Simple models

Deepayan Sarkar

Indian Statistical Institute, Delhi

Data structures for data analysis

- Atomic Vectors
 - Numeric
 - Categorical (factor)
 - Character
 - Logical
- Lists: vectors with arbitrary components

```
> month.name # built-in
```

```
[1] "January""February""March""April"[5] "May""June""July""August"[9] "September""October""November""December"
```

```
> x <- rnorm(10)
```

> x

[1] 0.1804841 0.8820482 0.9350085 0.2864500 0.3395899 [6] -0.4924313 0.5290983 -0.5975911 1.4143346 -0.8129160

```
> month.name # built-in
```

```
[1] "January" "February" "March" "April"
[5] "May" "June" "July" "August"
[9] "September" "October" "November" "December"
> x <- rnorm(10)
> x
[1] 0.1804841 0.8820482 0.9350085 0.2864500 0.3395899
[6] -0.4924313 0.5290983 -0.5975911 1.4143346 -0.8129160
> str(x) # useful function
```

num [1:10] 0.18 0.882 0.935 0.286 0.34 ...

```
> str(month.name)
```

chr [1:12] "January" "February" "March" ...

```
> m <- sample(1:12, 30, rep = TRUE)
> m
 [1] 12 8 1 11 8 11 8 3 1 12 1 3 2 4 1 4 4 7
[19] 1 5 9 4 4 2 2 2 9 8 4 8
> mf <- factor(m, levels = 1:12, labels = month.name)</pre>
> mf
 [1] December August
                      January November August
 [6] November August
                      March January December
[11] January March February April January
[16] April April July January May
[21] September April April February February
[26] February September August April August
12 Levels: January February March April May June ... December
> str(m)
int [1:30] 12 8 1 11 8 11 8 3 1 12 ...
> str(mf)
Factor w/ 12 levels "January", "February", ...: 12 8 1 11 8 11 8 3 1 12 ...
```

```
> ml <- list(m = m, mf = mf)
> str(ml)
```

List of 2 \$ m : int [1:30] 12 8 1 11 8 11 8 3 1 12 ... \$ mf: Factor w/ 12 levels "January", "February",..: 12 8 1 11 8 11 8 3 1 12

```
> ml <- list(m = m, mf = mf)
> str(ml)
List of 2
$ m : int [1:30] 12 8 1 11 8 11 8 3 1 12 ...
$ mf: Factor w/ 12 levels "January","February",..: 12 8 1 11 8 11 8 3 1 12
> ml$m
[1] 12 8 1 11 8 11 8 3 1 12 1 3 2 4 1 4 4 7
[19] 1 5 9 4 4 2 2 2 9 8 4 8
```

```
> ml <- list(m = m, mf = mf)
> str(m1)
List of 2
$ m : int [1:30] 12 8 1 11 8 11 8 3 1 12 ...
$ mf: Factor w/ 12 levels "January", "February", ...: 12 8 1 11 8 11 8 3 1 12
> ml$m
 [1] 12 8 1 11 8 11 8 3 1 12 1 3 2 4 1 4 4 7
[19] 1 5 9 4 4 2 2 2 9 8 4
                                  8
> ml[["mf"]]
 [1] December August
                      January November August
                               January December
 [6] November August
                      March
[11] January March February
                               April January
[16] April
            April
                      July
                               January
                                        May
[21] September April April February February
[26] February September August April
                                        August
12 Levels: January February March April May June ... December
```

Vectors, matrices / arrays: vectors with dimension

> VADeaths

	Rural	Male	Rural	Female	Urban	Male	Urban	Female
50-54		11.7		8.7		15.4		8.4
55-59		18.1		11.7		24.3		13.6
60-64		26.9		20.3		37.0		19.3
65-69		41.0		30.9		54.6		35.1
70-74		66.0		54.3		71.1		50.0

> dim(VADeaths)

[1] 5 4

Data frames: lists that also behave like a matrix

> str(iris)

'data.frame': 150 obs. of 5 variables: \$ Sepal.Length: num 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ... \$ Sepal.Width : num 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ... \$ Petal.Length: num 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ... \$ Petal.Width : num 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ... \$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1

> head(iris)

	Sepal.Length	Sepal.Width	Petal.Length	Petal.Width	Species
1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

- Statistical data are usually structured like a spreadsheet (e.g., Excel)
- Typical approach: read data from spreadsheet file into data frame
- Easiest route:
 - R itself cannot read Excel files directly
 - Save as CSV file from Excel
 - Read with read.csv() or read.table() (more flexible)
- Alternative option:
 - Use "Import Dataset" menu item in R Studio (requires add-on package)

- Data frames can be exported as a spreadsheet file using write.csv() or write.table()
- > data(Cars93, package = "MASS")
- > write.csv(Cars93, file = "cars93.csv") # export
- > cars <- read.csv("cars93.csv") # import</pre>

Basic statistical problems

- Formulate purpose of the analysis, e.g.,
 - prediction
 - testing / identifying important variables

- Formulate purpose of the analysis, e.g.,
 - prediction
 - testing / identifying important variables
- Build model
- Check and refine model
- Use model for further insight

- Categorical
- Numeric (continuous)

- Categorical
- Numeric (continuous)
- Also discrete numeric (e.g., count data)

- Response or outcome variable
- Predictors or explanatory variable

Predictor	Response	Problem type
Categorical	Numeric	<i>t</i> -test, ANOVA (testing)
Numeric	Numeric	Regression (prediction, testing)
Categorical	Categerical	Test of independence (testing)
Either	Categerical	Classification (prediction)

"Regression" often refers to the general class of problems with a continuous response.

Examples

Example: sleep data

Amount of extra sleep (in hours) after taking three sleep-inducing drugs

> sleep

	extra	group	ID
1	0.7	1	1
2	-1.6	1	2
3	-0.2	1	3
4	-1.2	1	4
5	-0.1	1	5
6	3.4	1	6
7	3.7	1	7
8	0.8	1	8
9	0.0	1	9
10	2.0	1	10
11	1.9	2	1
12	0.8	2	2
13	1.1	2	3
14	0.1	2	4
15	-0.1	2	5
16	4.4	2	6
17	5.5	2	7
18	1.6	2	8

- > library(lattice)
- > stripplot(group ~ extra, data = sleep)

Possible questions:

- Do the drugs work?
- Is one of the drugs more effective than the other?

> data(Cars93, package = "MASS")
> str(Cars93)

'data.frame': 93 obs. of 27 variables:

\$	Manufacturer	:	Factor w/ 32 levels "Acura", "Audi",: 1 1 2 2 3 4 4
\$	Model	:	Factor w/ 93 levels "100","190E","240",: 49 56 9 1
\$	Туре	:	Factor w/ 6 levels "Compact", "Large",: 4 3 1 3 3 3
\$	Min.Price	:	num 12.9 29.2 25.9 30.8 23.7 14.2 19.9 22.6 26.3 33
\$	Price	:	num 15.9 33.9 29.1 37.7 30 15.7 20.8 23.7 26.3 34.7
\$	Max.Price	:	num 18.8 38.7 32.3 44.6 36.2 17.3 21.7 24.9 26.3 36
\$	MPG.city	:	int 25 18 20 19 22 22 19 16 19 16
\$	MPG.highway	:	int 31 25 26 26 30 31 28 25 27 25
\$	AirBags	:	Factor w/ 3 levels "Driver & Passenger",: 3 1 2 1
	-		-
\$	DriveTrain	:	Factor w/ 3 levels "4WD", "Front",: 2 2 2 2 3 2 2 3
\$ \$	DriveTrain Cylinders	::	Factor w/ 3 levels "4WD", "Front",: 2 2 2 2 3 2 2 3 Factor w/ 6 levels "3", "4", "5", "6",: 2 4 4 4 2 2 4
\$ \$ \$	DriveTrain Cylinders EngineSize	: : :	Factor w/ 3 levels "4WD", "Front",: 2 2 2 2 3 2 2 3 Factor w/ 6 levels "3","4","5","6",: 2 4 4 4 2 2 4 num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9
\$ \$ \$ \$	DriveTrain Cylinders EngineSize Horsepower	: : :	Factor w/ 3 levels "4WD", "Front",: 2 2 2 2 3 2 2 3 Factor w/ 6 levels "3","4","5","6",: 2 4 4 4 2 2 4 num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 int 140 200 172 172 208 110 170 180 170 200
\$ \$ \$ \$ \$ \$ \$	DriveTrain Cylinders EngineSize Horsepower RPM	: : : :	Factor w/ 3 levels "4WD", "Front",: 2 2 2 2 3 2 2 3 Factor w/ 6 levels "3","4","5","6",: 2 4 4 4 2 2 4 num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 int 140 200 172 172 208 110 170 180 170 200 int 6300 5500 5500 5500 5700 5200 4800 4000 4800 41
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	DriveTrain Cylinders EngineSize Horsepower RPM Rev.per.mile	: : : : :	Factor w/ 3 levels "4WD", "Front",: 2 2 2 2 3 2 2 3 Factor w/ 6 levels "3", "4", "5", "6",: 2 4 4 4 2 2 4 num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 int 140 200 172 172 208 110 170 180 170 200 int 6300 5500 5500 5500 5700 5200 4800 4000 4800 41 int 2890 2335 2280 2535 2545 2565 1570 1320 1690 15
\$ \$ \$ \$ \$ \$ \$	DriveTrain Cylinders EngineSize Horsepower RPM Rev.per.mile Man.trans.avail	: : : : :	Factor w/ 3 levels "4WD", "Front",: 2 2 2 2 3 2 2 3 Factor w/ 6 levels "3", "4", "5", "6",: 2 4 4 4 2 2 4 num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 int 140 200 172 172 208 110 170 180 170 200 int 6300 5500 5500 5500 5700 5200 4800 4000 4800 41 int 2890 2335 2280 2535 2545 2565 1570 1320 1690 15 Factor w/ 2 levels "No", "Yes": 2 2 2 2 2 1 1 1 1 1 .
\$ \$ \$ \$ \$ \$ \$ \$	DriveTrain Cylinders EngineSize Horsepower RPM Rev.per.mile Man.trans.avail Fuel.tank.capacity	: : : : : :	Factor w/ 3 levels "4WD", "Front",: 2 2 2 2 3 2 2 3 Factor w/ 6 levels "3", "4", "5", "6",: 2 4 4 4 2 2 4 num 1.8 3.2 2.8 2.8 3.5 2.2 3.8 5.7 3.8 4.9 int 140 200 172 172 208 110 170 180 170 200 int 6300 5500 5500 5500 5700 5200 4800 4000 4800 41 int 2890 2335 2280 2535 2545 2565 1570 1320 1690 15 Factor w/ 2 levels "No", "Yes": 2 2 2 2 2 1 1 1 1 1 1. num 13.2 18 16.9 21.1 21.1 16.4 18 23 18.8 18

> stripplot(Man.trans.avail ~ MPG.city, data = Cars93)

• Are manual transmission cars more fuel efficient?

> stripplot(Man.trans.avail ~ MPG.city, data = Cars93, jitter = TRUE)

• Are manual transmission cars more fuel efficient?

> bwplot(Man.trans.avail ~ MPG.city, data = Cars93)

• Are manual transmission cars more fuel efficient?

> stripplot(Cylinders ~ MPG.city, data = Cars93, jitter = TRUE)

• Does fuel efficiency depend on number of cylinders?

> xyplot(MPG.city ~ EngineSize, data = Cars93)

• Does fuel efficiency depend on engine size?

> xyplot(MPG.city ~ Weight, data = Cars93)

• Does fuel efficiency depend on weight?

> xyplot(MPG.city ~ Weight, data = Cars93, groups = Man.trans.avail, + auto.key = list(space = "right"))

• How does dependence on weight vary with manual transmission?

- Two-sample comparison (categorical vs categorical)
 - Test of independence
 - χ^2 -test
 - Permutation test
- Two-sample comparisons:
 - Nonparametric (rank-sum test)
 - Two-sample *t*-test
 - Permutation test?
- Multi-sample comparisons: ANOVA
- Regression