
Heapsort

September 27, 2017

1 Heapsort

Heapsort has the good properties of both merge sort and insertion sort.

• It has O(n log2 n) worst-case running time.

• It is in-place and requires only a constant amount of extra storage.

It is based on a data structure known as a heap.

1.1 The abstract heap data structure

The (binary) heap data structure is an object that we can view as a nearly complete binary tree.

• Each node corresponds to an element.

• The tree is completely filled on all levels except possibly the lowest, which is filled from the left up
to a point.

• For each node, the operations PARENT(), LEFT(), and RIGHT() give the parent node, left child
node, and right child node respectively.

1.2 Implementation of a heap using arrays

Heaps are usually implemented using an array A with two attributes:

• length(A) gives the number of elements in the array, and

• heap-size(A) represents the number of elements in the heap that are stored in A.

So, 0 ≤ heap-size(A) ≤ length(A), and only A[1, . . . ,heap-size(A)] are considered valid elements of the
heap (even though A may contain more elements).

If we index the array by 1, 2, . . . , n, and the root node has index 1, then we can implement

PARENT(i)
1 return bi/2c

1



LEFT(i)
1 return 2i

RIGHT(i)
1 return 2i + 1

Viewing the heap as a tree, the height of a node in the heap is defined to be the number of edges on the
longest simple downward path from the node to a leaf. The height of the heap is defined to be the height
of its root.

1.3 Heap property

We are usually interested in heaps that satisfy a particular property. Depending on the property, the
heap is called either a max-heap or a min-heap.

Definition 1 (Max-heap). A heap A is called a max-heap if the value at every node (except the root
node) is less than or equal to the value at its parent. That is,

A[PARENT (i)] ≥ A[i] ∀i > 1.

This is known as the “max-heap property”. In particular, the largest element in a max-heap is stored at
the root, and the subtree rooted at any node only contains values less that or equal to the value in that
node.

A min-heap is similarly defined to have the “min-heap property”

A[PARENT (i)] ≤ A[i] ∀i > 1.

For the heapsort algorithm, we will use max-heaps. The key elements of the algorithm are

• the MAX-HEAPIFY procedure, which is used to maintain the max-heap property, and

• the BUILD-MAX-HEAP procedure, which produces a max-heap from an unordered input array.

Assume that we have a heap that is almost a max-heap, except for the root element. To make it a
max-heap, we call the procedure MAX-HEAPIFY, whose inputs are an array A and an index i into the
array. When called, MAX-HEAPIFY assumes that the binary trees rooted at LEFT (i) and RIGHT (i)
are max-heaps, but that A[i] might be smaller than its children. MAX-HEAPIFY lets the value at A[i]
move down the max-heap so that the subtree rooted at i becomes a max-heap.

Outline: At each step, the largest of the elements A[i], A[LEFT (i)], A[RIGHT (i)] is determined, and its
index is stored in largest.

• If A[i] is largest, then the subtree rooted at node i is already a max-heap and the procedure
terminates.

• Otherwise, one of the two children has the largest element, and A[i] is swapped with A[largest].

2



• Node i and its immediate children now satisfy the max-heap property. However, the node indexed
by largest now has the original value A[i], and thus that subtree might violate the max-heap
property. So we call MAX-HEAPIFY recursively on that subtree.

MAX-HEAPIFY(A, i)
1 l = LEFT (i)
2 r = RIGHT (i)
3 largest = i
4 if (l ≤ heap-size(A) and A[l] > A[i]) {
5 largest = l
6 }
7 if (r ≤ heap-size(A) and A[r] > A[largest]) {
8 largest = r
9 }

10 if (largest 6= i) {
11 Swap A[i] and A[largest]
10 MAX-HEAPIFY(A, largest)
12 }

1.4 Building a max-heap

We can use MAX-HEAPIFY in a bottom-up manner to convert an array A[1, . . . , n] into a max-heap.
Clearly, all elements A[i] for i > PARENT (n) are leaves of the tree, and so are already 1-element max-
heaps.

BUILD-MAX-HEAP(A)
1 heap-size(A) = length(A)
2 for (i = PARENT (length(A)), . . . , 2, 1) {
3 MAX-HEAPIFY(A, i)
4 }

1.5 Heapsort

Finally, we come to the heapsort algorithm.

• Use BUILD-MAX-HEAP to build a max-heap on the input array A of length n.

• Since the maximum element of the array is stored at the root A[1], we can put it into its correct
final position by swapping with A[n].

• Now, discard this maximum element in A[n] from the heap, by simply decreasing the heap-size
attribute.

• The remainder is almost a max-heap, except at the root node. Make it a max-heap by calling
MAX-HEAPIFY.

• Repeat.

3



HEAPSORT(A)
1 BUILD-MAX-HEAP(A)
2 for (i = length(A), . . . , 3, 2) {
3 swap A[1] and A[i]
3 heap-size(A) = heap-size(A) - 1
3 MAX-HEAPIFY(A, 1)
4 }

4


