak form of the restricted independence condition, applied
only to the case where A and B are singletons, plays an important role in
Nehring and Puppe (1996) and Puppe (1995). It is worth noticing that the
scope of this independence axiom is indeed signi�cantly restricted by the
fact that it applies only to sets that have the same number of elements.

We now formally state that these two axioms are satis�ed by any UEU
criterion. The straightforward proof of this proposition is left to the reader.

Proposition 2 Any UEU criterion satis�es averaging and restricted inde-
pendence.

As shall be seen the axioms of averaging and restricted independence
actually characterize the family of UEU rankings of sets if some structure
is imposed on the environment. We provide this structure by imposing two
other axioms on the pair hX;%i. These axioms, which we shall refer to as
structural, impose smoothness and richness on both the set X of alternatives
and on the ordering %. Yet these axioms are not speci�cally tailored to UEU
criteria, and one of them may even be violated by these criteria if the set
X of alternatives is too "sparse". Theorem 4 below establishes that these
structural axioms can be dispensed with if X is taken to be an arc-connected
subset of Rk, provided that a mild continuity condition is imposed on %.

The �rst of these structural axioms is the following richness one.

Axiom 3 (richness) For every set B 2 P(X) � X, and every �nite, but
possibly empty, subset A of X, if there are consequences c�and c� in X such
that A [ fc�g % B % A [ fc�g, then there exists a consequence c 2 X such
that A [ fcg � B.

As its name suggests, this axiom re�ects the idea that the universe is
su¢ ciently rich to enable, by the addition of single consequences to sets,
various kinds of comparisons with the ordering %. Suppose that, starting
with two decisions A and B, it is possible to add consequences c� and c� to
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A in such a way that A enlarged with c� is ranked above B and A enlarged
with c� is ranked below B. Then it must also be possible to add to A
a consequence c such that the resulting set of consequences is indi¤erent
to A. In a sense, this axiom is weak since the asserted existence of the
consequence c is contingent upon the existence of consequences c� and c�
that have the required properties. Yet, the axiom applies also if the set
A to which the consequences c�, c� and c are added is empty. Because of
this, the richness axiom has the somewhat strong implication, at least when
combined with the Gardenförs principle, that every uncertain decision has
a "certainty equivalent". Put di¤erently if a decision maker ranks uncertain
decisions by an ordering that satis�es averaging and richness, then for any
uncertain decision, there must exist a certain decision that the decision
maker considers equivalent to it. For further reference, we state formally
this "certainty equivalence" condition and the fact that it is implied by
richness if the ranking satis�es averaging as follows.

Condition 2 (certainty equivalence) For every B 2 P(X), there exists a
consequence b 2 X such that fbg � B.

Proposition 3 Let % be an ordering on P(X) satisfying averaging and
richness. Then % satis�es the certainty equivalence condition.

Proof. Let B be any set in P(X). Because B is non-empty and % is an
ordering on P(X), there exists a consequence c� 2 B such that fc�g % fbg for
all b 2 B and there exists a consequence c� (not necessarily distinct from c�)
such that fbg % fc�g for all b 2 B. By averaging one has fc�g % B % fc�g
which can be written equivalently as ? [ fc�g % B % ? [ fc�g. By richness
(for A = ?), there exists c such that fcg [ ? � B, which proves certainty
equivalence.

It is also worth mentioning that the combination of the richness and av-
eraging axioms implies either that the ranking % be trivial or that there are
in�nitely many consequences in X. Speci�cally, if X is �nite, then a decision
maker who compares decisions in P(X) with an ordering satisfying averag-
ing and richness (and therefore certainty equivalence thanks to proposition
3) must be indi¤erent between all such decisions. We state this formally as
follows..

Proposition 4 Suppose #X <1 and let % be an ordering on P(X) satis-
fying averaging. Then % satis�es certainty equivalence if and only if A � B
for all A;B 2 P(X).

Proof. It is clear that the trivial ordering de�ned by A � B for all A;
B 2 P(X) satis�es certainty equivalence (as well as averaging). To prove the
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reverse implication, write the �nite set X as X = fx1; :::; x#Xg and assume
without loss of generality (since % is an ordering) that fxig % fxi+1g for
i = 1; :::;#X � 1. By averaging, we must have, for every i = 1; :::; x#X :

fxig % fxi; xi+1g % fxi+1g

Certainty equivalence implies therefore that, for every i, either fxig � fxi; xi+1g
or fxi+1g � fxi; xi+1g. In either case, averaging implies that fxig �
fxi; xi+1g � fxi+1g. Hence all pairs and singletons must be indi¤erent.
Repeated application of averaging (adding �rst indi¤erent singletons to pairs
and then indi¤erent singletons to triples etc.) then immediately leads to the
conclusion of universal indi¤erence.

We note in passing that the trivial ordering that considers all sets to be
indi¤erent is a member of the UEU family (any constant function u having
X as domain could serve as a representation as per (1)). Hence, in the rest
of the paper, we shall be interested in characterizing the UEU family of
orderings of P(X) in the non trivial case where there are at least two sets
A and B such A � B.

Beside forcing X to be in�nite (at least when combined with averaging),
the richness axiom precludes from consideration some "discontinuous" rank-
ings such as the "Leximin" or the "Leximax" rules studied in Pattanaik and
Peleg (1984). For instance, the Leximin rule compares sets on the basis of
their worst consequences. If a tie in the worst consequence arises, then the
second worst consequence is considered and so on until either a strict rank-
ing is obtained or the consequences in at least one of the sets are exhausted.
In the latter case the set which contains the largest number of elements is
ranked above. It is clear that such a Leximin rule violates richness. Indeed
if we take X = R+ one has that f1; 3g � f2g � f2; 3g for the Leximin
criterion. Yet, contrary to what is required by richness, it is impossible to
�nd a non-negative real number x such that fxg [ f3g � f2g.

It should be also noted that the richness axiom is not speci�cally related
to the UEU family of ranking of decisions and may even be violated by a
UEU criterion if the setX is not su¢ ciently rich. ifX = N and the u function
of (1) is the identity function, we notice that, since 2+6+73 = 5 < 5+6

2 = 5:5 <
2+6+10

3 = 6, we have f2; 6; 7g � f5; 6g � f2; 6; 10g. Yet, contrary to what
would be required by richness, there does not exist any integer c such that
2+6+c
3 = 5+6

2 and, therefore, such that f2; 6; cg � f5; 6g.
The other structural axiom, called Archimedean by Krantz, Luce, Sup-

pes, and Tversky (1971) is the following.

Axiom 4 (Archimedean) If a sequence fcig, for i = 1; 2; ::: of consequences
ci 2 X is such that one has either fci; ag � fci+1; bg for all i; i + 1 with
i = 1; 2; ::: or fci+1; ag � fci; bg for all i; i+1 with i = 1; 2; ::: for some con-
sequences a and b, distinct from any element of the sequence, and satisfying
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fag � fbg, then, if the sequence is strictly bounded by x and y 2 X in the
sense that fxg � fcig � fyg for every i, the sequence must be �nite.

This axiom can be considered to be mild since it �bites�only when there
exist sequences of the type described by the antecedent clause of this axiom
(such sequences are called �standard sequences�in the measurement theory
literature). It is trivially satis�ed if X is �nite since all sequences of sets
must be �nite. Yet, contrary to richness, the Archimedean axiom is always
veri�ed by a UEU criterion, no matter what is the universe X. We complete
this section by stating this formally in the following proposition.

Proposition 5 If a ranking % on P(X) is a UEU criterion, then it satis�es
the Archimedean axiom.

Proof. Let the ranking % on P(X) be a UEU criterion and consider
a sequence of consequences fcig for i = 1; 2; ::: such that, for some con-
sequences a and b distinct from every element in the sequence satisfying
fag � fbg, one has, say, fci; ag � fci+1; bg for all i = 1; 2; :::(the argu-
ment is similar if fci+1; ag � fci; bg for all i = 1; 2; :::). Since % is a
UEU criterion, there exists a function u : X ! R such that u(a) > u(b) and
u(ci)+u(a) = u(ci+1)+u(b), u(a)�u(b) = u(ci+1)�u(ci) for all i. Assume
that the sequence is strictly bounded by x and y 2 X so that fxg � fcig � fyg
for all i. Since % is a UEU criterion, one has u(x) > u(ci) > u(y). De�ne
the numbers ui by ui = u(ci) and d by d = u(a)�u(b) > 0. We therefore have
a sequence of numbers ui (for i = 1; ::) such that ui = (i� 1)d+ u1 > u(y)
for every i for some strictly positive real number d. Clearly one can only
have u(x) > (i � 1)d + u1 for all element i of the increasing sequence of
numbers f(i� 1)d+ u1g if this sequence is �nite.

3 Main results

In order to prove the main result that the family of UEU rankings of all
�nite subsets of X is characterized, given certainty equivalence, richness
and the Archimedean axiom, by averaging and restricted independence, we
proceed as follows. We �rst consider the sets m(X) and M(X) of minimal
and maximal (respectively) elements of X with respect to the restriction of
% to singletons de�ned by:

m(X) = fx 2 X : fxg - fyg 8 y 2 Xg and
M(X) = fz 2 X : fzg % fyg 8 y 2 Xg

The possibility that either (or both) of these two sets be empty is of course
not ruled out. Let X 0 be de�ned by X 0 = Xn(m(X) [M(X)). Hence, X 0

is the set of all conceivable consequences that remain after one has removed
the worst and the best certain consequences (if any) from X. It is easy to see
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that, if % is an ordering satisfying averaging and certainty equivalent, then
the setX 0 is "unbounded" in the sense that, for any consequence x 2 X 0, one
can �nd two consequences w and z in X 0 such that fwg � fxg � fzg. For
later reference, we state formally this fact as follows.

Proposition 6 If % is a non-trivial ordering on P(X) satisfying richness
and averaging, then, for all consequence x 2 X 0, there are consequences w
and z in X 0 such that fwg � fxg � fzg.

Proof. Consider any x 2 X 0. Such a x exists if % is non-trivial.
Let us �rst �nd a consequence w such that fwg � fxg. Suppose �rst that
m(X) = ?. This means that x =2 m(X) and there exists some t 2 X such
that ftg � fxg. Because, thanks to proposition 3, the ordering % satis�es cer-
tainty equivalence, there exists a consequence w such that fwg � ft; xg. By
averaging and transitivity, fxg � fwg � ftg. Hence w =2 m(X) [ M(x)
so that w 2 X 0. Suppose now that m(X) 6= ? and let t 2 m(X). By
de�nition of m(X), we have ftg � fxg so that, by certainty equivalence
again, there exists a consequence w such that fwg � ft; xg. As before,
we can conclude from the averaging axiom that ftg � fwg � fxg so that
w 2 Xn(m(X) [M(X)), as required. The argument for �nding a conse-
quence z 2 X 0 such that fzg � fxg is similar.

We proceed by �rst proving the result on P(X 0) de�ned as the set of
all �nite subsets of X 0. Once we have obtained that any ordering on P(X 0)
satisfying averaging and restricted independence as well as the structural
axioms can be represented as per (1) for some function u : X 0 ! R, we then
show that this numerical representation can be "extended" to the whole set
X.

The proof that any ordering on P(X 0) satisfying averaging, restricted
independence and the structural axioms can be represented as per (1) for
some function u : X 0 ! R proceeds itself in two steps.

First, we show that averaging and restricted independence characterize
the family of UEU criteria in an environment where the structural axioms are
satis�ed if one restricts attention to subsets of X 0 that have at most two
consequences. The proof of this �rst theorem, provided in the appendix,
rides heavily on the important theorem 2 of Krantz, Luce, Suppes, and
Tversky (1971) (p. 257) that enables an additively separable the numerical
representation of an ordering over a Cartesian product X � X (see also
Debreu (1960) or Adams and Fagot (1959) for an earlier statement framed in
a topological setting). An important ingredient of the proof of this theorem is
the demonstration that, given our axiomatic structure, the ranking of X�X
induced by % satis�es the so-called "Thomsen condition" (see Krantz, Luce,
Suppes, and Tversky (1971), de�nition 3, p. 250). This demonstration is
made in lemma 3 of the appendix.
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The statement of the theorem that establishes the validity of the rep-
resentation for all subsets of X 0 containing at most two consequences is as
follows.

Theorem 1 Let X be a set of consequences and let % be an ordering on
P(X 0) satisfying richness and the Archimedean axiom. Then if % satis�es
averaging and restricted independence, its restriction to the sets in P(X 0)
of cardinality no greater than 2 can be represented as per 1 for some utility
function u : X ! R. Furthermore, the utility function u is unique up to a
positive a¢ ne transformation.

Our main result extends Theorem 1 to subsets of X 0 with an arbitrary
(but �nite) number of consequences using the same axioms. Speci�cally,
we prove that the unique utility function whose expectation (under uniform
probabilities) represents the ranking of sets containing no more than two
elements exhibited in Theorem 1 also represents the ranking of sets of larger
cardinality. While the full proof of this extension is done in the appendix
using various auxiliary results, a key step in the argument, provided by the
following lemma 1 proved also in the appendix, is the ability to approximate
the arithmetic mean of a set of n numbers recursively from the arithmetic
means of pairs of those numbers.

Lemma 1 Let U = fu1; :::; ung be a set of n numbers such that u1 � u2 �
::: � un with arithmetic mean u. De�ne the n�1 sequences fbihg, i = 1; 2; ::::
and h = 1; :::; n� 1 by:

b0n�1 = (un + un�1)=2,

b0h = (uh + bh+1)=2

for h = 1; :::; n� 2 and for i = 1; 2; ::::

b2i�11 = b2i�21 ,

b2i�1h =
b2i�1h�1 + b

2i�2
h

2
for h = 2; :::; n� 1,

b2in�1 = b
2i�1
n�1 and

b2ih =
b2i�1h + b2ih+1

2
for h = 1; :::; n� 2.

Then:
lim
i!1

bih = u for all h = 1; :::; n� 1
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Endowed with this lemma and the other auxiliary results stated and
proved in the appendix, we prove - also in the appendix - the following
theorem.

Theorem 2 Let % be an ordering on P(X 0) satisfying richness and the
Archimedean axiom. Then % satis�es averaging and restricted independence
if and only if it is a UEU criterion. Furthermore, the u function in the
de�nition of a UEU criterion is unique up to a positive a¢ ne transformation.

The last step in the proof consists in showing that the numerical repre-
sentation of % restricted to P(X 0) can be extended to the whole set P(X).
This step is provided by the proof, in the appendix, of the following theorem:

Theorem 3 Let % be an ordering on P(X) satisfying richness and the
Archimedean axiom. Then % satis�es averaging and restricted independence
if and only if it is a UEU criterion. Furthermore, the u function in the def-
inition of a UEU criterion is unique up to a positive a¢ ne transformation.

4 Interpretation of the structural environment

We show in this section that if one imposes a natural structure on the set X
and the ordering % from the outset, then the richness and the Archimedean
axioms can be replaced by a mild continuity condition in our characterization
of the UEU family of orderings.

Assume speci�cally that X is a closed and arc-connected1 subset of Rk
for some integer k � 1. At least two interpretations could be given to X in
that context. First, X could be thought of as the set of all bundles of k goods
that could result from any uncertain decision (taking k = 1 would obviously
cover the case, discussed earlier, of decisions with pecuniary consequences).
In that case, it would be natural to take X = Rk (all bundles of goods or
amounts of money - possibly negative - are a priori conceivable).

The second interpretation, developed along the line of a recent literature
on objective ambiguity (see e.g. Ahn (2008) or Olszewski (2007)) would be
to view X as the set of all lotteries yielding k di¤erent prices. A typical
element p 2 X would then be though of as a probability vector assigning to
every price i its probability of realization pi 2 [0; 1]. A �nite set A � X of
such probability vectors would then be interpreted as an ambiguous decision
in which the precise probability distribution over the set of k prices is not
known with precision to the decision maker. A classical instance of decision
making under this kind of ambiguity is provided by the so-called Ellsberg
paradox in which a decision maker does not know how a certain number of
balls of two di¤erent colors are split between the two colors (see Olszewski

1A subset A of a topological space is arc-connected if, for any two elements x and y of
A, there exists a continuous function f from [0; 1] to A such that f(0) = x and f(1) = y.
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(2007) for further discussion). If this interpretation is favoured, then X =

Sk�1 = fp 2 [0; 1]k :
kX
j=1

pj = 1g.

For either of these interpretations, we shall assume that the ordering %
satis�es the following continuity axiom.

Axiom 5 For every set A 2 P(X), and consequences y and z 2 X, the sets
B(A) = fx 2 X : fxg % Ag and W (A) = fx 2 X : A � fxgg are both closed
in X.

This axiom says that a small change in a consequence should not have
drastic e¤ect on the ranking of this consequence obtained for sure vis-à-vis
any set. Notice that this continuity axiom, which only concerns compar-
isons of sets vis-à-vis singletons is much weaker than the (Vietoris) conti-
nuity condition examined in Nehring and Puppe (1996) which restricts the
comparisons of any two sets in a way that is not even compatible with the
UEU family of set rankings.

We now establish, in the following theorem, that in this environment, the
UEU family of rankings of P(X) is characterized by averaging and restricted
independence. In order to prove this theorem, we only need to prove that, if
X is an arc-connected subset of Rk, then an ordering of P(X) that satis�es
the continuity axiom as well as averaging and restricted independence sat-
is�es the richness and the Archimedean axiom. As for the other theorems,
its proof is relegated to the appendix.

Theorem 4 Let X be an arc-connected subset of Rk and let % be an order-
ing of P(X) that satis�es the continuity condition. Then % satis�es averag-
ing, and restricted independence if and only if it is a UEU criterion.

Interpreted in the spirit of decision making under objective ambiguity,
theorem 4 could serve as an alternative standpoint from the criteria char-
acterized by Olszewski (2007). In the later paper, the author characterizes
the family of rankings of �nite sets of lotteries based on the comparison of
a weighted average of the utility of the best and of the worst lottery. Ol-
szewski�s framework shares an important similarity with ours in that he
assumes, as we do, that lotteries are de�ned on a given exogenous set of
k prices. On the other hand, Olszewski does not make any assumption on
the cardinality of the sets of lotteries that are compared while our approach
limits attention to �nite sets. As compared to the family of criteria char-
acterized by Olszewski, the UEU family has the merit of enabling other
lotteries than the worst and the best to play a role in the ranking of am-
biguous decisions. It su¤ers however from the limitation that it forces the
probabilities attributed subjectively to the various lotteries by the decision
maker to be the same.
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A generalization of the UEU family of criteria has been characterized,
in a very di¤erent conceptual setting, by Ahn (2008), building on Bolker-
Je¤rey theory. The generalization of the UEU family characterized by Ahn
(2008) contains all orderings % of P (X) that can be de�ned, for every sets
A and B in P (X), by:

A % B ()

X
a2A

p(a)u(a)X
a2A

p(a)
�

X
b2B
p(b)u(b)X

b2B
p(b)

(2)

for some real-valued functions u and p both having X as domain. Any UEU
criterion is a member of this family that satis�es the additional property
that, for all consequences x 2 X, p(x) = c for some real number c. Order-
ings that can be represented as per (2) for some real-valued functions u and
p can be thought of as comparing sets on the basis of the expected utility of
their consequence, but without imposing the requirement on the probability
of all consequences to be the same. This interpretation obviously requires
that we can interpret p(x) as a probability, which in turns requires that
some measure-theoretic structure be imposed on X. But if we can provide
this interpretation, any ordering of P (X) that can be represented as per (2)
can be viewed as comparing sets on the basis of their expected utility con-
ditional of being in the sets. It can be checked easily that any ordering that
can be represented as per (2) satis�es averaging but may violate restricted
independence.

Ahn (2008) (and in a somewhat di¤erent paradigm Bolker (1966), Bolker
(1967)), has characterized the family of orderings of P (X) that can be repre-
sented as per (2) in a setting in which sets (decisions) are atomless and con-
tain, therefore, uncountably many elements. Moreover the elements of the
sets are lotteries with possibly uncountable supports while our approach, as
that of Olszewski, restricts attention to lotteries with �nite support. These
di¤erences make di¢ cult the comparisons of Ahn formal analysis with ours.
In addition to using regularity and continuity conditions that can not be
de�ned in our framework, Ahn and Bolker have characterized the family
of rankings represented as per (2) by means of the averaging axiom and a
weakening of the restricted independence axiom, called "balancedness" by
Ahn.

As a family of criteria for decision making under objective ambiguity,
the UEU family is rather abstract in the sense that it does not impose any
speci�c structure on the functions u that appears in the representation as
per (1). Yet, if the elements of the sets are interpreted as lotteries, it could
make sense to impose some further properties on the utility function (for
instance, that it be linear in probabilities). While we do not do this herein,
it is clear that it could be done easily by means of additional axioms imposed
on the ranking of singletons, as done in Ahn (2008) and Olszewski (2007).
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5 Independence of the axioms

As it turns out, averaging, restricted independence and the Archimedean ax-
ioms are logically independent when they are imposed on an ordering that
satis�es richness in the environment in which it is used. Since any UEU
criterion satis�es averaging, restricted independence and the Archimedean
axiom, it can therefore be said that these three axioms provides a mini-
mal characterization of the UEU family of orderings on any environment
on which these orderings satis�ed richness. As the reader can appreciate
through these examples, they can also be used to show that, if X is taken
to be an arc-connected closed subset of Rk, then they show also that the
axioms of averaging, restricted independence and continuity are logically
independent.

Example 1 Let X = R and, for all A; B 2 P(X), A % B ()
P
a2A a �P

b2B b. The reader can check easily that this ranking satis�es restricted
independence, the Archimedean axiom, and richness but violates averaging.
Indeed, f3g % f1; 2g but f3g � f1; 2; 3g. The reader can also verify that %
satis�es continuity.

Example 2 Let X = R++ and de�ne % by:

A % B ,

X
a2A

aX
a2A

1
a

�

X
b2B
bX

b2B

1
b

. (3)

This ordering is clearly a member of the family represented as per (2) where
p is de�ned by p(x) = 1

x and u by u(x) = x
2. It satis�es for this reason the

averaging axiom. It is a continuous ordering of X because the set B(A) =

fx 2 X : x2 �

X
a2A

aX
a2A

1
a

g and W (A) = fx 2 X :

X
a2A

aX
a2A

1
a

� x2g are closed for

any set A 2 P(X). Moreover it can be seen that it satis�es the Archimedean
axiom using an argument that parallels that of proposition 5 Yet % violates
restricted independence because if we take

A = f1; 7g, B = f2; 3g and C = f4; 12g

we have A % B since, using (3):

1 + 7

1 + 1
7

= 7 � 2 + 3
1
2 +

1
3

= 6
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but, contrary to what is required by restricted independence, one has A[C �
B [ C since:

1 + 4 + 7 + 12

1 + 1
4 +

1
7 +

1
12

=
24� 84

84 + 21 + 12 + 7
=
6� 84
31

<
2 + 3 + 4 + 12
1
2 +

1
3 +

1
4 +

1
12

= 6� 3

Example 3 Let X = R� R and let, for any element a 2 X, ai denote the
i-th component of a, for i 2 f1; 2g. De�ne the ordering % by:
A � B i¤ 1

#A

X
a2A

a1 =
1
#B

X
b2B
b1 and 1

#A

X
a2A

a2 =
1
#B

X
b2B
b2;

A � B i¤ either:
(i) 1

#A

X
a2A

a1 >
1
#B

X
b2B
b1 or:

(ii) 1
#A

X
a2A

a1 =
X
b2B
b1 and 1

#A

X
a2A

a2 >
1
#B

X
b2B
b2.

We �rst prove that % violates the Archimedean axiom. Indeed, the set
f(2; i) : i 2 Zg is a standard sequence because f(2; i); (1; 2)g � f(2; i +
1); (1; 1)g for all i 2 Z. This standard sequence is in�nite but is bounded.
Indeed, for any i 2 N , we have f(3; 1)g � f(2; i)g � f(1; 1)g. We leave to
the reader the (easy) task of verifying that this ordering, which is a lexico-
graphic combination of two UEU orderings de�ned on each dimension, is not
continuous either. Let us show that % satis�es averaging. Indeed, A � B
() either:
1
#A

X
a2A

a1 >
1
#B

X
b2B
b1 , 1

#A

X
a2A

a1 >
1

#A+#B

X
�2A[B

�1

, A � A [B or
1
#A

X
a2A

a1 =
1
#B

X
b2B
b1 and 1

#A

X
a2A

a2 >
1
#B

X
b2B
b2

() 1
#A

X
a2A

a1 =
1

#A+#B

X
�2A[B

�1 and 1
#A

X
a2A

a2 >
1

#A+#B

X
�2A[B

�2

() A � A [ B. A similar reasoning holds when A � B. To show that
% satis�es richness on X = R � R, consider any �nite subsets A and B
of X (with A possibly empty) and de�ne c by means of the following two
equations:

c1 +
X
a2A

a1

1 + #A
=

1

#B

X
b2B

b1 and

c2 +
X
a2A

a2

1 + #A
=

1

#B

X
b2B

b2:

We then have A [ fcg � B. We notice that this conclusion holds no mat-
ter what is assumed on the ranking of A vis-à-vis B. Hence this conclusion
can also be obtained for sets B and A that satisfy the requirements of the
richness axiom. Finally, to show that % satis�es restricted independence,
consider �nite and non-empty subsets A and B of X such that #A = #B
and A \ C = ; = B \ C. We have A � B if and only if either:
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1
#A

X
a2A

a1 >
1
#B

X
b2B
b1 , 1

#A+#C

X
�2A[C

�1 >
1

#B+#C

X
�2B[C

�1

, A [ C � B [ C or
1
#A

X
a2A

a1 =
1
#B

X
b2B

and 1
#A

X
a2A

a2 >
1
#B

X
b2B
b2

, 1
#A+#C

X
�2A[C

�1 =
1

#B+#C

X
�2B[C

�1 and 1
#A+#C

X
�2A[C

�2 >
1

#B+#C

X
�2B[C

�2

() A [ C � B [ C. A similar reasoning holds when A � B.

6 Conclusion

This paper characterizes by two axioms the UEU ranking of completely
uncertain decisions, under the assumption that the ranking of uncertain
decision is used in an Archimedean and rich environment. The axioms used
in the characterization are �nite and, therefore, veri�able from the mere
observation of a choice behavior. We have also shown that UEU ranking can
be used to rank ambiguous decisions or decisions with �nancial consequences
and is characterized in that setting under the same axioms, but with the
Archimedean and richness axioms replaced by a mild continuity one.

A limitation of UEU criteria is that they assign to every consequence of
a decision the same probability of occurrence. A next step in the research
agenda is therefore to identify the properties of a more general EU criterion
that does not impose this uniform assumption on the probabilities assigned
to the consequences of a decision. The family of orderings that can be rep-
resented as per (2) for some functions p and u is an obvious �rst step into
that direction. We have seen that any ordering in this family satis�es aver-
aging and continuity (or the Archimedean axiom) but may violate restricted
independence. It would be nice to know the axioms which, along with aver-
aging and continuity, characterize this large family of rankings of completely
uncertain decisions. While Ahn (2008) has characterized this family in the
somewhat speci�c context where decisions have continuously many conse-
quences that are taken to be probabilities measures over a fundamental set
of consequences, we think that obtaining a characterization of this family in
a �nite context is a high priority for future research.

7 Appendix

Proof of theorem 1
Before proving theorems 1 and 2 on the subdomain P (X 0), we must be sure

that all our axioms - formulated for the domain P (X)- are also valid for the sub-
domain P (X 0). While this is clear for averaging, restricted independence, certainty
equivalence and the Archimedean axiom, it may not be so clear for richness which,
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given any two sets in P (X)- and therefore in the subdomain P (X 0)- asserts the
existence, in X , of a speci�c consequence c having some property. Yet we must
prove that this consequence c can actually be shown to belong to X 0. Speci�cally,
we must prove that the following lemma is true.

Lemma 2 Let % be an ordering on P (X) satisfying averaging, restricted in-
dependence, richness and the Archimedean axiom. Then the restriction of % to
P (X 0) satis�es the same axioms.

Proof.
We leave to the reader the task of verifying that this is indeed the case for

averaging, restricted independence and the Archimedean axiom. For richness, let A
and B be two �nite subsets of X 0 (with A possibly empty) and assume that there
are consequences c� and c� 2 X 0 such that A[fc�g % B % A[fc�g. By richness
(applied to P (X)), there exists a consequence c 2 X such that A[ fcg � B. We
need to show that c 2 X 0. By contradiction, assume c 2 XnX 0 = m(X)[M(X).
If c 2 m(X), then fcg � fxg for all x 2 X 0 so that, in particular, fcg � fc�g
and fcg � fag for all a 2 A. Hence c =2 A. One has therefore, by restricted
independence (if c� =2 A) or by averaging (if c� 2 A), thatB % A[fc�g � A[fcg,
a contradiction (if % is transitive). The argument is symmetric if c 2M(X). QED

An important ingredient in the proof of theorem 1 is the following lemma, which
states that if an ordering % on P (X 0) satis�es averaging, restricted independence
and the structural axioms, then it satis�es, when restricted to pairs and singletons,
the following important condition that is closely related to the so-called "Thomsen
condition" in the theory of conjoint measurement (using Krantz, Luce, Suppes, and
Tversky (1971) terminology).

Lemma 3 Let % be an ordering on P (X 0) satisfying averaging, restricted inde-
pendence, richness and the Archimedean axiom. Then for every (not necessarily
distinct) consequences a, b, c, d, e and f 2 X 0, fag [ ffg � fcg [ feg and
fcg [ fdg � fbg [ ffg must imply fag [ fdg � fbg [ feg.

Proof.
We consider several cases.

1. fag � fbg and fdg � feg. In this case, we conclude that fag[fdg � fbg[
fdg by restricted independence if both a 6= p and b 6= p. If either a = d
and b 6= d or a 6= d and b = d, the conclusion fag [ fdg � fbg [ fdg
follows from averaging. Finally, if a = d and b = d, the conclusion that
fag[fdg � fbg[fdg follows trivially from the assumption that fag � fbg.
By an analogous reasoning we can obtain the conclusion that fbg [ fdg �
fbg [ feg. The conclusion that fag [ fdg � fbg [ feg follows then at once
from transitivity.
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2. fag � fbg and fdg % feg. In this case, it follows from restricted indepen-
dence (if a 6= f 6= b) or averaging (if a = f or b = f ) that fag [ ffg �
fbg [ ffg. Analogously, we can conclude from the premises of this case
that fcg [ fdg % fcg [ feg (using restricted independence if d 6= c 6= e
and averaging if d = c or e = c). It then follows from transitivity that
fcg [ fdg % fcg [ feg � fag [ ffg � fbg [ ffg � fcg [ fdg. Since this
is a contradiction, we conclude that this case is impossible.

3. fag � fbg and fdg - feg. This case can also shown to be impossible, fol-
lowing a similar reasoning as for case 2.

4. fag � fbg and fdg % feg. We then consider several subcases.
(i) c = f . Since fag[ffg � fcg[feg, we conclude that fag � feg using
restricted independence (if a 6= f and c 6= e), averaging (if a = f and c 6= e
or a 6= f and c = e) or trivially (if a = f and c = e). By an analogous
reasoning, we conclude from fcg[fdg � fbg[ffg that fbg � fdg. Hence,
we have fag � feg and fbg � fdg. This implies that fag[fdg � fbg[feg
by restricted independence (if a 6= d and b 6= e) or by averaging (in all other
cases).

(ii) Suppose f 6= c, e 6= c 6= d, d 6= a 6= fand e 6= b 6= f . We �rst
establish that there are consequences u and v 2 X 0such that fug [ fvg \
fag [ fbg [ fcg [ fdg [ feg [ ffg = ; and fa; ug � fc; vg. Suppose �rst
fag � fcg. Take then any u 2 X 0n(fag[fbg[fcg[fdg[feg[ffg) (the
existence of such a u is secured by proposition 6) and de�ne v = u. We then
immediately obtain fa; ug � ff; vg by restricted independence. Suppose
now that fag � fcg. By proposition 6, there is a consequence v 2 X 0 such
that fvg � fag. By restricted independence, one has fa; vg � fc; vg and
fc; vg � fc; ag and, by transitivity, fa; vg � fc; vg � fa; cg. It follows
from richness that there is a consequence u 2 X 0 such that fag [ fug �
fc; vg. If fu; vg \ fa; b; f; p; q; xg 6= ;, one can repeat this procedure,
starting with another v. The repetition of the procedure will be �nite because
the set fag [ fbg [ fcg [ fdg [ feg [ ffg is �nite. Hence one is sure
to �nd a consequence u 2 X 0nfag [ fbg [ fcg [ fdg [ feg [ ffg such
that fa; ug � fc; vg. Using an analogous argument, one can obtain a
similar conclusion if fag � fcg is assumed. Now, by restricted independence,
one has fc; f; vg � fa; f; ug and fa; f; ug � fc; e; ug. It follows from
transitivity that fc; f; vg � fc; e; ug so that ff; vg � fe; ug must hold
by restricted independence. Using restricted independence again, we obtain
from fa; ug � fc; vg that fa; d; ug � fc; d; vg and from fc; dg � fb; fg
that fc; d; vg � fb; f; vg � fb; e; ug. It follows from transitivity that
fa; d; ug � fb; e; ug and, by restricted independence, fa; dg � fb; eg.
(iii) Suppose c 6= f , e 6= c 6= d, and e 6= b 6= f . The only di¤erence with
subcase (ii) is that we relax the constraint �d 6= a 6= f�. Hence this case is
more general than (ii). Suppose, contrary to the asserted implication of the
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lemma, that fag [ fdg 6� fbg [ fdg. Since % is complete, two symmetric
cases can arise: fag[ fdg � fbg[ feg or fag[ fdg � fbg[ feg. We only
handle the �rst one. We �rst show that we can �nd distinct consequences a0

and f 0 2 X 0nfag[fbg[fcg[fdg[feg[ffg such that fa0g � fag, ffg �
ff 0g and fa0; f 0g � fag[ffg. The existence of consequences a0 2 X 0 such
that fa0g � fag is secured by proposition 6. Assume �rst a = f . Either
fa0; gg � fag for all g 2 X 0 or there exists some g0 such that fa0; g0g % fag.
In the second case, the existence of a consequence f 0 such that fa0; f 0g � fag
follows from richness. In the �rst case, choose by proposition 6 some bg 2 X 0

such that fbgg � fag and, by certainty equivalence, some eg 2 X 0 such that
fegg � fa; bgg. By averaging and transitivity, one has fag � fegg � fa; bgg �
feg; bgg � fbgg. Hence one has feg; bgg � fag � fa0; egg so that, by richness,
there exists a consequence ea 2 X 0 such that fea; egg � fag. Choosing then
a0 = ea and f 0 = eg gives the result. If a 6= f , we can do the previous
reasoning for the certainty equivalent of fa; fg which exists by certainty
equivalence. If either a0 or f 0 2 fag [ fbg [ fcg [ fdg [ feg [ ffg,
we can redo the procedure while starting with another a0. Since the set
fag [ fbg [ fcg [ fdg [ feg [ ffg is �nite, we will redo the procedure at
most a �nite number of times. Hence we are sure to �nd consequences a0 and
f 0 2 X 0nfag[fbg[fcg[fdg[feg[ffg such that fa0g � fag; ffg � ff 0g
and fa0; f 0g � fag[ffg and, by redoing the above procedure as many times
as required, we can choose as many distinct pairs of such a0and f 0as we want.
Choose now a consequence b0such that fb0g[ff 0g � fb; fg. This is possible
because fb; f 0g � fb; fg thanks to restricted independence. Moreover it is
impossible that febg [ ff 0g � fb; fg for all consequences eb in X 0. Indeed,
since fa0; f 0g � fag [ ffg, assuming febg [ ff 0g � fb; fg for all eb would
imply, given transitivity, that fag [ ffg � fb; fg. Yet using averaging (if
a = f) or restricted independence (if a 6= f), this would imply in turn that
fag � fbg, contradicting our assumption that fag � fbg. Hence, there
are consequences eb such that fb; fg % feb; f 0g so that, by richness, one can
�nd a consequence b0 such that fb0; f 0g � fb; fg. Given the �exibility we
have for choosing a0 and f 0 it is clear that b0 can be chosen so that it does
not belong to fag [ fa0g [ fbg [ fcg [ fdg [ feg [ ffg [ ff 0g. Thanks
to case (ii), we know that we can obtain fa0; dg � fb0; eg if we replace
a by a0, f by f 0and b by b0 in the antecedent clause of the lemma. Since
fa0g � fag, we know that fa0; dg � fag [ fdg by restricted independence
(if a 6= d) or by averaging (if a = d). Hence, it follows from transitivity that
fb0; eg � fa0; dg � fag [ fdg � fbg [ feg. Combine now as before the
axioms of averaging, certainty equivalent and richness to �nd a consequence
b00 such that fag [ fdg � fb00g [ feg � fbg [ feg. Using richness, one
can also �nd a consequence f 00 such that fcg [ fdg � fb00g [ ff 00g and
a consequence a00 such that fa00g [ ff 00g � ffg [ feg. As before, we
have the �exibility to �nd these consequences b00; f 00 or a00 in such a way
that they not belong to fag [ fbg [ fcg [ fdg [ feg [ ffg. Thanks to
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case (ii) again, we can obtain the conclusion that fa00; dg � fb00; eg. Since
fa00g � fag, we have fa00g [ fdg � fag [ fdg by restricted independence
(if a 6= d) or by averaging (if a = d). We then obtain from transitivity that
fag [ fdg � fb00; eg � fa00; dg � fag [ fdg. A contradiction.
(iv) Suppose c 6= f and e 6= b 6= f . The di¤erence with case (iii) is
that we relax the constraint �e 6= c 6= d�. Hence, as before, this case is
more general than case (iii). Suppose by contradiction that the lemma is
false and that fag [ fdg 6� fbg [ feg. As before, the completeness of %
implies either fag [ fdg � fbg [ feg or fag [ fdg � fbg [ feg. Since
these two cases are symmetric, we only provide the argument for the �rst one.
Using analogous argument than in case (iii), one can �nd consequences c0 and
d0 2 X 0nfag[fbg[fcg[fdg[feg[ffg such that fd0g � fdg, fcg � fc0g
and fc0; d0g � fcg[fdg. As in case (iii) also, one can �nd a consequence e0
2 X 0nfag[fbg[fc; c0g[fd; d0g[feg[ffg such that fc0; e0g � fcg[feg.
Thanks to case (iii), we know that we can obtain fag[fd0g � fbg[fe0g out
of the assumption that fag[ffg � fc0g[fe0g and fc0g[fd0g � fbg[ffg.
Since fd0g � fdg, we have fa; d0g � fag[fdg by restricted independence (if
a 6= d) or averaging (if a = d). Hence by transitivity we have: fbg[ fe0g �
fag [ fd0g � fag [ fdg � fbg [ feg. Using analogous argument as for
the consequences a00, b00 and f 00 of case (iii), �nd now consequences c00,
d00 and e00 2 X 0nfag [ fbg [ fc; c0g [ fd; d0g [ fe; e0g [ ffg such that
1) fag [ fdg � fb; e00g � fbg [ feg, 2) fc00; e00g � fag [ ffg and 3)
fc00; d00g � fbg [ ffg. We know from (iii) that fag [ ffg � fc; e00g and
fc; d00g � fbg [ ffg implies fag [ fd00g � fbg [ fe00g. Since fd00g � fdg,
we have fag [ fd00g � fag [ fdg by restricted independence (if a 6= d) or
by averaging (if a = d). Transitivity then yields fag [ fdg � fb; e00g �
fa; d00g � fag [ fdg, a contradiction.
(v) Suppose c 6= f . The di¤erence with case (iv) is that we relax the
constraint �e 6= b 6= f . Hence this case is more general than case (iv) and we
handle it in an analogous fashion (conditional on (iv)) to what was done for
case (iv) conditional to case (iii).

We notice that subcases (i) and (v) are exhaustive, conditional on case 4.

5. fag � fbg and fpg - fqg. This case is handled in the same way as case 4

Another result used in the proof of theorem 1 is the following.

Lemma 4 Let % be an ordering on P (X 0) satisfying averaging and restricted
independence. Then for every (not necessarily distinct) consequences a, b, c, and
d 2 X 0, fag [ fbg % fcg [ fbg , fag [ fdg % fcg [ fdg.

Proof.
We consider several cases.
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1) a 6= b, c 6= b, a 6= d and c 6= d. The result then follows immediately from re-
stricted independence.

2) a = b, c 6= b, a 6= d and c 6= d. Assume fag [ fbg % fcg [ fbg or, equiva-
lently under our assumption, that fag % fa; cg. By averaging this statement
is equivalent to fag % fcg which is itself equivalent, using restricted inde-
pendence, to fa; dg = fag [ fdg % fc; dg = fcg [ fdg.

3) a 6= b, c = b, a 6= d and c 6= d. Assume fag [ fbg % fcg [ fbg or, equiva-
lently under our assumption, that fa; bg % fbg. By averaging, this statement
is equivalent to fag % fbg and, by restricted independence, to fa; dg =
fag [ fdg % fb; dg = fcg [ fdg.

4) a 6= b, c 6= b, a = d and c 6= d. Assume fag [ fbg % fcg [ fbg or, equiv-
alently under our assumption, that fa; bg % fc; bg. Using restricted inde-
pendence, this is equivalent to fag = fdg % fcg which, by averaging, is
equivalent to fdg = fag [ fdg % fd; cg = fcg [ fdg.

5) a 6= b, c 6= b, a 6= d and c = d. Assume fag [ fbg % fcg [ fbg or, equiva-
lently under our assumption, that fa; bg % fc; bg = fd; bg. Using restricted
independence, this is equivalent to fag % fdg which, by averaging, is equiv-
alent to fa; dg = fag [ fdg % fdg = fcg [ fdg.

6) a = b = c 6= d. In that case re�exivity ensures that fag[fbg % fcg[fbg ,
fag % fag , fag [ fdg = fa; dg % fa; dg = fc; dg = fcg [ fdg.

All other cases are handled trivially using re�exivity.

Proof of theorem 1.
Proposition 1 establishes that any UEU criterion satis�es averaging and re-

stricted independence. To prove the converse implication, consider the restriction
of the ordering% to the set of all subsets ofX 0containing at most two consequences.

De�ne the binary relation b% onX 0�X 0 by (a; b) b% (c; d), fag[fbg % fcg[fdg.
The binary relation b% is well-de�ned and is clearly an ordering of X 0 � X 0 if %
is an ordering of P (X 0). We also notice that, thanks to lemma 4, b% satis�es the

property that if (a; b) b% (c; b) holds for some consequence a; b and c, then (a; d)b% (c; d) holds for all consequences d 2 X 0. This property is called "independence"
by Krantz, Luce, Suppes, and Tversky (1971) (KLST for short) (p. 249, de�nition

1). We similarly obtain that b% satis�es both Thomsen�s condition (see KLST, p.
250, de�nition 3) and the "restricted solvability" condition (KLST, p. 250, de�ni-
tion 5) using, respectively lemma 3, and the richness axiom. Finally, we note that
our Archimedean axiom implies the property of the same name of KLST (p. 253,
de�nition 4) while our assumption, made in the text, that % is non trivial implies,
thanks to averaging (and speci�cally the Gardenförs condition), that each compo-
nent of X 0 � X 0is essential as per KLST de�nition 6 (p. 256). Hence the triple
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(X 0; X 0; b%) is an additive conjoint structure in the sense of KLST (de�nition 7, p.
256). By virtue of theorem 2 of KLST (p. 257), there are real-valued functions �i
(for i = 1; 2) having both X 0 as domain such that:

(a; b) b% (c; d), �1(a) + �2(b) � �1(c) + �2(d)

for all consequences a, b, c and d 2 X 0. Since (a; b) b% (c; d), fag[fbg % fcg[
fdg , fbg[fag % fdg[fdg , (b; a)b%(d; c), the ordering b% is symmetric so that
�1(x) = �2(x) = u(x) must hold for every consequence x 2 X 0 for some function
u : X 0 ! R. By virtue of the second part of theorem 2 in KLST, the function u is
unique up to an a¢ ne transform. Let us now show that, for all subsets A and B of
X 0 containing at most two consequences, one has A % B ,

X
a2A

u(a)
#A �

X
a2A

u(a)
#A

so that % can be represented as per (1). If #A = #B = 1, then one has, for all
consequences xand y 2 X 0, fxg % fyg , fxg [ fxg % fyg [ fyg , 2u(x) �
2u(y) , u(x) � u(y) so that the numerical representation holds for that case.
The argument clearly works just as well if #A = #B = 2. Suppose now that
#A = 1 and #B = 2. Then, for all consequences x, y and z 2 X 0such that
y 6= z, one has:

fxg % fy; zg () fxg [ fxg % fyg [ fzg
() (x; x) b% (y; z)
() u(x) + u(x) � u(y) + u(z)() u(x) � u(y) + u(z)

2
so that the numerical representation holds for that case as well. QED

Proof of lemma 1.

We �nd useful to represent the sequence de�ned in this lemma in the following
array, with n� 1 columns and an in�nite number of rows:

1 2 ... n� 2 n� 1
b0 (u1 + b

0
2)=2 (u2 + b

0
3)=2 ... (un�2 + b0n�1)=2 (un�1 + un)=2

b1 (u1 + b
0
2)=2 (b11 + b

0
2)=2 !... (b1n�3 + b

0
n�2)=2 (b1n�2 + b

0
n�1)=2

b2 (b22 + b
1
1)=2 (b23 + b

1
2)=2 ... (b2n�1 + b

1
n�2)=2 (b1n�2 + b

0
n�1)=2

b3 (b22 + b
1
1)=2 (b31 + b

2
2)=2 !... (b3n�3 + b

2
n�2)=2 (b3n�2 + b

2
n�1)=2

... ... ... ... ... ...

We are going to show that the "grand" sequence that starts from the "north-
east" of the array and follows the arrows up to in�nity, converges to u. Since the
sequence fbihg is the hthcolumn of this array and therefore, a subsequence of the
grand sequence, the conclusion of the lemma would follow immediately. De�ne
accordingly the grand sequence fbbtg, for t = i(n� 1) + 1; :::; (i+ 1)(n� 1), and
i = 0; 1; 2; :::by: bbt = bin�(t+1�(i(n�1)+1)) if i is even andbbt = bit+1�(i(n�1)+1) if i is odd
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Any element of the grand sequence can be written as a weighted average of
fu1; :::; ung. In particular, for all t = 1; :::, there exists n � 1 real numbers
�t1; :::; �

t
n�1 such that:

bbt = �t1u1 + �t2u2 + ::::+ �tn�1un�1 + �tn�1un
Moreover inspection reveals that �th is de�ned by the following recursive formula:

�th = 0 if t 2 f1; :::; n� h� 1g

�n�hh =
1

2
and

�th =
1

2
(�t�1h + �

2m(t)�t+1
h if t � n� h+ 1 (4)

where m(t) is de�ned as the largest integer strictly smaller than t that is divisible
by n� 1. In order to prove the lemma, it su¢ ces to prove that lim

t!1
�th =

1
n for all

h. In what follows we will �x h 2 f1; ::; n� 1g and drop the subscript h from the
sequence f�thg for notational convenience.

Once again, it is convenient to refer to the aforementioned representation of the
sequence f�tg, t = 1; ::as an array with n� 1 columns and an in�nite number of
rows. We start from the �rst row with �1 and move left until we reach �n�1. We
then move down to the second row where the �rst element from the left is �n. The
sequence then increases from left right and the right-most element in the this row
is �2n�2. The right-most element in the third row is then �2n�1 and the sequence
increases as it moves left (like in the �rst row) so that the left-most element is
�3n�3 and so on. Let t be an arbitrary integer. If we write t = m(t) + s, it
follows that �t lies in the (m(t) + 1)th row of this array. If m(t) is even then,
the (m(t) + 1)th row is increasing from right to left so that �t is the (s + 1)th

element from the right in this row. If m(t) is odd, then �t is the (s+1)th element
from the left in the (m(t) + 1)th row which increases from left to right. It follows
that in this array, �t for t > n � 1 is the arithmetic mean of the element which
immediately precedes it and the element directly in the row above.

The proof proceeds in two steps. The �rst is to show that the sequence f�tg,
t = 1; :::is convergent and the second is to show that the limit of the sequence
is, in fact 1n . In order to establish the �rst step, we �rst record the two following
properties P1 and P2 of the sequence which can be easily veri�ed.

P1. Let r > 1 be an odd integer. The sequence strictly increases from �(r�1)(n�1)+1

to �(r�1)(n�1)+h and then strictly decreases from �(r�1)(n�1)+h to �r(n�1). If
r is an even integer, then the sequence strictly increases from �(r�1)(n�1)+1 to
�(r�1)(n�1)+n�h and strictly decreases from �(r�1)(n�1)+n�h to �r(n�1). Thus
for every row r in the array, the sequence increases from the right as we move
left for h terms and then decreases for the remaining n � h � 1 terms. Clearly
�(r�1)(n�1)+h is the largest element of the rth row if r is odd and �(r�1)(n�1)+n�h
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if r is even. Note that the maximal element of any row is in the hthcolumn from
the right.

P2. Let t = (n � 1)r + s where m(t) = r (note that 1 � s � n � 1). Then
�t = 1

2�
(n�1)(r�1)+(n�s) + 1

22
�(n�1)(r�1)+(n�s�1) + ::::+ 1

2s�1�
(n�1)(r�1)+1 +

1
2s�1�

(n�1)(r�1). Thus each term of the sequence can be expressed as the weighted
sum of the terms of the sequence in the row above.

CLAIM: Let r > 1 be an integer. Then:
(i) �(r�1)(n�1)+h � �r(n�1) < 1(�(r�2)(n�1)+n�h � �(r�2)(n�1)+1) and
(ii) �(r�1)(n�1)+h � �(r�1)(n�1)+1 < 2(�(r�2)(n�1)+n�h � �(r�1)(n�1))
where 1 =

2n�h�1�1
2n�h�1

and 2 =
2h�1�1
2h�1

if r is odd and:

(iii) �(r�1)(n�1)+n�h � �(r�1)(n�1)+1 < 1(�(r�2)(n�1)+h � �(r�1)(n�1)) and,
(iv) �(r�1)(n�1)+n�h � �r(n�1) < 2(�(r�2)(n�1)+h � �(r�2)(n�1)+1)
if r is even.

Proof of the Claim: We �rst prove (ii). We do that by �rst noting that, according
to P2:

�(r�1)(n�1)+h =
1

2
�(r�2)(n�1)+n�h+:::+

1

2h�1
�(r�1)(n�1)+1+

1

2h�1
�(r�1)(n�1)

Since �(r�1)(n�1)+1 = �(r�1)(n�1) and �(r�2)(n�1)+n�h is the largest term in the
(r � 1)th row according to P1, we conclude that :

�(r�1)(n�1)+h � �(r�1)(n�1)+1 < �(r�2)(n�1)+h(1
2
+ :::+

1

2h�1
)

�(1� 1

2h�1
)�(r�1)(n�1)

= (1� 1

2h�1
)(�(r�2)(n�1)+n+h � �(r�1)(n�1))

Since 2 = (1� 1
2h�1

), this establishes (ii).
We now prove (iii). According to P2:

�(r�1)(n�1)+n�h =
1

2
�(r�2)(n�1)+h+ :::+

1

2n�h�1
[�(r�1)(n�1)+1+�(r�1)(n�1)]

Since �(r�1)(n�1)+1 = �(r�1)(n�1) and since, from P1, we know that �(r�2)(n�1)+h

is the largest term in the (r � 1)th row, we obtain:

�(r�1)(n�1)+n�h � �(r�1)(n�1)+1 < (1
2
+ :::+

1

2n�h�1
)�(r�2)(n�1)+n�h

� (1� 1

2n�h�1
)�(r�1)(n�1)+1

= (1� 1

2n�h�1
)(�(r�2)(n�1)+n�h � �(r�1)(n�1)+1)
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Since 2 = (1� 1
2n�h�1

), this establishes (iii).
We now prove (i). Applying P2, we have:

�(r�1)(n�1)+h =
1

2
�(r�2)(n�1)+n�h + :::+

1

2h�1
�(r�1)(n�1)+1

+
1

2h�1
�(r�1)(n�1)

and:

�r(n�1) =
1

2
�(r�2)(n�1)+1 + :::+

1

2n�h
�(r�1)(n�1)+n�h

+ ::::+
1

2n�2
�(r�1)(n�1)+1 +

1

2n�2
�(r�1)(n�1)

We thus have:
� = �(r�1)(n�1)+h � �r(n�1)

= (
1

2
� 1

2n�h
)�(r�1)(n�1)+n�h + ::::+ (

1

2h�1
� 1

2n�2
)�(r�1)(n�1)+1

+ (
1

2h�1
� 1

2n�2
)�(r�1)(n�1)

� 1
2
�(r�1)(n�1)+1:::::� 1

2n�h�1
�(r�1)(n�1)+n�h�1

Note that, according to P1, �(r�1)(n�1)+n�h is the largest element in its row.
This, combined to the fact that:

�(r�1)(n�1)+1 < ::: < �(r�2)(n�1)+n�h�1

implies:

� < ((
1

2
� 1

2n�h
) + ::::+ (

1

2h�1
� 1

2n�2
)

+ (
1

2h�1
� 1

2n�2
))�(r�1)(n�1)+n�h

� (1
2
+ ::::+

1

2n�h�1
)�(r�2)(n�1)+1

= (
1

2
� 1

2n�h
)(1 + ::::+

1

2h�2
) + (

1

2h�1
� 1

2n�2
))�(r�2)(n�1)+n�h

+ (1� 1

2n�h�1
)�(r�1)(n�1)+1

= (
1

2
� 1

2n�h
)(2� 1

2n�h
) + (

1

2h�1
� 1

2n�2
))�(r�2)(n�1)+1

+ (1� 1

2n�h�1
)�(r�1)(n�1)+1

= (1� 1

2n�h�1
)(�(r�2)(n�1)+n�h � �(r�1)(n�1)+1)

= 1(�
(r�2)(n�1)+n�h � �(r�1)(n�1)+1)
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which proves (i).
The proof of (iv) is symmetric to that of (i) and we omit the details.

We will use the inequalities in the Claim to put an upper bound on the distance
between terms in the same row of the array. Let r > 1 be an odd integer. Applying
(i) in the Claim, we have:

�(r�1)(n�1)+h � �r(n�1) < 1(�(r�2)(n�1)+n�h � �(r�2)(n�1)+1)

Observe that �(r�2)(n�1)+n�h � �(r�2)(n�1)+1) can be written as
�(r

0�1)(n�1)+n�h� �(r0�1)(n�1)+1) where r0 = r� 1. Since r0 is an even integer,
we can apply (iii) to obtain:

�(r�1)(n�1)+h � �r(n�1) < 21(�(r�3)(n�1)+n�h � �(r�2)(n�1)+1):

Hence applying (i) and (iii) repeatedly, we conclude that:

�(r�1)(n�1)+h � �r(n�1) < r�11 (�h � �n�1)

= r�11 (
1

2
� 1

2n�h�1
)

< r�11 (
1

2
):

By the same argument �(r�1)(n�1)+n�h � �(r�1)(n�1)+1 < r�11 (12) when r is
even. Moreover, from analogous arguments, we obtain that:

�(r�1)(n�1)+h � �(r�1)(n�1)+1 < r�12 (
1

2
)

when r is odd and:

�(r�1)(n�1)+n�h � �r(n�1) < r�12 (
1

2
)

when r is even.
Let r be an odd integer. The left-most and right-most terms in row r are

�(r(n�1)and �(r�1)(n�1)+1respectively. Using the triangle inequality and the bounds
derived in the previous paragraph, it follows that:

jj�r(n�1) � �(r�1)(n�1)+1jj � jj�r(n�1) � �r(n�1)+hjj+ jj�r(n�1)+h � �(r�1)(n�1)+1jj

<
1

2
(r�11 + r�12 ):

If r is an even integer, and the left-most and right-most terms in row r are
�(r�1)(n�1)+1 and �(r(n�1) respectively, one has:

jj�r(n�1) � �(r�1)(n�1)+1jj � jj�r(n�1) � �r(n�1)+n�hjj+ jj�(r(n�1)+n�h � �(r�1)(n�1)+1jj

<
1

2
(r�11 + r�12 ):

30



Note that the maximal di¤erence of terms in row r is strictly less than 12 max[1; 2]
r�1.

Pick an integer t such that t = r(n�1) where r is an odd integer i.e. �t is the
left-most term in row r and m(t) = r � 1. Let q = r0(n� 1) where r0 > r. Note
that, by repeated application of the triangle inequality, it follows that jj�t � �qjj
is less than the sum of the di¤erences between the left-most and right-most terms
of all rows starting from r + 1. Hence:

jj�t � �qjj < 1

2
(r1 + 

r+1
1 + :::::+ r2 + 

r+1
2 :::::)

=
1

2
(
1
r

1� 1
+

2
r

1� 2
)

� �(r)
� �(m(t))

(note that we critically use the fact that 1 and 2 are strictly less than 1). Now
let �q be a term in row r0 where r0 > r. Applying the triangle inequality again,
we have:

jj�t � �qjj < �(m(t)) + 1
2
max[1; 2]

r�1

< �(m(t)) +
1

2
max[1; 2]

m(t)

� �̂(t):

Observe that �̂(t)! 0 as t!1. Pick " > 0 and let T be such that �̂(t) < " for
all t > T . We have shown that jj�T � �qjj < " for all q > T . Hence the sequence
�t is a Cauchy sequence and is convergent.

We now show that the sequence converges to 1n . Suppose it converges to �. Let
tand k be positive integers such that t+ 1 = k(n� 1) and consider the following
sequence of di¤erences.

�t+1 � �t = 1

2
(�(k�2)(n�1)+1 � �t) (5)

�t � �t�1 = 1

2
(�(k�2)(n�1)+2 � �t�1) (6)

::: = :::

�t�(n�3) � �t�(n�2) = 1

2
(�(k�1)(n�1) � �(k�1)(n�1)) (7)

�t�(n�2) � �t�(n�1) = 1

2
(�(k�2)(n�1)+1 � �(k�1)(n�1)�1) (8)

::: = :::

�n�h+1 � �n�h = 1

2
(�0 � �n�h) (9)
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It is clear from these t� n+ h equalities that, except for the �rst n� 2 negative
terms of the right hand sides, every positive term of the �rst n � 1 lines has an
identical negative term in one of the lines n+1,...,2n. Hence, if we sum the equalities
(5)-(9), we get:

�t+1 � �n�h = 1

2
(
n�2X
i=1

�k(n�1)+i)

Observe that �n�h = 1=2. Also, f�k(n�1)+ig, for k = 1; :::, is a subsequence of
the original sequence for all i = 1; :::; n� 2. Since the original sequence converges
to �, these subsequences must also converge to �. Therefore by taking limits on
both sides of the equation above, we obtain � � 1=2 = �1=2(n � 2)�, so that
� = 1

n , as required. QED

An important preliminary step in the proof of theorem 2 is the proof that if
the ordering % of P (X 0) satis�es restricted independence and averaging, then it
satis�es, given the structural axioms, the following property of attenuation.

De�nition 1 The ordering % of P (X 0) satis�es attenuation if for all sets A,
Band C 2 P (X) satisfying A � B, A\C = B \C = ;and #A > #B, C � A
implies A [ C � B [ C and A � C implies A [ C � B [ C.

Loosely speaking, attenuation states that the level of uncertainty of a decision,
as measured by the number of its di¤erent consequences, �attenuates�the impact,
positive or negative, of adding new consequences to it Speci�cally, if one adds, to
two decisions that are, preference-wise, equivalent but that di¤er in terms of their
uncertainty, consequences in C that are better than the existing consequences, then
the positive impact of the addition should be larger for the more certain set than
for the less certain one. Of course attenuation goes both ways so that if the added
consequences are worse than the existing one, then adding them to the certain set
will have a larger negative impact than adding them to the less certain one.

The next two lemmas establish that any ordering % of P(X 0) satisfying aver-
aging, restricted independence and richness satis�es attenuation.

Lemma 5 Let % be an ordering of P(X) satisfying averaging, restricted in-
dependence and richness. Then, for all �nite sets A B 2 P (X 0), such that
#A �#B � 2, and for all sets C 2 P(X 0) such that C \ (A [ B) = ?, there
are consequences x1; : : : ; xn 2 X 0n(A[B[C) such that B � B[fx1; : : : ; xng.

Proof. De�ne n = #A�#B. We distinguish three cases.

n = 2. Using proposition 6 and certainty equivalence, choose a consequence a such
that B � fag. By averaging, B � B [ fag. Using again proposition 6 and
certainty equivalence, �nd a consequence e 2 X 0 such that feg � B [ fag.
By averaging and transitivity, we have B � B [ fag � B [ fa; eg.
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� If there is a consequence b 2 X 0such that B [ fa; bg - B, then,
by richness, there is a consequence c 2 X 0 such that fa; cg [ B �
B. If a or c belongs to A [ B, we then repeat the same procedure
starting with another a. Since A [ B [ C is �nite, we can do this
repetition at most a �nite number of times so that, at the end, we are
sure to �nd consequences a and c 2 X 0such that fa; cg [B � B and
fa; cg \ (A [B) = ;.
� If B [ fa; bg � B for all consequences b 2 X 0, choose (thanks to
proposition 6 and certainty equivalence), consequences b and e 2 X 0

such that feg � fbg � B. By averaging, one has B [ fb; eg �
B [ fbg � B and, by assumption, B [ fa; bg � B. Hence, by
richness, there is a consequence c 2 X 0 such that B [ fb; cg � B. If
b or c belongs to A [ B, we can repeat the same reasoning starting
with another b. Again, the �niteness of A[B [C guarantees that the
repetition of the procedure will be �nite and will lead, eventually, to b
and c such that fb; cg [B � B and fb; cg \ (A [B) = ;.

n = 3. We have just proved that we can �nd consequences a and c 2 X 0 such that
B[fa; cg � B and fa; cg\(A[B) = ;. It can be noticed that fag 6� fcg.
Choose now (thanks again to proposition 6 and certainty equivalence), a con-
sequence d 2 X 0such that fdg � B [ fa; cg. By averaging and transitivity,
one has B [ fa; c; dg � B [ fa; cg � B. Choose also (proposition 6 and
certainty equivalence) a consequence e 2 X 0 such that feg � B [ fa; cg.
By averaging and transitivity, B [fa; c; eg � B [fa; cg � B. By richness,
there is a consequence f 2 X 0 such that B[fa; c; fg � B[fa; cg � B. By
restricted independence and transitivity, we must have either fag � ffg �
fcg or fag � ffg � fcg. If f 2 A[B[C, then we can redo the procedure
as many (�nite) times as required starting with another a or c.

n > 3. If n = 2m for some integer m > 1, then we apply m times the reasoning
of the case n = 2. If n = 2m + 1 for some integer m > 1, then we apply
(m � 1) times the reasoning of the case n = 2 and once the reasoning of
case n = 3. QED

Lemma 6 Let % be an ordering on P (X 0) satisfying averaging, restricted inde-
pendence and richness. Then % satis�es the property of attenuation.

Proof.
Let A and B be sets in P (X) such that A � B and #A > #B and let

n = #A�#B and let C be a set in P (X) such that A � C. Since the argument
works symmetrically for A � C or A � C, we only provide it for the later case.
The argument requires that we distinguish 3 cases.
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n � 2. By Lemma 5, there are consequences x1; : : : ; xn such thatB[fx1; : : : ; xng �
B and fx1; : : : ; xng \ (B [ C) = ;. By restricted independence, A [ C �
B [ fx1; : : : ; xng [ C. By averaging, fx1; : : : ; xng � B � A. Suppose
A � C. By Averaging, B � B[C. Hence fx1; : : : ; xng � B[C. By aver-
aging again, B[fx1; : : : ; xng[C � B[C. By transitivity, A[C � B[C.

n = 1; #B � 2. We �rst show that there exists a consequence x 2 X 0 and a set
B0 2 P (X 0) such that x =2 B0; fxg � B0 � B;#B0 = #B andB0\C = ;.
Indeed, use certainty equivalence to de�ne x by fxg � B. If x =2 B, then
de�ne B0 = B and the proof is done. If x 2 B, choose a consequence c 2 X 0

such that fcg � fxg and fcg % fyg for all y 2 B [ C (if any) such that
fyg � fxg. The �niteness of B [D as well as proposition 6 guarantees the
existence of such a c. Using similar arguments, one can also �nd a conse-
quence d 2 X 0 such that fxg � fdg and fdg - fzg for all z 2 B [ C (if
any) such that fxg � fzg. Moreover, c and d can be chosen in such a way
that fxg - fc; dg. Indeed, if fxg � fc; dg for some initial choice of c and d,
then, we know from averaging that fx; dg � fxg � fc; dg. Hence by rich-
ness, there exists a c0such that fc0; dg � fxg. Since fc0; dg � fxg � fc; dg,
we must have from restricted independence that fc0g � fcg and, since
fdg � fxg and fc0; dg � fxg, it follows from averaging and transitivity
that fxg � fc0g. We then have fxg � fc0g � fcg % fyg for all y 2 B [C
(if any) such that fyg � fxg. Hence replacing c by c0 leads immediately
to the statement that fxg - fc0; dg. Assuming therefore fxg - fc; dg, we
consider two cases.
1: #B = 2m, for some strictly positive integer m. Choose m di¤erent
consequences z1; : : : ; zm 2 X 0 such thatfcg � fz1g � : : : � fzmg � fxg.
This is clearly possible thanks to certainty equivalence. By assumption,
zi =2 B [ C. For i = 1 : : :m, de�ne z0i by fxg � fzi; z0ig. This is possible
thanks to richness and the fact that fxg - fc; dg - fzi; dg (by restricted
independence and transitivity) and that fxg � fzig � fzi; cg � fcg (by
averaging and transitivity). By averaging and transitivity, one has fzi; z0ig �
fxg � fzi; xg. It then follows from restricted independence that fz0ig � fxg.
We now prove that fz0ig � fdg, for i = 1 : : :m. Suppose by contradiction,
using the completeness of %, that fdg - fz0ig for some i. By restricted
independence and transitivity, we would then have fzi; dg - fzi; z0ig � fxg
Yet, since fcg � fzig, we have by restricted independence and transitiv-
ity that fc; dg � fzi; dg - fzi; z0ig � fxg, in violation of fxg - fc; dg.
Hence, since fxg � fz0ig � fdg, we know that z0i =2 B [ C. De�ne then
B0 = fz1; : : : ; zm; z01; : : : ; z0mg. By repeated application of averaging and
transitivity, one obtains that B0 � fxg � B and, by construction, that
B0 \ C = ; and x =2 B0.
2: #B = 2m + 1, for some strictly positive integer m. Using certainty
equivalence, de�ne c0and c00 by fc0g � fc; xgand fc00g � fc0; cg. We
know that fxg - fc; dg and, by restricted independence and transitivity,
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fxg - fc; dg � fc00; dg � fc0; dg. Moreover, by averaging and transitiv-
ity, we have that fxg � fc; xg � fc0g � fc0; cg � fc00g � fcg. Hence,
using richness, one can de�ne d0and d00by fc0; d0g � fxg and fc00; d00g �
fxg. As in the case �#B = 2m�, we can show that fdg � fd00g �
fd0g � fxg. Hence, fc00; c0; d0; d00g \ (B [ C) = ;. Since fd0g � fd00g,
we have fxg � fc0; d0g � fc0; d00g (by restricted independence and tran-
sitivity) and, by averaging and transitivity, that fxg � fc0; d00; dg. Now,
by averaging again, fc00; c0; d0; d00g � fxg. Hence, since fcg � fc00g, we
have fc; c0; d0; d00g � fxg (by restricted independence and transitivity).
Moreover, since fxg � fd0g, averaging implies fc0; c; d00g � fxg. Hence,
fc0; c; d00g � fxg � fc0; d00; dg. By richness, there is a consequence e such
that fxg � fc0; d00; eg. One can not have fcg % feg because this would im-
ply, using restricted independence and transitivity, that fxg � fc0; d00; eg -
fc0; d00; cg, in contradiction of fxg � fc0; d00; cg. Analogously feg % fxg
can not hold because, if it did, one would have, using restricted indepen-
dence and transitivity, that fxg � fc0; d00; eg % fc0; d00; xg and, using av-
eraging, that fxg % fc0; d00g, a contradiction. Hence, since % is complete
fcg � feg � fxg. We therefore conclude that fc0; d00; eg \ B [ C = ;.
Choose now (m � 1) di¤erent consequences z1; : : : ; zm�1 2 X 0 in such a
way that fc0g � fz1g � : : : � fzm�1g � fxg. It is always possible to
choose them di¤erent from c0; d00and e. For i = 1 : : :m � 1, de�ne as in
the previous case z0i by fxg � fzi; z0ig. As in the previous case also, we
can show that z0iis such that fxg � fz0i}� fdgfor i = 1 : : :m � 1. De�ne
therefore B0by B0 = fc0; d00; e; z1; : : : ; zm�1; z01; : : : ; z0m�1g. By averaging,
B0 � fxg � B and, by construction, B0 \B [ C = ; and x =2 B0.
Given the existence of the set B0and the consequence x with the required
property, we consider two cases.

x =2 C. By averaging, B0[fxg � A. By restricted independence, B[C �
B0[CandB0[fxg[C � A[C. SupposeA � C. Hence, B0 � Cand,
by averaging, B0 � B0 [ C � C. We also have fxg � B0 [ Cand, by
averaging, fxg � B0 [ fxg [ C � B0 [ C. By transitivity, A [ C �
B [ C.

x 2 C. We must then have that #C > 1, as assuming otherwise would
imply that C = fxg � B � A). Using the same argument as above,
there is a set C 0 2 P (X) satisfying C 0 � C; #C 0 = #C; x =2 C 0;B \
C 0 = ;; B0 \ C 0 = ;; A \ C 0 = ;. By restricted independence,
B [C � B0 [C, B0 [C � B0 [C 0;A[C � A[C 0, and B0 [fxg[
C 0 � A [ C 0. Suppose A � C. Hence, B0 � C 0and, by averaging,
B0 � B0 [ C 0 � C 0. We also have fxg � B0 [ fxg [ C 0 � B0 [ C 0.
By transitivity, A [ C � B [ C.

n = 1; #B = 1. Suppose �rst that #C = 1. Write A, B and C as: A = fa; bg,
B = fxg and C = fcg and assume that fxg � fa; bg � fcg but, contrary
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to what is required by attenuation, that fa; b; cg % fx; cg. By certainty
equivalence, there exists a consequence z 2 X 0 such that fzg � fx; cg.
Since fxg � fcg, fxg � fzg � fcg by averaging so that z is distinct from
either x or c. We therefore have (using averaging and transitivity) fa; b; cg %
fx; cg � fzg � fx; c; zg. It then follows from restricted independence
and transitivity that fa; bg % fx; zg � fxg, contradicting fxg � fa; bg.
Suppose now that#C > 1. Suppose fxg �fa; bg � C but, contrary to what
is required by attenuation, fa; bg [C % fxg [C. By certainty equivalence,
there is a consequence z 2 X 0such fzg � fxg [ C. By averaging (since
x =2 C), one has fxg � fzg � C. One has therefore fa; bg [ C % fxg [
C � fzg. If z =2 C, then averaging and transitivity entails that fzg �
fx; zg [C. Using then restricted independence and transitivity, one obtains
that fa; bg % fx; zg � fxg, a contradiction. If z 2 C, then apply certainty
equivalence recursively to �nd a sequence of zt such that fztg � fzt�1; xg
for t = 1; :::starting with z0 = z. Since there are only �nitely many elements
in C, one will eventually �nd some t for which zt =2 Cand fxg � fztg �
::: � fzg � C. By averaging fxg [ C � fxg [ Cnfzg � fzg. Since
fzg � fztg, we have, by transitivity and averaging, that fzg � fxg[C 0 �
fx; ztg [ C � fztg. We therefore have fa; bg [ C % fxg [ C � fzg �
fxg[C � fx; ztg[C which implies, thanks to restricted independence and
transitivity, that fa; bg � fzt; xg and, by averaging and transitivity, that
fa; bg � fxg, again a contradiction.

We next establish some further auxiliary lemmas.

Lemma 7 Let % be an ordering on P(X 0) satisfying averaging, restricted inde-
pendence, and richness. Then, if A and B are subsets of X 0 and c is a consequence
in X 0 such that A � B [ fcg and fdg � fcg for some d 2 X 0, there exists some
e 2 X such that feg � fcg and A � B [ feg. Dually, if A and B are sets and c
is a consequence in X 0 such that A � B [ fcg and fdg � fcg for some d 2 X 0,
then there exists e 2 X 0such that feg � fcg and A � B [ feg.

Proof.
We only prove the �rst statement and distinguish three cases.
(a) A � B [ fdg, in which case the proof is done.
(b) A � B [ fdg. Then, by certainty equivalence, there exists e such that

feg � fd; cg. By averaging, fdg � feg � fcg. By restricted independence,
B [ fdg � B [ feg so that the statement A � B [ feg follows.

(c) A � B [ fdg. In that case the richness axiom applies and there is a
consequence f such that A � B [ ffg and we proceed as in case (b).

We next establish that if % is an ordering of P (X) satisfying averaging, re-
stricted independence, richness and, by lemma 6, attenuation, then it satis�es the
following condition.
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Condition 3 (C) For all distinct consequences a, b, cand d 2 X and every set
B 2 P (X) such that fbg � fc; dg and B \ fb; c; dg = ;, we must have:
(i) fag % B [ fbgand fbg % fag with at least one strict ranking imply fa; bg �
B [ fc; dg, and
(ii)fag - B [ fbgand fbg � fag with at least one strict ranking imply fa; bg �
B [ fc; dg.

Three auxiliary lemmas are needed in order to establish this. The �rst of them
is the following.

Lemma 8 Let % be an ordering on P (X 0) satisfying averaging, restricted in-
dependence and richness. Let A and B be two �nite subsets of X 0 and let a,
b, cand d be consequences in X 0 satisfying A [ fag � B [ fbg, #A = #B,
fbg � fc; dg, a 6= b, c 6= d, fa; bg \ A = fc; dg \ B = ; and b =2 B. Then
A [ fa; bg � B [ fc; dg.

Proof.

Suppose �rst fcg � fdg. By averaging, fbg � fcg � fdg. Since c 6= d, we
have c 6= b or d 6= b. Assume without loss of generality that c 6= b. By restricted
independence, B [fbg � B [fcg. Therefore A[fag � B [fbg � B [fcg and,
by restricted independence, A [ fa; bg � B [ fc; bg. By restricted independence
again, B [ fc; bg � B [ fc; dg. Finally, by transitivity, A [ fa; bg � B [ fc; dg.

Suppose now fcg 6� fdg and assume, without loss of generality, that fcg �
fdg. Two cases need to be considered.

1. Assume by contradiction that A [ fa; bg � B [ fc; dg. Let us show that
there is a consequence dsuch that A [ fa; bg � B [ fc; dg � B [ fc; dg.
Choose a consequence u distinct from c such that fug � fdg. The existence
of such a consequence is guaranteed by the fact that fcg � fdg and, using
certainty equivalence, that one can always de�ne u by fug � fc; dg. By
averaging, one must have fcg � fug � fdg which, given the re�exivity of
%, implies that u is distinct from both c and d. By restricted independence,
one has B [ fc; ug � B [ fc; dg. Two mutually exclusive cases can occur.

� B [ fc; ug - A [ fa; bg. By averaging and certainty equivalence, one
can �nd a consequence e such that A [ fa; bg � e � B [ fc; dg.
By richness, there is d : B [ fc; dg � feg. Hence A [ fa; bg �
B [ fc; dg � B [ fc; dg
� A [ fa; bg � B [ fc; ug. In this case, let d = u.
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By certainty equivalence, there is a consequence b such that fbg � fc; dg.
Notice that we can always choose d so that d and b do not belong to B [
fcg[A[fag. By restricted independence, fbg � fbg. By averaging, fbg �
fc; dg � fb; bg � fbg. By restricted independence, B[fc; dg � B[fb; bg.
By restricted independence, A [ fa; bg � A [ fa; bg and A [ fa; bg �
B[fb; bg. By transitivity, B[fc; dg � A[fa; bg. But we have previously
shown that A [ fa; bg � B [ fc; dg. A contradiction.

2. Assume by contradiction that A [ fa; bg � B [ fc; dg. This case is treated
like the previous one.

The next lemma provides the second step in the proof that averaging, restricted
independence and richness imply Condition C.

Lemma 9 Let % be an ordering on P(X 0) satisfying averaging, restricted inde-
pendence and richness and let a, b, c and d be consequences in X 0and B be a
�nite subset of X 0 such that fag % B [ fbg, fbg � fc; dg, fbg � fag, b =2 B
and fc; dg \ B = ;. Then there exists a �nite subset A0of X 0 and a consequence
a0 2X 0 such that A0 [ fa0g � B [ fbg, a0 =2 A0and #A0 = #B.

Proof.
Start with fbg � fag % B [ fbg. By averaging, fbg � B. Write B as B =

fb1; : : : ; brg with fb1g - fb2g - : : : - fbrg. Let bj be such that fbjg � fbg and
fbg - bi for all i > j. The existence of such a bj is guaranteed by averaging. By
certainty equivalence, one can �nd a consequence b0j in X

0 such that b0j � fb; bjg.
By averaging, bj � b0j � b. De�ne A0 by A0 = B [ fb0jg n fbjg. By averaging and
transitivity, one has A0 � B. By restricted independence, A0 [ fbg � B [ fbg.
By construction, A0 [ fbjg = B [ fb0jg. By restricted independence, B [ fbg �
B [fb0jg. Hence A0 [fbg � B [fbg � B [fb0jg = A0 [fbjg. By richness, there
exists a consequence a0such that A0[fa0g � B[fbg. By restricted independence,
one has b � a0 � b0j , which, given the de�nition of A0, establishes that a0 =2 A0.

Combining these two lemmas, we can establish the following.

Lemma 10 Let % be an ordering on P (X 0) satisfying averaging, restricted in-
dependence and richness. Then % satis�es condition C.

Proof.
We prove only part (i) of condition C, the proof of the other part being similar.

Suppose that we have fag % B [ fbg, fbg � fc; dg, fbg � fag, b =2 B and
fc; dg \ B = ; for consequences a, b, c, d in X 0 and some �nite subset B of
X 0. By Lemma 9, there exists a �nite set A0 and a consequence a0 such that
A0 [ fa0g � B [ fbg, a0 =2 A0and #A0 = #B. By Lemma 8, we must have
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A0 [ fa0; bg � B [ fc; dg. By certainty equivalence, there exists a consequence a00
such that a00 � A0 [fa0g. By transitivity, fbg � fag % A0 [fa0g � fa00g. Since,
by lemma 6, the ordering % satis�es attenuation, one has A0 [ fa0; bg � fa00; bg.
By transitivity, fa00; bg � B [ fc; dg. Restricted independence and fag % fa00g
imply fb; ag % fb; a00g. Transitivity �nally yields fa; bg � B [ fc; dg.

Endowed with this result, we are equipped to prove theorem 2.

Proof of theorem 2.

Using Theorem 1, we �nd a function u that uniquely represents (up to an a¢ ne
transform) % as per (1) on the subset of P(X 0) containing sets of cardinality no
greater than 2. We want to prove that the same function u can also be used to
represent % on the whole set P(X 0). We must prove speci�cally that, for any
A 2 P(X 0) and g 2 X 0,

A % fgg ()
X
a2A

u(a)

#A
� u(g):

where u is the (unique up to an a¢ ne transform) utility function identi�ed in
theorem 1. Since % is complete, it is su¢ cient to prove ). Suppose #A =
m and write A = fa1; a2; : : : ; amg with fa1g - : : : - famg. By certainty
equivalence, there exists b0m�12 X 0 such that b0m�1 � fam�1; amg. Similarly, for
i = m � 2; : : : ; 1, we can �nd, by certainty equivalence, a consequence b0i such
that b0i � fai; b0i+1g. Using certainty equivalence repeatedly, one can de�ne this
way for j = 1; 2; 3; : : :the sequence of consequences bji by:

b2j�11 = b2j�21 ,

b2j�1i � fb2j�1i�1 ; b
2j�2
i g

for i = 2; : : : ;m� 1,
b2jm�1 = b

2j�1
m�1

and
b2ji � fb

2j�1
i ; b2ji+1g

for i = m� 2; : : : ; 1. We �rst show that:
(i) fbj1g - fb

j
2g - : : : - fb

j
m�1g,

(ii) fa1g - fbi1g - fbi+11 g - fbi+1m�1g - fbim�1g - famg and
(iii) fbi1g - A - fbim�1g.
If fa1g � famg, then, by averaging, fa1g � A, fbijg � fa1g � A for all i 2 N
and j 2 f1; : : : ;m�1g and the implications (i)-(iii) are immediately established.
If fa1g � famg, let k be the largest integer such that fakg � fak+1g. We
�rst prove implications (i) and (ii). By averaging, fam�1g - fb0m�1g - famg.
By transitivity, fam�2g - fb0m�1g. By averaging again, fam�2g - fb0m�2g -
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fb0m�1g. By repeated use of transitivity and averaging, one is led to the conclusion
that fak+1g - fb0k+1g - fb0k+2g. Now, by transitivity fakg � fb0k+1g and,
by averaging, fakg � fb0kg � fb0k+1g. Analogously, a repeated combination of
averaging and transitivity leads to the conclusion that fa1g � fb01g � fb02g. Hence,
we have established that fa1g � fb01g � fb0k+1g - fb0k+2g - : : : - fb0m�1g -
famg. Now, by averaging, fb01g � fb12g � fb02g and, by transitivity, fb12g � fb03g.
Combining in this way averaging and transitivity leads us to fb1m�2g � fb1m�1g �
fb0m�1g and, therefore, to fa1g � fb01g � fb11g � fb12g � : : : � fb1m�1g �
fb0m�1g - famg. Repeatedly using the same reasoning, one �nds that, for all
i 2 N , fbi1g � fbi2g � : : : � fbim�1g and fa1g - fbi1g - fbi+11 g - fbi+1m�1g -
fbim�1g - famg. We now turn to implication (iii) that we prove in the following
in�nite number of steps.

Step 1. We notice that by virtue of the Gärdenfors principle, fb0m�1g � A.

Step 2. We prove that fb01g � A. Since by assumption al = al+1for all l = k +
1; :::;m� 1, we have by averaging that fb0m�1g � famg � fam�1; amg �
fam�2g �fam�2; am�1; amg � ::: � fak+1; : : : ; am�1; amg. We there-
fore have fb0k+1g � fak+1; : : : ; am�1; amg � fak+1g. Now, since fakg �
fb0k+1g � fak+1; : : : ; am�1; amg, it follows from attenuation property (sat-
is�ed thanks to lemma 6) that fak; b0k+1g � fak; ak+1; : : : ; am�1; amg and,
since fb0kg � fak; b0k+1g and% is transitive, that fb0kg � fak; : : : ; am�1; amg.
Applying the same reasoning below k enables us to reach the conclusion that
fb01g � fa1; : : : ; a2; amg = A.

Step 3. Since b11 = b
1
0, we trivially have that fb11g � A.

Step 4. We prove that fb1m�1g � A. Notice that fb11g � fa1; b02g, fb12g �
fb11; b02g, fb02g � fa2; b03g, fb11g � fb02gand clause (i) of condition C (satis-
�ed thanks to lemma 10) imply that fb12g � fa1; a2; b03g. Similarly, fb12g �
fb11; b02g, fb13g � fb12; b03gand clause (i) of the condition C imply that fb13g �
fa1; a2; a3; b04g. Repeating this reasoning, we obtain fb1m�2g � fa1; : : : ; am�2; b0m�1gand,
�nally, fb1m�1g � fa1; : : : ; amg = A.

Step 5. Trivially, fb2m�1g = fb1m�1g � A.

Step 6. We prove that fb21g � A. We have fb2m�1g � fb0m�1; b0m�2g,
fb2m�2g � fb2m�1; b1m�2g, fb1m�2g � fb1m�3; b0m�2g and fb1m�2g � fb2m�1g.
Hence, by clause (ii) of condition C, fb2m�2g � fb1m�3; b0m�2; b0m�1g. We have also
fb2m�2g � fb1m�3; b0m�2; b0m�1g, fb2m�3g � fb2m�2; b1m�3g, fb1m�3g � fb1m�4; b0m�3g
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and fb1m�3g � fb2m�2g. Hence, by clause (ii) of condition C, fb2m�3g � fb1m�4; b0m�3; b0m�2; b0m�1g.
This process can be repeated until we obtain:

fb22g � fb11; b02; b03; : : : ; b0m�1g = fb01; b02; b03; : : : ; b0m�1g:

By lemma 7, there exists fc02g � fb02g such that fb22g � fb01; c02; b03; : : : ; b0m�1g.
Repeatedly applying lemma 7, we �nd fc0i g � fb0i g, for i = 3 : : :m � 1 such
that fb22g � fb01; c02; c03; : : : ; c0m�1g. This, combined with fb21g � fb22; b11g, fb11g �
fa1; b02g, fb11g � fb22g and clause (ii) of condition C, implies fb21g � fa1; c02; b02; c03; : : : ; c0m�1g.
By averaging, it follows that fc02; b02g � fb02g � fa2; b03g. By restricted inde-
pendence, one has fb21g � fa1; a2; c03; b03; : : : ; c0m�1g. By averaging, fc03; b03g �
fb03g � fa3; b04g. By restricted independence:

fb21g � fa1; a2; a3; c04; b04; : : : ; c0m�1g.

Repeating this process leads us to the conclusion that:

fb21g � fa1; a2; : : : ; am�2; c0m�1; b0m�1g.

By averaging, fc0m�1; b0m�1g � fb0m�1g � fam�1; amg. By restricted indepen-
dence:

fb21g � fa1; a2; : : : ; am�2; am�1; amg = A.

Step 7. Trivially, fb31g = fb21g � A.

Step 8. We prove that fb3m�1g � A. We have fb31g � fb11; b22g, fb32g �
fb31; b22g, fb22g � fb12; b23g and fb22g � fb31g. Hence, by clause (i) of condi-
tion C, fb32g � fb11; b12; b23g. We also have fb33g � fb32; b23g, fb23g � fb13; b24g
and fb23g � fb32g. Hence, by clause (i) of condition C, fb33g � fb11; b12; b13; b24g.
Continuing this process, we obtain fb3m�2g � fb11; b12; : : : ; b1m�2; b2m�1g. Repeat-
edly applying Lemma 7, we �nd c1i such that fc1i g � fb1i g, for i = 1 : : :m � 2
such that fb3m�2g � fc11; c12; : : : ; c1m�2; b2m�1g. This, combined with fb3m�1g �
fb2m�1; b3m�2g, fb2m�1g � fb01; b1m�2g, fb2m�1g � fb3m�2gand clause (i) of condi-
tion C, implies that:

fb3m�1g � fc11; c12; : : : ; c1m�2; b1m�2; b0m�1g.

By averaging and restricted independence:

fb3m�1g � fc11; : : : ; c1m�3; b1m�3; b0m�2; b0m�1g:

By repeatedly combining averaging and restricted independence in this way, one is
led to the conclusion that:

fb3m�1g � fc11; b11; b02; b03; : : : ; b0m�1g:
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Repeatedly applying lemma 7, one �nds d1i such that fd1i g � fb0i g, for i =
2 : : :m� 1 for which:

fb3m�1g � fc11; b11; d02; d03; : : : ; d0m�1g:

Repeatedly applying averaging and restricted independence, we obtain fb3m�1g �
fa1; a2; : : : ; am�2; : : : ; am�1; amg = A.

Step 9. Trivially, fb4m�1g = fb3m�1g � A.

Steps 6 to 9 can clearly be repeated for ever using the same argument and this
remark completes the proof of (iii). Now, using certainty equivalence, let x be
a consequence such that A � fxg. Since the function u found in Theorem 1
represents % as per (1), one has u(bi1) � u(x) � u(bim�1) for every i. Now it
is easy to check that the sequence fu(bih)g for every h are just like the sequences
studied in lemma 1. Because of this lemma, one has:

lim
t!1

u(bt1) = lim
t!1

u(btm�1) =
X
a2A

u(a)

#A
:

Hence, u(x) =
X
a2A

u(a)
#A . By transitivity,A % fgg()fxg % fgg ()

P
a2A

u(a)
#A �

u(g).
Proof of theorem 3.
From theorem 2, we know that if % is an ordering on P (X) satisfying av-

eraging, restricted independence, richness and the Archimedean axiom, then there
exists a function u : X 0 ! R such that, for all sets A and B 2 P (X 0), one has

A % B ()
X
a2A

u(a)
#A �

X
b2B

u(b)
#B . If M(X) = m(X) = ? so that X = X 0, then

the proof is done. Assume �rst that M(X) 6= ? and let t be a consequence in
M(X). We have ftg � fxg for every x 2 X 0. We �rst show that the image of
X 0under u, denoted u(X 0), is a set of real numbers that is bounded from above.
That is, there is a real number bsuch that u(x) �b for all x 2 X 0. Suppose indeed
by contradiction that u(X 0) is not bounded and consider, thanks to proposition
6, consequences a, c0and b 2 X 0such that fag � fc0g � fbg. By averaging
and transitivity, one has fag � fa; c0g � c0 � fc0; bg and, by theorem 2, one

has u(a) < u(b0)+u(b)
2 () u(a) + u(a) < u(c0) + u(b). Since u(X 0) is un-

bounded, there is a real number u02 u(X 0) such that u0 + u(a) � u(c0) + u(b).
Since u0 2 X 0, there is a consequence c 2 X 0 such that u(c) = u0. By theo-
rem 2, one has fc; ag % fc0; bg � fc0; ag. If follows from richness that there is
a consequence c1 such that fc1; ag � fc0; bg. Since fag � fbg, it follows by
restricted independence that fc1g � fc0g. This procedure, initiated by �nding
c0 and c1, can clearly be iterated at in�nitum and generate a sequence ck, for
k = 0; :::; of consequences in X 0such that fck; ag � fck�1; bg for k = 1; :::By
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assumption, ftg �fckg for every k so that the sequence is bounded by t. Hence the
fact that the sequence fckg k = 0; 1:::is in�nite contradicts the Archimedean ax-
iom. Analogously, starting from the assumption that m(X) 6= �, one can deduct
that u(X 0)is bounded from below. Since the set of real number u(X 0) is either
bounded from above and/or from below, it has a least upper bound and/or a great-
est lower bound. We therefore extend u to X by de�ning, for every t 2 M(X)(if
any) u(t) = sup

x2X0
u(t) and, for every s 2 m(X) (if any), u(s) = inf

x2X0
u(x).

We now show that u so extended represents % as per (1) on the whole set X
(and not only on X 0). By de�nition u(t) > u(x) > u(s) for all t 2 M(X),
x 2 X 0and s 2 m(X), and u represents % as per (1) on X 0 by theorem 2. Take
any x 2 X 0. By certainty equivalence, there are consequences b and c 2 X such
that fbg � fx; tg and fcg � fx; sg. By averaging and transitivity, we have
fsg � fcg� fx; sg � fxg � fx; tg � fbg � ftg so that both b and c belong to
X 0. We therefore only need to show that u(x)+u(t)2 = u(b) and u(x)+u(s)

2 = u(c).

The argument being symmetric, we only prove that u(x)+u(t)2 = u(b). By contra-

diction, suppose �rst that u(x)+u(t)2 < u(b). By certainty equivalence, there exists
a consequence b1 2 X such that fb1g � fx; bg. By averaging fxg � fb1g � fbg
and, therefore, b1 2 X 0. By theorem 2, the statement fb1g � fx; bg can be
written as u(b1) =

u(x)+u(b)
2 . De�ne recursively bn by fbng � fbn�1; bg for

n = 2; :::.Since ftg � fbg � fbng � fbn�1g by averaging and transitivity,
we have that b and bn 2 X 0 so that, by theorem 2, u(bn) =

u(bn�1)+u(b)
2 =

1
2
[u(bn�2)+u(b)]+u(b)

2 = ::: = u(x)
2n�1 +

2n�1�1
2n�1 u(b). Hence, for n large enough,

u(bn) 2]u(x)+u(t)2 ; u(b)[. Now, we know that fbg � fx; tg � fbng � fbn�1; xg.
By richness, there exists t0such that fx; t0g � fbng. Since fx; tg � fbng � fx; t0g,
it follows from restricted independence that ft0g � ftg. Hence x, bn and t0 2 X 0so

that, by theorem 2, u(t
0)+u(x)
2 = u(bn) >

u(t)+u(x)
2 . Yet this inequality is incom-

patible with the de�nition of u(t) as u(t) = sup
x2X0

u(t).

Proof of theorem 4
We know from proposition 2 that a UEU criterion satis�es averaging and re-

stricted independence on any environment. Conversely, let X be an arc-connected
subset of Rkand let % be an ordering of P (X) satisfying the continuity axiom
as well as averaging and restricted independence. We will prove that, under these
conditions, % satis�es richness and the Archimedean axiom. Using theorems 1, 2
and 3, the conclusion that % is a UEU criterion will then follow immediately. We
�rst notice that, under averaging, if the sets B(A) = fx 2 X : fxg % Agand
W (A) = fx 2 X : A � fxgg are closed in X for every A, then so are the setseB(A) = fx 2 X : A [ fxg % Agand fW (A) = fx 2 X : A � A [ fxgg. To
see that, assume by contraposition that, say, eB(A) is not closed (the argument forfW (A) is similar). Then, there exists a sequence fxtgt = 1; :::converging to some
limit x such that:

A [ fxtg % A

43



for all t and
A � A [ fxg

where the last strict ranking is obtained from the assumption that % is complete.
Since % is also re�exive, this strict ranking implies therefore that x =2 A. By
averaging one has therefore:

A � fxg (10)

Now, since A is �nite, and xt is a sequence converging to x, either xt is a �nite
sequence or xt is in�nite. If xt is �nite, then, by de�nition of a sequence converging
to x, there exists some s � t for which xs = x =2 X . But given averaging, this is
incompatible with the de�nition of the sequence xtas satisfying A [ fxtg % Afor
every t. Hence we must conclude that xtis in�nite. If this is the case, there must
exists, since Ais �nite, an in�nite subsequence extof xtconverging to xand such thatext =2 A for every t. Since for every t, we have:

A [ fextg % A
it follows from averaging that we also have:

fxtg % A

Given (10), this gives us the required contradiction of the closedness of the set
B(A). We now prove that % satis�es the three structural axioms.

Richness: Consider any set B 2 P (X) and, without loss of generality, write it as
B = fb1; :::; b#Bg with fbhg - fbh+1g for h = 1; :::;#B�1. By averaging (and
speci�cally the Gardenförs principle) one has that B % fb1g and fb#Bg % B
so that none of the (closed under continuity) sets fx 2 X : fxg % Bg and
fx 2 X : B � fxgg is empty. Since % is complete, X = fx 2 X : fxg %
Bg [ fx 2 X : B � fxgg. Since X is arc connected, there exists a continuous
function f : [0; 1] ! X such that f(0) = b1 and f(1) = b#B . By continuity,
given the closedness of fx 2 X : fxg % Bg and fx 2 X : B % fxgg, there must
be some � 2 [0; 1] such that f(�) 2 fx 2 X : fxg % Bg \ fx 2 X : B % fxgg.
By de�nition ff(�)g � B. Hence % veri�es the certainty equivalence condi-
tion.Consider now any sets A and B in P (X) and bundles c�and c� 2 X such
that A [ fc�g % B % A [ fc�g. If either A [ fc�g � B or B � A [ fc�g, then
richness is satis�ed and there is nothing to be proved. Assume therefore that:

A [ fc�g � B � A [ fc�g (11)

holds. Since, as was just shown, % satis�es certainty equivalence, there are conse-
quences b and b(c) 2 X (for all c 2 X) such that fb(c)g � A[fcg and B � fbg.
By continuity, the restriction of the ordering % to singletons is continuous. Hence,
by Debreu (1954) theorem, there exists a continuous function f : X �! R such
that f(x) � f(y) if and only if fxg % fyg for every x, y 2 X . De�ne therefore the
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function h : X ! R by h(c) = f(b(c))� f(b). The function h is continuous if f
is. By assumption, we have h(c�) > 0 and h(c�) < 0. Since X is an arc-connected
subset of Rk, there exists by the intermediate value theorem a consequence csuch
that h(c) = f(b(c))� f(b) = 0. By de�nition, cis such that A[ fcg � fbg � B,
as required.
Archimedean axiom: If it is impossible to construct one of the standard se-
quence as in the antecedent clause of the Archimedean axiom, then the proof is
(trivially) over. Assume therefore that such a sequence exists (we only provide the
argument for the ascending sequence) and, therefore, that a and b are two points
in X satisfying fag � fbg for which one has, for a sequence of points fctgt2N+ :

fct; ag � fct+1; bg (12)

and fxg � fctg � fyg for every t = 0; :::and for some point xand y 2 X .
By restricted independence, we must have fct+1g � fctg for all t. As noticed
earlier, the restriction of the ordering % to singletons is continuous so that, by
virtue of Debreu (1954) theorem, there exists a continuous function f : X �! R
such that f(x) � f(y) if and only if fxg % fyg for every x, y 2 X . Hence
the existence of a sequence of points fctgt2N+ and of points x and y such that
fxg � fct+1g � fctg � fyg for all t implies the existence of a sequence of real
numbers fftgt2N+as well as real numbers fx and fy satisfying ft+1 > ft where
fx = f(x), fy = f(y) and, for all t, ft = f(ct). Now, since every increasing
sequence of numbers that is bounded from above is either convergent or �nite, the
only thing we need to check is that the sequence is not convergent. Suppose by
contradiction that the sequence fftgis in�nite and converges to some number f .
Since f is a continuous real-valued function from an arc-connected subset of Rk,
f belongs to the image of f so that there exists some point c 2 X such that
f = f(c). By restricted independence, we know that:

fc; ag � fc; bg

By continuity and restricted independence, the set fx : fx; ag % fx; bgg is closed.
Because of this, there exists a number " > 0 such that:

fc0; ag � fc00; bg

for all c0and c00 2 N"(�). Assuming the sequence fftg to be converging to f
implies the existence of some positive integer s such, for all t � s, ft2 N"(f). By
the continuity condition, we must therefore have:

fct; ag � fct+1; bg

for any such t, which contradicts the de�nition of ft provided by (12). Hence the
increasing sequence fftg is not convergent and must therefore be �nite.
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