
Analysis of Algorithms I

Deepayan Sarkar

Algorithms
• Procedure to perform a task or solve a problem

• We have seen some examples: find primes, compute factorials / binomial coefficients

• Important theoretical questions:

– Is an algorithm correct? (Does it always work?)

– How much resource does the algorithm need?

• These questions are particularly interesting when multiple algorithms are available

Correctness
• When is an algorithm correct?

• The answer may depend on the input

• An algorithm may be correct for some inputs, not for others

• A specific input for a general problem is often called an instance of the problem

• To be correct, an algorithm must

– Stop (after a finite number of steps), and

– produce the correct output

• This must happen for all possible inputs, i.e., all instances of the problem

Efficiency
• How efficient is an algorithm?

• That is, how much of resources does the algorithm need?

• We are usually interested in efficiency in terms of

– Time needed for the algorithm to execute

– Amount of memory / storage needed while the algorithm runs

• The answer may again depend on the specific instance of the problem

Sorting
• We will study these questions mainly in the context of one specific problem, namely sorting

• The basic problem:

– Input: A sequence of numbers (a1, a2, ..., an)

– Desired output: A permutation of the input, (b1, b2, ..., bn) such that b1 ≤ b2 ≤ ... ≤ bn

1

• Sometimes we are interested in the permutation rather than the permuted output

• The ai-s are known as keys.

Arrays
• The analysis of algorithms is both a practical and a theoretical exercise

• For a theoretical analysis of algorithms, we need

– Abstract data structures to represent the input and output (and possibly intermediate objects)

– Some rules or conventions regarding how these structures behave

• These structures and rules should reflect actual practical implementations

• For sorting, we usually need a simple data structure known as an array:

– An array A[1, ..., n] of length n is a sequence of length n.

– The i-th element of an array A is denoted by A[i]

– Each A[i] acts as a variable, that is, we can assign values to it, and query its current value

– The sub-array with indices i to j (inclusive) is often indicated by A[i, ..., j]

Insertion sort
• Insertion sort is a simple and intuitive sorting algorithm

• Basic idea:

– Think of sorting a hand of cards

– Start with an empty left hand and the cards face down on the table

– Remove one card at a time from the table and insert it into the correct position in the left hand

– To find its correct position, compare it with each of the cards already in the hand, from right to
left

• Insertion sort is a good algorithm for sorting a small number of elements

• The following pseudo-code represents the insertion sort algorithm

• Here the input is an already-constructed array A

• The length of the array is given by the attribute A.length

insertion-sort(A)

for (j = 2 to A.length) {
key = A[j] // Value to insert into the sorted sequence A[1,. . . ,j-1]
i = j - 1
while (i > 0 and A[i] > key) {

A[i+1] = A[i]
i = i - 1

}
A[i+1] = key

}

2

Exercise
• Is it obvious that this algorithm works?

• Can you think of any other sorting algorithm?

• Is your algorithm more efficient than insertion sort?

Insertion sort in R
insertion.sort <- function(A, verbose = FALSE)
{

if (length(A) < 2) return(A)
for (j in 2:length(A)) {

key <- A[j]
i <- j - 1
while (i > 0 && A[i] > key) {

A[i+1] <- A[i]
i <- i - 1

}
A[i+1] <- key
if (verbose) cat("j =", j, ", i =", i,

", A = (", paste(format(A), collapse = ", "), ")\n")
}
return (A)

}

• More or less same as the algorithm pseudo-code

• Addition verbose argument to print intermediate steps

• Due to R semantics, the result must be returned (not modified in place)

• This last behaviour has important practical implications (to be discussed later)

(A <- sample(10))

[1] 2 1 10 6 4 8 5 7 9 3

insertion.sort(A)

[1] 1 2 3 4 5 6 7 8 9 10

(A <- round(runif(10), 2))

[1] 0.67 0.33 0.92 0.84 0.35 1.00 0.55 0.18 0.90 0.05

insertion.sort(A)

[1] 0.05 0.18 0.33 0.35 0.55 0.67 0.84 0.90 0.92 1.00

A

[1] 0.67 0.33 0.92 0.84 0.35 1.00 0.55 0.18 0.90 0.05

insertion.sort(A, verbose = TRUE)

j = 2 , i = 0 , A = (0.33, 0.67, 0.92, 0.84, 0.35, 1.00, 0.55, 0.18, 0.90, 0.05)
j = 3 , i = 2 , A = (0.33, 0.67, 0.92, 0.84, 0.35, 1.00, 0.55, 0.18, 0.90, 0.05)
j = 4 , i = 2 , A = (0.33, 0.67, 0.84, 0.92, 0.35, 1.00, 0.55, 0.18, 0.90, 0.05)
j = 5 , i = 1 , A = (0.33, 0.35, 0.67, 0.84, 0.92, 1.00, 0.55, 0.18, 0.90, 0.05)
j = 6 , i = 5 , A = (0.33, 0.35, 0.67, 0.84, 0.92, 1.00, 0.55, 0.18, 0.90, 0.05)
j = 7 , i = 2 , A = (0.33, 0.35, 0.55, 0.67, 0.84, 0.92, 1.00, 0.18, 0.90, 0.05)

3

j = 8 , i = 0 , A = (0.18, 0.33, 0.35, 0.55, 0.67, 0.84, 0.92, 1.00, 0.90, 0.05)
j = 9 , i = 6 , A = (0.18, 0.33, 0.35, 0.55, 0.67, 0.84, 0.90, 0.92, 1.00, 0.05)
j = 10 , i = 0 , A = (0.05, 0.18, 0.33, 0.35, 0.55, 0.67, 0.84, 0.90, 0.92, 1.00)

[1] 0.05 0.18 0.33 0.35 0.55 0.67 0.84 0.90 0.92 1.00

Correctness
• Examples suggest that this algorithm works

• How can we formally prove correctness for all possible input (all instances)?

• Note that the algorithm works by running a loop

• The key observation is the following:

At the beginning of each loop (for any particular value of j), The first j − 1 elements in
A[1, ..., j − 1] are the same as the first j − 1 elements originally in the array, but they are
now sorted.

Loop invariant
• This kind of statement is known as a loop invariant

• Such loop invariants can be used to prove correctness if we can show three things:

– Initialization: It is true prior to the first iteration of the loop

– Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration

– Termination: Upon termination, the invariant leads to a useful property

• The first two properties are similar to induction

• The third is important in the sense that a loop invariant is useless unless the third property holds

Loop invariant for insertion sort
Statement

At the beginning of each loop (for any particular value of j), The first j−1 elements in A[1, ..., j−1]
are the same as the first j − 1 elements originally in the array, but they are now sorted.

Initialization

• Before starting the for loop for j = 2, A[1, ..., j − 1] is basically just A[1], which is

– trivially sorted, and

– the same as the original A[1]

Maintenance

• At the beginning of the for loop with some value of j, A[1, ..., j − 1] is sorted

• Informally, the while loop within each iteration works by

– comparing key = A[j] with A[j − 1], A[j − 2], ..., A[1] (in that order)

– moving them one position to the right, until the correct position of key is found

• Clearly, this while loop must terminate within at most j steps

• After the while loop ends, key = A[j] is inserted in the correct position

4

• At the end, A[1, ..., j] is a sorted version of the original A[1, ..., j].

• Thus, the loop invariant is now true for index j + 1

• To be more formal, we could prove a loop invariant for the while loop also

• Will not go into that much detail

Termination

• The for loop essentially increments j by 1 every time it runs

• The loop terminates when j > n = A.length

• As each loop iteration increases j by 1, we must have j = n + 1 at that time

• Substituting n + 1 for j in the loop invariant, we have

– A[1, ..., n] has the same elements as it originally had, and is now sorted.

• Hence, the algorithm is correct.

Run time analysis
• It is natural to be interested in studying the efficiency of an algorithm

• Usually, we are interested in running time and memory usage

• Both these may depend on the size of the input, and often on the specific input

• If we have a practical implementation, we can simply run the algorithm to study running time

• Let’s try this with the R implementation

Run time of R implementation
• We expect running time to depend on size of input

• To average out effect of individual inputs, we can consider multiple random inputs, e.g.,

x <- replicate(20, runif(100), simplify = FALSE) # list of 20 vectors
system.time(lapply(x, insertion.sort))

user system elapsed
0.008 0.000 0.008

x <- replicate(20, runif(1000), simplify = FALSE)
system.time(lapply(x, insertion.sort))

user system elapsed
0.548 0.000 0.549

• Do this systematically for various input sizes

timeSort <- function(size, nrep = 20, sort.fun = insertion.sort)
{

x <- replicate(nrep, runif(size), simplify = FALSE)
system.time(lapply(x, sort.fun))["elapsed"] / nrep

}
n <- seq(100, 3000, by = 100)
tinsertion <- sapply(n, timeSort, nrep = 5, sort.fun = insertion.sort)

xyplot(tinsertion ~ n, grid = TRUE, aspect = "xy")

5

tsort <- sapply(n, timeSort, nrep = 5, sort.fun = sort) # built-in sort() function
xyplot(tinsertion + tsort ~ n, grid = TRUE, outer = TRUE, ylab = "time (seconds)")

Insertion sort in Python
• We can also implement the algorithm in Python

• Arrays are not copied when given as arguments, so changes modify original

• Python array index starts from 0, so need to suitably modify

def insertion_sort_py(A):
for j in range(1, len(A)):

key = A[j]
i = j - 1
while i > -1 and A[i] > key :

6

A[i+1] = A[i]
i = i - 1

A[i+1] = key

import numpy as np
import time
x = np.random.uniform(0, 1, 10).round(2)
x

array([0.01, 0.84, 0.02, 0.06, 0.65, 0.17, 0.85, 0.26, 0.75, 0.93])

t0 = time.time()
insertion_sort_py(x)
t1 = time.time()
x

array([0.01, 0.02, 0.06, 0.17, 0.26, 0.65, 0.75, 0.84, 0.85, 0.93])

t1 - t0 # elapsed time in seconds

0.00815129280090332

Run time of Python implementation
def time_sort(size, nrep, sortfun):

total_time = 0.0
for i in range(nrep):

x = np.random.uniform(0, 1, size)
t0 = time.time()
sortfun(x)
t1 = time.time()
total_time += (t1 - t0)

return total_time / nrep

nvals = range(100, 3001, 100)
tvals = [time_sort(i, 5, insertion_sort_py) for i in nvals]
print(tvals)

[0.0007145404815673828, 0.0027111530303955077, 0.005713224411010742, 0.010121440887451172, 0.015952301025390626, 0.023524904251098634, 0.03125996589660644, 0.0422612190246582, 0.052682924270629886, 0.06547446250915527, 0.07987537384033203, 0.09612555503845215, 0.11255407333374023, 0.12784171104431152, 0.14759888648986816, 0.16877369880676268, 0.1877429485321045, 0.21367368698120118, 0.2357738971710205, 0.2633659839630127, 0.29071807861328125, 0.3196439266204834, 0.34430923461914065, 0.37818541526794436, 0.41265254020690917, 0.44728589057922363, 0.4800652027130127, 0.5193507194519043, 0.5596569061279297, 0.6053540229797363]

Run time comparison
library(reticulate) # to communicate between R and Python (ignore for now)
tpython <- py$tvals
xyplot(tinsertion + tpython ~ n, grid = TRUE, outer = TRUE, ylab = "time (seconds)")

7

Insertion sort in C++
• Yet another possibility is to implement the algorithm in C / C++

• We will use Rcpp so that we can easily call the function from R

• Array indexing starts from 0 (like Python), so similar modifications needed

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector insertion_sort_rcpp_bad(NumericVector A)
{

int i, j, n = A.size();
double key;
for (int j = 1; j < n; j++) {

key = A[j];
i = j - 1;
while (i > -1 && A[i] > key) {

A[i+1] = A[i];
i = i - 1;

}
A[i+1] = key;

}
return A;

}

(A <- round(runif(10), 2))

[1] 0.74 0.69 0.62 0.39 0.57 0.94 0.27 0.53 0.99 0.32

insertion_sort_rcpp_bad(A)

[1] 0.27 0.32 0.39 0.53 0.57 0.62 0.69 0.74 0.94 0.99

A # changed!

8

[1] 0.27 0.32 0.39 0.53 0.57 0.62 0.69 0.74 0.94 0.99

• C++ also does not copy arrays when given as arguments, so changes modify original

• This violates implicit contract of R functions, so we need to explicitly copy

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector insertion_sort_rcpp(NumericVector x)
{

int i, j, n = x.size();
double key;
NumericVector A = clone(x);
for (int j = 1; j < n; j++) {

key = A[j];
i = j - 1;
while (i > -1 && A[i] > key) {

A[i+1] = A[i];
i = i - 1;

}
A[i+1] = key;

}
return A;

}

(A <- round(runif(10), 2))

[1] 0.50 0.13 0.95 0.18 0.23 0.83 0.01 0.42 0.05 0.42

insertion_sort_rcpp(A)

[1] 0.01 0.05 0.13 0.18 0.23 0.42 0.42 0.50 0.83 0.95

A # unchanged

[1] 0.50 0.13 0.95 0.18 0.23 0.83 0.01 0.42 0.05 0.42

Run time comparison
trcpp <- sapply(n, timeSort, nrep = 5, sort.fun = insertion_sort_rcpp)
xyplot(tinsertion + tpython + trcpp ~ n, grid = TRUE, outer = TRUE, ylab = "time (seconds)")

9

xyplot(tinsertion + tpython + trcpp ~ n, grid = TRUE, outer = TRUE,
scales = list(y = "free"), ylab = "time (seconds)")

Run time comparison (for larger inputs)
trcpp10 <- sapply(10 * n, timeSort, nrep = 5, sort.fun = insertion_sort_rcpp)
tsort <- sapply(10 * n, timeSort, nrep = 5, sort.fun = sort)
xyplot(trcpp10 + tsort ~ (10 * n), grid = TRUE, outer = TRUE, ylab = "time (seconds)", aspect = 1)

10

tsort <- sapply(100 * n, timeSort, nrep = 5, sort.fun = sort)
xyplot(tsort ~ (100 * n), grid = TRUE, outer = TRUE, ylab = "time (seconds)", aspect = 1)

Run time comparison: summary
• Run time may vary substantially depending on implementation

• Even a C++ implementation of insertion sort is mich slower than built in sort() in R

• As a crude approximation, run time of insertion sort seems to be roughly quadratic in input size

• Can we validate this observation theoretically?

Theoretical analysis of algorithms
• Analysis of an algorithm means predicting the resources requires by it, e.g.,

11

– amount of memory

– amount of input-output

– (most commonly) amount of computational time

• This helps identify efficient algorithms when multiple candidates available

• Such analysis may indicate multiple viable candidates, but helps to discard inferior ones

Theoretical model
• Analysis of an algorithm requires a model of the implementation technology

• Specifically, we need model for the resources and their associated costs

• We will assume a single-processor random access machine (RAM) model

• This has a precise technical meaning, but for our purposes, it means that

– Instructions are executed one after another, with no concurrent operations

– Accessing any location in memory has the same cost, regardless of the location

• In particular, accessing variable values (memory look-up) requires constant time

• Arrays are assumed to occupy contiguous locations in memory

• In other words, location of A[i] = location of A[1] + constant * (i− 1)

• So accessing any A[i] has same cost

• Drawback: arrays cannot be resized without incurring significant cost (by copying)

• We can be more precise, by

– listing the set of basic instructions the machine can perform

– E.g., add, multiply, data copy, move, branching, etc.

– Model the cost of each such operation

• We will not try to be that precise

• With reasonable assumptions, we will still be able to do reasonable analysis

Runtime analysis of insertion sort
• Intuitively clear that time taken by insertion sort depends on several factors:

– Size of the input (longer arrays will need more time)

– Whether the array is already (almost) sorted (then the position of the key is found quickly in
every step)

• We need to formalize both these dependencies

• Notion of input size depends on the context

– For sorting problem, length of the input array is the natural notion

– For multiplying two numbers, a reasonable notion may be their magnitudes

• To take the nature of input into account, we usually consider

– worst case
– best case
– average case

12

How should we define “running time”?
• Ideally, sum of the times taken (or cost) for each basic instruction in the machine.

• We take a slightly different approach

• Instead of assigning a cost to each basic instruction, we assign a cost to each step in our algorithm

• Then, count the number of times each step is executed

Runtime analysis of insertion sort
• Try this for insertion sort

• Assume a cost for each line of the algorithm

insertion-sort(A) cost

for (j = 2 to A.length) { c1
key = A[j] c2
i = j - 1 c3
while (i > 0 and A[i] > key) { c4

A[i+1] = A[i] c5
i = i - 1 c6

} \
A[i+1] = key c7

}

• We need to count the number of times each step is executed

• This depends on the number of times the while loop runs, which depends on the input

• Let tj denote the number of times the while condition is tested for index j

• The test will be false for the last iteration (and the loop will not run)

insertion-sort(A) cost times

for (j = 2 to A.length) { c1 n
key = A[j] c2 n− 1
i = j - 1 c3 n− 1
while (i > 0 and A[i] > key) { c4

∑n
j=2 tj

A[i+1] = A[i] c5
∑n

j=2(tj − 1)
i = i - 1 c6

∑n
j=2(tj − 1)

} \
A[i+1] = key c7 n− 1

}

• The total running time (cost) is

T (n) = c1n + (c2 + c3 + c7)(n− 1) + c4

(∑
tj

)
+ (c5 + c6)

(∑
tj − 1

)
• Runtime of insertion sort

T (n) = c1n + (c2 + c3 + c7)(n− 1) + c4

(∑
tj

)
+ (c5 + c6)

(∑
tj − 1

)
• Depends on the values of tj

• If input is already sorted, then tj = 1 for all j, and hence

T (n) = c1n + (c2 + c3 + c7 + c4)(n− 1) = an + b,

13

• In other words, T (n) is linear in n, with coefficients a and b that depend on the costs ci

• This is the best case scenario

• Runtime of insertion sort

T (n) = c1n + (c2 + c3 + c7)(n− 1) + c4

(∑
tj

)
+ (c5 + c6)

(∑
tj − 1

)
• The worst case scenario is when the array is reverse sorted

• In that case, tj = j for all j

• Noting that
n∑
2

j = n(n+1)
2 − 1 and

n∑
2

(j − 1) = n(n−1)
2 , we have

T (n) = an2 + bn + c

• In other words, T (n) is quadratic, with coefficients a, b, c that depend on the costs ci

• The best case scenario is usually not of interest

• An algorithm is typically evaluated based on its worst case running time

• Another reasonable definition is the average case running time

• For the sorting problem, this is defined as the

– Expected running time if the input is randomly ordered

– More precisely, “randomly ordered” means all permutations are equally likely

Exercises
• Derive the average case running time of insertion sort

• Modify the insertion sort algorithm to return a permutation that will sort the input

• Specifically, p <- insertion_order(A) should give an index vector p such that A[p] is sorted

• Implement this modified algorithm using both R and Rcpp

• To use Rcpp, you must first install a compiler and other tools from here

• See also the RStudio page for Rcpp for other resources

Order of growth
• Note that we have ignored the exact costs ci for each step

• Instead, we express the worst-case running time as T (n) = an2 + bn + c

• As n grows larger, this is dominated by the n2 term

• Lower order terms (linear and constant) are asymptotically insignificant compared to n2

• For this reason, we usually simplify further and say that the order of growth of T (n) is like n2

• This is indicated using the notation

T (n) = Θ(n2)

• One algorithm is considered better than another if it has lower order of growth

• This is true even if the second one is faster for small input (as it will be slower for large enough input)

• If two algorithms have same order of growth, the coefficients may be important in practice

14

https://cran.rstudio.com/bin/windows/Rtools/
https://support.rstudio.com/hc/en-us/articles/200486088-Using-Rcpp-with-RStudio

• However, theoretical analysis will usually consider them to be equivalent

Divide and Conquer
• Insertion sort is an incremental algorithm: modifies the input one step at a time

• Another common approach is known as “divide-and-conquer”

• Depends on a technique called recursion (an algorithm calling itself)

• The basic idea is:

– Divide the problem into a number of subproblems that are smaller instances of the same problem

– Conquer the subproblems by solving them recursively

– Combine the solutions to the subproblems into the solution for the original problem

Merge sort
• The first example of this we study is called merge sort

• Loosely, it operates as follows

– Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

– Conquer: Sort the two subsequences

∗ If a subsequences is of length 1, it is already sorted, and there is nothing more to do
∗ Otherwise, sort it recursively using merge sort

– Combine: Merge the two sorted subsequences to produce the sorted answer

• The first two steps are essentially trivial

• Key operation: merge two sorted sequences in the “combine” step

The merge step
• Done using an auxiliary procedure MERGE(A, p, q, r), where

– A is an array

– p, q, and r are indices into the array such that p ≤ q < r

– Assumes that subarrays A[p, ..., q] and A[q + 1, ..., r] are in sorted order

– Goal is to merge them to into single sorted subarray that replaces the current subarray A[p, ..., r]

• The essential idea of MERGE is the following:

– Suppose we have two sorted piles on the table, with the smallest cards on top

– Start with a new empty pile

– Look at the top two cards, pick the smaller one, and add to new pile

– Repeat (if one pile empty, choose always from the other)

merge(A, p, q, r)

n1 = q - p + 1
n2 = r - q
Create new arrays L[1, . . . , n1+1] and R[1, . . . , n2+1]
for (i = 1, . . . , n1) { L[i] = A[p+i-1] }
for (j = 1, . . . , n2) { R[j] = A[q+j] }

15

L[n1+1] = ∞ ## sentinel values
R[n2+1] = ∞ ## ensures that L and R never become empty
i = 1
j = 1
for (k = p, . . . , r) {

if (L[i] ≤ R[j]) {
A[k] = L[i]
i = i + 1

}
else {

A[k] = R[j]
j = j + 1

}
}

• It is easy to see that the runtime of merge is linear in n = r − p + 1

• One comparison needed to fill every position

• To prove correctness, consider the loop invariant

At the start of each iteration of the main for loop, the subarray A[p, ..., k − 1] contains the k − p
smallest elements of L[1, ..., n1 + 1] and R[1, ..., n2 + 1] in sorted order. Also, of the remaining
elements, L[i] and R[j] are the smallest elements in their respective arrays.

Correctness of merge

Initialization

• Prior to the first iteration, we have k = p, so that the subarray A[p, ..., k − 1] is empty

• This empty subarray contains the k − p = 0 smallest elements of L and R

• As i = j = 1, L[i] and R[j] are the respective smallest elements not copied back into A

Maintenance

• Suppose that L[i] ≤ R[j]

• Then L[i] is the smallest element not yet copied back into A

• A[p, ..., k − 1] already contains the k − p smallest elements of L and R

• So, after L[i] is copied into A[k], A[p, ..., k] will contain the k − p + 1 smallest elements

• Incrementing k (in for loop) and i reestablishes the loop invariant for the next iteration

• If instead L[i] > R[j], then the other branch maintains the loop invariant

Termination

• At termination, k = r + 1

• By loop invariant,

the subarray A[p, ..., k − 1] ≡ A[p, ..., r], contains the k − p = r − p + 1 smallest elements of
L[1, ..., n1] and R[1, ..., n2], in sorted order

• The arrays L and R together contain n1 + n2 + 2 = r − p + 3 elements

• All but the two largest have been copied back into A, and these two largest elements are the sentinels

16

Merge sort
• Using merge, the merge sort algorithm is now implemented as

merge-sort(A, p, r)

if (p < r) {
q = floor((p+r)/2)
merge-sort(A, p, q)
merge-sort(A, q+1, r)
merge(A, p, q, r)

}

• In general, this sorts the subarray A[p, ..., r]

• It is initially called as merge(A, 1, n) for an n-element input array

Analysis of divide and conquer algorithms
• The runtime of merge sort can be expressed as a recurrence

T (n) =
{

Θ(1) n ≤ 1
2T (dn/2e) + Θ(n) otherwise

• Θ(1) represents a constant cost of sorting a 0 or 1-element array

• The Θ(n) term is the cost of merging, including the (constant) cost of computing the split

• We will later see a general result that helps to solve recurrences of this form

• For now, we will derive the solution for merge sort based on heuristic arguments

Analysis of merge sort
• We do this by constructing a so-called recursion tree

• For convenience, we assume that the input size n is an exact power of 2

• This means that each split is of exactly half the size

• This lets us rewrite the recurrence in a simpler form:

T (n) =
{

c n = 1
2T (n/2) + cn n > 1

Recursion tree for merge sort

• Main observations:

– Each level of the tree requires cn time

– There are 1 + log2 n levels in total

• This gives a total runtime of

T (n) = cn(1 + log2 n) = Θ(n log n)

17

Growth of functions
• Before moving on, we will briefly discuss asymptotic growth notation

• Formally, we are interested in the behaviour of a function f(n) as n→∞

• All functions we consider are from N→ R

• Sometimes we may abuse notation and consider functions with domain R

Θ-notation
• Given a function g : N→ R, we define the set

Θ(g(n)) = {f(n) | ∃ c1, c2 > 0 and N ∈ N such that
n ≥ N =⇒ 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

• That is, f(n) ∈ Θ(g(n)) if f(n) can be asymptotically bounded on both sides by multiples of g(n)

• We will usually write f(n) = Θ(g(n)) to mean the same thing.

• Note that this definition implicitly requires f(n) to be asymptotically non-negative

• We will assume this here as well as for other asymptotic notations used in this course.

• The Θ notation is used to indicate exact order of growth

• The next two notations indicate upper and lower bounds

O-notation
• The O-notation (usually pronounced “big-oh”) indicates an asymptotic upper bound

O(g(n)) = {f(n) | ∃ c > 0 and N ∈ N such that n ≥ N =⇒ 0 ≤ f(n) ≤ cg(n)}

• As before, we usually write f(n) = Θ(g(n)) to mean f(n) ∈ Θ(g(n))

• Note that f(n) = Θ(g(n)) =⇒ f(n) = O(g(n)), that is, Θ(g(n)) ⊆ O(g(n))

• The O-notation is important because upper bounds are often easier to prove (than lower bounds)

• That is often a sufficiently useful characterization of an algorithm

Ω-notation
• The Ω-notation (pronounced “big-omega”) similarly indicates an asymptotic lower bound

Ω(g(n)) = {f(n) | ∃ c > 0 and N ∈ N such that n ≥ N =⇒ 0 ≤ cg(n) ≤ f(n)}

• The proof of the following theorem is an exercise:

f(n) = Θ(g(n)) ⇐⇒ f(n) = Ω(g(n)) and f(n) = O(g(n))

• So, for example, if T (n) is the running time of insertion sort, then we can say that

T (n) = Ω(n) and T (n) = O(n2)

• But not that

18

T (n) = Θ(n) or T (n) = Θ(n2)

• However, if T (n) denotes the worst-case running time of insertion sort, then

T (n) = Θ(n2)

Arithmetic with asymptotic notation
• We will often do casual arithmetic with asymptotic notation

• Most of the time this is OK, but we should be careful about potential ambiguity

• Example: Consider the statement

an2 + bn + c = an2 + Θ(n)

• Here we use Θ(n) to actually mean a function f(n) ∈ Θ(n) (in this case, f(n) = bn + c)

• Similarly, we could write

2n2 + Θ(n) = Θ(n2)

• This means that whatever the choice of f(n) ∈ Θ(n) in the LHS, 2n2 + f(n) = Θ(n2)

• This kind of abuse of notation can sometimes lead to amiguity

• For example, if f(n) = Θ(n), then

n∑
i=1

f(i) = Θ(n(n + 1)/2) = Θ(n2)

• We may write the following to mean the same thing:

n∑
i=1

Θ(i)

• But this is not the same as Θ(1) + Θ(2) + · · ·+ Θ(n)
– This may not even make sense (what is Θ(2) ?)
– Each Θ(i) may represent a different function

o- and ω-notation
• The O- and Ω-notations indicate bounds that may or may not be asymptotically “tight”

• The “little-oh” and “little-omega” notations indicate strictly non-tight bounds

o(g(n)) = {f(n) : for all c > 0, ∃ N ∈ N such that n ≥ N =⇒ 0 ≤ f(n) ≤ cg(n)}

• and

ω(g(n)) = {f(n) : for all c > 0, ∃ N ∈ N such that n ≥ N =⇒ 0 ≤ cg(n) ≤ f(n)}

• Essentially, as f(n) and g(n) are asymptotically non-negative,

f(n) = o(g(n)) =⇒ lim sup f(n)
g(n) = 0 =⇒ lim f(n)

g(n) = 0

19

• Similarly, f(n) = ω(g(n)) =⇒ lim f(n)
g(n) =∞

• Refer to Introduction to Algorithms (Cormen et al) for further properties of asymptotic notation

• We will use these properties as and when necessary

Analyzing Divide and Conquer algorithms
• As seen for merge sort, the runtime analysis of a divide-and-conquer algorithm usually involves solving

a recurrence

• Let T (n) be the running time on a problem of size n

• We can write

T (n) =
{

Θ(1) if n ≤ c

aT (n/b) + D(n) + C(n) otherwise

• where T (n) is constant if the problem is small enough (say n ≤ c for some constant c), and otherwise

– the division step produces a subproblems, each of size n/b

– D(n) is the time taken to divide the problem into subproblems,

– C(n) is the time taken to combine the sub-solutions.

• There are three common methods to solve recurrences.

– The substitution method: guess a bound and then use mathematical induction to prove it correct

– The recursion-tree method: convert the recurrence into a tree, and use techniques for bounding
summations to solve the recurrence

– The master method provides bounds for recurrences of the form T (n) = aT (n/b) + f(n) for certain
functions f(n) that cover most common cases

The substitution method
• The substitution method is basically to

1. Guess the form of the solution, and
2. Use mathematical induction to verify it

• Example (similar to merge sort): Find an upper bound for the recurrence

T (n) = 2T (n/2) + n

• Suppose we guess that the solution is T (n) = O(n log2 n)

• We need to prove that T (n) ≤ cn log2 n for some constant c > 0

• Assume this holds for all positive m < n, in particular,

T (n/2) ≤ cn

2 log2
n

2
• Substituting, we have (provided c ≥ 1)

20

T (n) = 2T (n/2) + n

≤ 21
2cn log2(n/2) + n

= cn log2 n− cn log2 2 + n

= cn log2 n− cn + n

≤ cn log2 n

• Technically, we still need to prove the guess for a boundary condition.

• Let’s try for n = 1:

– Require T (1) ≤ c 1 log2 1 = 0
– Not possible for any realistic value of T (1)
– So the solution is not true for n = 1

• However, for n = 2:

– Require T (2) ≤ c 2 log2 2 = 2c
– Can be made to hold for some choice of c > 1, whatever the value of T (2) = 2T (1) + 2

• Similarly for T (3)

• Note that for n > 3, the induction step never makes use of T (1) directly

• Remark: be careful not to use asymptotic notation in the induction step

• Consider this proof to show T (n) = O(n), assuming T (m) ≤ cm for m < n

T (n) = 2T (n/2) + n

≤ 2cn/2 + n

≤ cn + n

= O(n)

• The last step is invalid

• Unfortunately, making a good guess is not always easy, limiting the usefulness of this method

The recursion tree method
• This is the method we used to calculate the merge sort run time

• Usually this is helpful to derive a guess that we can then formally prove using recursion

The master method
• The Master theorem: Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and

T (n) = aT (n/b) + f(n)

• Here n/b could also floor or ceiling of n/b

• Then T (n) has the following asymptotic bounds:

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a)

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log2 n) = Θ(f(n) log2 n)

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n) for some constant c < 1
and all sufficiently large n, then T (n) = Θ(f(n))

21

• We will not prove the master theorem

• Note that we are essentially comparing f(n) with nlogb a

• whichever is bigger (by a polynomial factor) determines the solution

• If they are the same size, we get an additional log n factor

• Additionally, the third case needs a regularity condition on f(n)

• Exercise: Use the master theorem to obtain the asymptotic order for

T (n) = T (n/2) + cn

22

	Algorithms
	Correctness
	Efficiency
	Sorting
	Arrays
	Insertion sort
	Exercise
	Insertion sort in R
	Correctness
	Loop invariant
	Loop invariant for insertion sort
	Statement
	Initialization
	Maintenance
	Termination

	Run time analysis
	Run time of R implementation
	Insertion sort in Python
	Run time of Python implementation
	Run time comparison
	Insertion sort in C++
	Run time comparison
	Run time comparison (for larger inputs)
	Run time comparison: summary
	Theoretical analysis of algorithms
	Theoretical model
	Runtime analysis of insertion sort
	How should we define ``running time''?
	Runtime analysis of insertion sort
	Exercises
	Order of growth
	Divide and Conquer
	Merge sort
	The merge step
	Correctness of merge
	Initialization
	Maintenance
	Termination

	Merge sort
	Analysis of divide and conquer algorithms
	Analysis of merge sort
	Recursion tree for merge sort
	Growth of functions
	\Theta-notation
	O-notation
	\Omega-notation
	Arithmetic with asymptotic notation
	o- and \omega-notation
	Analyzing Divide and Conquer algorithms
	The substitution method
	The recursion tree method
	The master method

