Simple models

Deepayan Sarkar

Indian Statistical Institute, Delhi

Data structures for data analysis

Basic types of data

- Atomic Vectors
- Numeric
- Categorical (factor)
- Character
- Logical
- Lists: vectors with arbitrary components

Basic types of data: examples

```
> month.name # built-in
[1] "January" "February" "March" "April"
[5] "May" "June" "July" "August"
    [9] "September" "October" "November" "December"
> x <- rnorm(10)
> x
\begin{tabular}{lrrrrr} 
[1] & 0.1804841 & 0.8820482 & 0.9350085 & 0.2864500 & 0.3395899 \\
[6] & -0.4924313 & 0.5290983 & -0.5975911 & 1.4143346 & -0.8129160
\end{tabular}
```


Basic types of data: examples

```
> month.name # built-in
    [1] "January" "February" "March" "April"
    [5] "May" "June" "July" "August"
    [9] "September" "October" "November" "December"
> x <- rnorm(10)
> X
    [1] 0.1804841 0.8820482 0.9350085 0.2864500 0.3395899
    [6] -0.4924313 0.5290983 -0.5975911 1.4143346 -0.8129160
> str(x) # useful function
    num [1:10] 0.18 0.882 0.935 0.286 0.34 \ldots.
> str(month.name)
    chr [1:12] "January" "February" "March" ...
```


Basic types of data: examples

```
> m <- sample(1:12, 30, rep = TRUE)
> m
    [1] 12 12 8 1 1 11 
[19] }1
> mf <- factor(m, levels = 1:12, labels = month.name)
> mf
    [1] December August January November August
    [6] November August March January December
[11] January March February April January
[16] April April July January May
[21] September April April February February
[26] February September August April August
12 Levels: January February March April May June ... December
> str(m)
    int [1:30] 12 8 1 11 8 11 8 3 1 12 ...
> str(mf)
    Factor w/ 12 levels "January","February",..: 12 8 1 11 8 11 8 3 1 12 ...
```


Basic types of data: examples

```
> ml <- list(m = m, mf = mf)
>str(ml)
List of 2
    $ m : int [1:30] 12 8 1 11 8 11 8 3 1 12 ...
    $ mf: Factor w/ 12 levels "January","February",..: 12 8 1 11 8 11 8 3 1 12
```


Basic types of data: examples

```
> ml <- list(m = m, mf = mf)
>str(ml)
List of 2
    $ m : int [1:30] 12 8 1 11 8 11 8 3 1 12 ...
    $ mf: Factor w/ 12 levels "January","February",..: 12 8 1 11 8 11 8 3 1 12
> ml$m
    [1] 12 
[19] 1
```


Basic types of data: examples

```
> ml <- list(m = m, mf = mf)
> str(ml)
List of 2
    $ m : int [1:30] 12 8 1 11 8 11 8 3 1 12 ...
    $ mf: Factor w/ 12 levels "January","February",..: 12 8 1 11 8 11 8 3 1 12
> ml$m
    [1] 12 12 8
[19] }1
> ml[["mf"]]
    [1] December August January November August
    [6] November August March January December
[11] January March February April January
[16] April April July January May
[21] September April April February February
[26] February September August April August
12 Levels: January February March April May June ... December
```


Most common structures for statistical data

Vectors, matrices / arrays: vectors with dimension
> VADeaths

	Rural Male	Rural	Female	Urban Male	Urban
$50-54$	11.7	8.7	15.4	8.4	
$55-59$	18.1	11.7	24.3	13.6	
$60-64$	26.9	20.3	37.0	19.3	
$65-69$	41.0	30.9	54.6	35.1	
$70-74$	66.0	54.3	71.1	50.0	

> dim(VADeaths)
[1] 54

Most common structures for statistical data

Data frames: lists that also behave like a matrix

```
> str(iris)
```

'data.frame': 150 obs. of 5 variables:
\$ Sepal.Length: num 5.14 .94 .74 .655 .44 .654 .44 .9 ..
\$ Sepal.Width : num 3.533 .23 .13 .63 .93 .43 .42 .93 .1 ...
\$ Petal.Length: num $1.41 .41 .31 .51 .41 .71 .41 .51 .41 .5 \ldots$
\$ Petal.Width : num $0.20 .20 .20 .20 .20 .40 .30 .20 .20 .1 \ldots$
\$ Species : Factor w/ 3 levels "setosa","versicolor",..: 1111111
> head(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1	5.1	3.5	1.4	0.2	setosa
2	4.9	3.0	1.4	0.2	setosa
3	4.7	3.2	1.3	0.2	setosa
4	4.6	3.1	1.5	0.2	setosa
5	5.0	3.6	1.4	0.2	setosa
6	5.4	3.9	1.7	0.4	setosa

Data input / output

- Statistical data are usually structured like a spreadsheet (e.g., Excel)
- Typical approach: read data from spreadsheet file into data frame
- Easiest route:
- R itself cannot read Excel files directly
- Save as CSV file from Excel
- Read with read.csv() or read.table() (more flexible)
- Alternative option:
- Use "Import Dataset" menu item in R Studio (requires add-on package)

Data input / output

- Data frames can be exported as a spreadsheet file using write.csv() or write.table()

```
> data(Cars93, package = "MASS")
> write.csv(Cars93, file = "cars93.csv") # export
> cars <- read.csv("cars93.csv") # import
```


Basic statistical problems

Steps in a typical data analysis problem

- Formulate purpose of the analysis, e.g.,
- prediction
- testing / identifying important variables

Steps in a typical data analysis problem

- Formulate purpose of the analysis, e.g.,
- prediction
- testing / identifying important variables
- Build model
- Check and refine model
- Use model for further insight

Types of data

- Categorical
- Numeric (continuous)

Types of data

- Categorical
- Numeric (continuous)
- Also discrete numeric (e.g., count data)

Data roles

- Response or outcome variable
- Predictors or explanatory variable

Simplest case: one predictor, one response

Predictor	Response	Problem type
Categorical	Numeric	t-test, ANOVA (testing)
Numeric	Numeric	Regression (prediction, testing)
Categorical	Categerical	Test of independence (testing)
Either	Categerical	Classification (prediction)

"Regression" often refers to the general class of problems with a continuous response.

Examples

Example: sleep data

Amount of extra sleep (in hours) after taking three sleep-inducing drugs > sleep

	extra group		ID
1	0.7	1	1
2	-1.6	1	2
3	-0.2	1	3
4	-1.2	1	4
5	-0.1	1	5
6	3.4	1	6
7	3.7	1	7
8	0.8	1	8
9	0.0	1	9
10	2.0	1	10
11	1.9	2	1
12	0.8	2	2
13	1.1	2	3
14	0.1	2	4
15	-0.1	2	5
16	4.4	2	6
17	5.5	2	7
18	1.6	2	8
	Deepayan Sarkar (ISI Delhi)		

First step: plot the data

```
> library(lattice)
> stripplot(group ~ extra, data = sleep)
```


Possible questions:

- Do the drugs work?
- Is one of the drugs more effective than the other?

Example: 1993 passenger car models

```
> data(Cars93, package = "MASS")
> str(Cars93)
'data.frame': }93\mathrm{ obs. of 27 variables:
$ Manufacturer
$ Model
$ Type
$ Min.Price
$ Price
$ Max.Price
$ MPG.city
$ MPG.highway
$ AirBags
$ DriveTrain
$ Cylinders
$ EngineSize
$ Horsepower
$ RPM
$ Rev.per.mile
$ Man.trans.avail
$ Fuel.tank.capacity:
$ Passengers
```


Plot

```
> stripplot(Man.trans.avail ~ MPG.city, data = Cars93)
```


- Are manual transmission cars more fuel efficient?

Plot

```
> stripplot(Man.trans.avail ~ MPG.city, data = Cars93, jitter = TRUE)
```


- Are manual transmission cars more fuel efficient?

Plot

> bwplot(Man.trans.avail ~ MPG.city, data = Cars93)

- Are manual transmission cars more fuel efficient?

Plot

```
> stripplot(Cylinders ~ MPG.city, data = Cars93, jitter = TRUE)
```


- Does fuel efficiency depend on number of cylinders?

Plot

```
> xyplot(MPG.city ~ EngineSize, data = Cars93)
```


- Does fuel efficiency depend on engine size?

Plot

```
> xyplot(MPG.city ~ Weight, data = Cars93)
```


- Does fuel efficiency depend on weight?

Plot

```
> xyplot(MPG.city ~ Weight, data = Cars93, groups = Man.trans.avail,
auto.key = list(space = "right"))
```


- How does dependence on weight vary with manual transmission?

Fitting models in R (demo)

- Two-sample comparison (categorical vs categorical)
- Test of independence
- χ^{2}-test
- Permutation test
- Two-sample comparisons:
- Nonparametric (rank-sum test)
- Two-sample t-test
- Permutation test?
- Multi-sample comparisons: ANOVA
- Regression

