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Calibrating RBC models
A simple example illustrating the method

of successive approximations

Introduction
Since the seminal contribution of Kydland and Prescott (1982), dynamic stochastic general
equilibrium (DSGE) models have become the main framework for studying real business
cycles (RBC) in advanced economies. The methodological contribution of Kydland and
Prescott’s approach has had profound implications for the evaluation of macroeconomic
models. A ‘‘good’’ model is one that generates data that are consistent with a set of facts
that the model is trying to explain. Macroeconomists now take the goodness of fit criterion
very seriously when thinking about the accuracy of quantitative models.

It is widely recognized, however, that it is not generally possible to compute equilibria
of business cycle models analytically. This led Kydland and Prescott (1982) to consider a
structure in which equilibria can be computed. Their insight was that a structure with a
quadratic objective function (generated by taking a second-order Taylor approximation
of the objective function of the representative agent), linear constraints, and a technology
shock following a first-order linear vector auto-regressive process can lead to the
computation of equilibria even when there are many state variables. Chapter 2 in Cooley
(1995), by Gary Hansen and Edward Prescott, outlines how this method works. For
economies in which the second welfare theorem holds (a competitive equilibrium
allocation can be attained by a social planner), the social planning problem can be
converted into a standard linear quadratic dynamic programming problem and then
solved using the method of successive approximations[1].

My experience suggests that a simple analytical example which shows how future state
variables and decision variables are eliminated using the method of successive
approximations greatly helps students understand the general procedure outlined by
Hansen and Prescott. Using a 3� 3 version of their procedure, I work out the mechanism
behind: (1) the elimination of a future state variable (such as the future capital stock, k

0 Þ
and (2) the elimination of a decision variable (such as hours worked, h) using the method of
successive approximations. The value addition to performe this exercise is that students
can clearly see how the mechanism behind the procedure works which is quite intricate.

In what follows, I assume that the matrix, R½�ðxÞ�, where �ðxÞ denotes the dimension
of R, has dimension 3� 3. Hence, �ðxÞ ¼ 3[2]. I use identical notation as in Cooley
(1995, chapter 2). My discussion of quadratic forms is identical to Simon and Blume
(1994, pp. 289-91). I first discuss some preliminaries[3].

Preliminaries
Definition 1 (Simon and Blume, 1994, p. 289). A quadratic form on <k is a real-valued
function of the form:

Qðx1; . . . ; xkÞ ¼
Xk

i; j¼1

aijxixj:
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Wewrite the general quadratic form in<2 in matrix form as:

a11x
2
1 þ a12x1x2 þ a22x

2
2 ¼ x1 x2½ �
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Similarly, the general quadratic form on R3 is given by:

Qðx1; x2; x3Þ ¼ a11x
2
1 þ a22x

2
2 þ a33x

2
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This indicates a basic theorem about representing quadratic forms on<n.
Theorem 2 (Simon and Blume, 1994, Theorem 13.3, p. 291). The general quadratic form

Qðx1; . . . ; xkÞ ¼
X
i� j

aijxixj:

can be written as:

x1 x2 : : xn½ �
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where, A is a (unique) symmetric matrix. Conversely, if A is a symmetric matrix, then
the real-valued function,QðxÞ ¼ xTAx, as above, is a quadratic form.

An example
Eliminating a future state variable
We now utilize the above discussion on quadratic forms to work out how the method of
successive approximation eliminates some future state variable and some decision
variable. To motivate the discussion, suppose that we want to eliminate k

0
, the future

capital stock. The law of motion of k
0
is given by:

k
0 ¼ ð1� �Þkþ i:



Calibrating RBC
models

121

The variable notations are standard: � 2 ½0; 1� denotes the depreciation rate on capital,
k0 is the period t þ 1 capital stock, and, i denotes the amount of investment undertaken
by the representative agent in the economy. As described by Hansen and Prescott
(1995, pp. 46-50), we can express, k

0
, as a linear combination of the current states

(the technology shock, z, and the capital stock, k) and the current decision variables
(h denoting hours worked if the labour-leisure choice is endogenous, and i). In our case
we have:

k
0 ¼ 0 ð1� �Þ 0 1½ �

z
k
h
i

2
664

3
775 ¼ ð1� �Þkþ i:

More generally, denote x to be the vector of both current and future state as well as
decision variables, where xj is the jth component of x. If xj is some future state variable,
(from Step 3, Cooley, 1995, p. 49) we canwrite:

xj ¼
X
i<j

�ixi;

or as a linear combination solely of the current states and current decision
variables. Now assume that x is a 1� 3 vector, i.e. x ¼ ½x1; x2; x3�. Since j¼ 3, we
have[4]:

x3 ¼ �2x2 þ �1x1: ð3Þ

We are interested in eliminating the last component of the vector x, x3, which we
assume to be some future state variable. Using Equation (2), we simply substitute out
the expression for x3 given in Equation (3) into the above expression and consolidate
terms. This reduces the dimension of the quadratic form by one since we have now
gotten rid of x3 and have everything in terms of x1 and x2:

Qðx1; x2; x3ðx1; x2ÞÞ ¼ ½a11 þ a33�
2
1 þ a13�1�x21 þ ½a22 þ a33�

2
2 þ a23�2�x22

þ ½2a33�2�1 þ a12 þ a13�2 þ a23�1�x1x2

¼ x1 x2½ �
b11

1

2
b12

1

2
b12 b22

2
664

3
775 x1

x2

� �
;

where:

b11 ¼ ½a11 þ a33�
2
1 þ a13�1�; b22 ¼ ½a22 þ a33�

2
2 þ a23�2�;

b12 ¼ ½2a33�1�2 þ a12 þ a13�2 þ a23�1�:

Thus, we have reduced the dimension of the matrix R from [3� 3� to [2� 2�. It
remains to be checked whether expressions for b11; b12, and b22 are identical to
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the general formulas given by Hansen and Prescott in Step 3 (Cooley, 1995, p. 48,
equation (17)):

R
½ j�1�
ih ¼ R

½ j�
ih þ R

½ j�
jh �i þ R

½ j�
ji �h þ R

½ j�
jj �i�h; 8i; h ¼ 1; . . . ; j� 1

For b22, we have i¼ 2, h¼ 2, j�1¼ 2, and j¼ 3. This gives us,

R
½2�
22 ¼ R

½3�
22 þ R

½3�
32�2 þ R

½3�
32�2 þ R

½3�
33�2�2;

¼ a22 þ
1

2
a23�2 þ

1

2
a23�2 þ a33�

2
2 ;

¼ a22 þ a33�
2
2 þ a23�2;

¼ b22:

Similarly, for b11 we have,

R
½2�
11 ¼ R

½3�
11 þ R

½3�
31�1 þ R

½3�
31�1 þ R

½3�
33�1�1;

¼ a11 þ a13�1 þ a33�
2
1 ;

¼ b11:

Likewise, one can work out the case for b12. Note that each of the above expressions for
bij, j¼ 1, 2, are identical to the expressions obtained when we substitute out for x3 (in
terms of x1 and x2) above. Now that x3 is eliminated, the R matrix has dimension
[2� 2�. This is essentially the mechanism behind what is going on when a future state
is being eliminated. Hansen and Prescott also suggest (see Equation (18), p. 48) that
there is a simpler way of eliminating a future state and reducing R from a [�ðxÞ � �ðxÞ�
matrix to a [(�ðxÞ � 1Þ � ð�ðxÞ � 1Þ�matrix. This involves defining:

R½ j�1� ¼ �TR½ j��

where:

� ¼

Ij�1

:
:
:

�1; . . . :: ; �j�1

2
66664

3
77775;

Ij�1 is a [ j� 1] dimensional identity matrix, and R½ j� corresponds to a [ j� j�
dimensional matrix. Assuming that j ¼ 3 (the third element, x3, needs to be
eliminated), this gives us, R½2� ¼ �TR½3��. We also have,

I2 ¼
1 0
0 1

� �
and

1 0
0 1
�1 �2

2
4

3
5;
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which implies,

�T
2�3 ¼

1 0 �1
0 1 �2

� �
:

Then,

R½2� ¼ �TR½3�� ¼ 1 0 �1
0 1 �2
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which after some algebra, can be shown to yield:

R½2� ¼
b11

1

2
b12

1

2
b12 b22

2
664

3
775;

where bi; j ¼ 1; 2 are defined above. Once again, we reduce R from [3� 3� to a [2� 2�
matrix.

Eliminating a decision variable
Now suppose that the variable to be eliminated, xj, is a decision variable. Once again,
we assume that j¼ 3, although x3 is now a decision variable. Hansen and Prescott
(1995, p. 49, Equation (19)), provide the formula for what the optimal value of x3 from
the relevant first-order condition:

x3 ¼ �
X2
i¼1

R
½3�
ji

R
½3�
jj

0
@

1
Axi ¼ � R

½3�
31

R
½3�
33

x1 þ
R
½3�
32

R
½3�
33

x2

" #
;

which implies,

x3 ¼ � 1

2

a13

a33
x1 �

1

2

a23

a33
x2: ð4Þ

However, to the reader, it may not be clear where the closed form expression for x3 is
coming from. To see this, simply take the partial derivative of Q( . ) in Equation (2) with
respect to x3 and set it equal to zero. This gives Equation (4). Note that the second-order
conditions are satisfied if a33 < 0. If the return function is strictly concave, then this
conditionwill be satisfied.

In sum, the value addition in performing this exercise is to clearly see how the
mechanism behind the method of successive approximation works. We do this by
considering a 3� 3 case of the procedure worked out by Hansen and Prescott (1995,
chapter 2). We focus our attention however just on the elimination of a future state variable
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and a decision variable. My experience is that working out this example as a supplement to
describing the method of successive approximations greatly enhances a student’s
comprehension of the procedure outlined by Hansen and Prescott. It also helps students
clearly understand the computer codewhen calibrating RBCmodels using this technique[5].
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Notes

1. Two excellent books that cover a variety of approaches to calibrate and estimate DSGE
models are Burkhard and Maussner (2005) and Dejong and Dave (2007).

2. The R½�ðxÞ� matrix contains the terms obtained from the Taylor approximation of the
return function (evaluated at the steady-state values of the current state and decision
variables) and the initial guess for the value function. See Cooley (1995, chapter 2, p. 47)
for more details.

3. The reader is referred to Cooley (1995, chapter 2) for a detailed discussion of the
definition of variables and notation that follows.

4. The quadratic form is given by: xTR½3�x:

5. A useful cite which has detailed listings of computer code for RBC and other
quantitative macroeconomic models is http://dge.repec.org/codes.html
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