Analysis of Algorithms I

Deepayan Sarkar

Algorithms

- Procedure to perform a task or solve a problem
- We have seen some examples: find primes, compute factorials / binomial coefficients
- Important theoretical questions:
- Is an algorithm correct? (Does it always work?)
- How much resource does the algorithm need?
- These questions are particularly interesting when multiple algorithms are available

Correctness

- When is an algorithm correct?
- The answer may depend on the input
- An algorithm may be correct for some inputs, not for others
- A specific input for a general problem is often called an instance of the problem
- To be correct, an algorithm must
- Stop (after a finite number of steps), and
- produce the correct output
- This must happen for all possible inputs, i.e., all instances of the problem

Efficiency

- How efficient is an algorithm?
- That is, how much of resources does the algorithm need?
- We are usually interested in efficiency in terms of
- Time needed for the algorithm to execute
- Amount of memory / storage needed while the algorithm runs
- The answer may again depend on the specific instance of the problem

Sorting

- We will study these questions mainly in the context of one specific problem, namely sorting
- The basic problem:
- Input: A sequence of numbers $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$
- Desired output: A permutation of the input, $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ such that $b_{1} \leq b_{2} \leq \ldots \leq b_{n}$
- Sometimes we are interested in the permutation rather than the permuted output
- The a_{i}-s are known as keys.

Arrays

- The analysis of algorithms is both a practical and a theoretical exercise
- For a theoretical analysis of algorithms, we need
- Abstract data structures to represent the input and output (and possibly intermediate objects)
- Some rules or conventions regarding how these structures behave
- These structures and rules should reflect actual practical implementations
- For sorting, we usually need a simple data structure known as an array:
- An array $A[1, \ldots, n]$ of length n is a sequence of length n.
- The i-th element of an array A is denoted by $A[i]$
- Each $A[i]$ acts as a variable, that is, we can assign values to it, and query its current value
- The sub-array with indices i to j (inclusive) is often indicated by $A[i, \ldots, j]$

Insertion sort

- Insertion sort is a simple and intuitive sorting algorithm
- Basic idea:
- Think of sorting a hand of cards
- Start with an empty left hand and the cards face down on the table
- Remove one card at a time from the table and insert it into the correct position in the left hand
- To find its correct position, compare it with each of the cards already in the hand, from right to left
- Insertion sort is a good algorithm for sorting a small number of elements
- The following pseudo-code represents the insertion sort algorithm
- Here the input is an already-constructed array A
- The length of the array is given by the attribute A.length
insertion-sort (A)
for $(\mathrm{j}=2$ to A.length $)$ \{
key $=A[j] / /$ Value to insert into the sorted sequence $A[1, \ldots, j-1]$
$\mathrm{i}=\mathrm{j}-1$
while ($\mathrm{i}>0$ and $\mathrm{A}[\mathrm{i}]>$ key) $\{$
$\mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{i}]$
$\mathrm{i}=\mathrm{i}-1$
\}
$\mathrm{A}[\mathrm{i}+1]=$ key
\}

Exercise

- Is it obvious that this algorithm works?
- Can you think of any other sorting algorithm?
- Is your algorithm more efficient than insertion sort?

Insertion sort in \mathbf{R}

```
insertion.sort <- function(A, verbose = FALSE)
{
    if (length(A) < 2) return(A)
    for (j in 2:length(A)) {
        key <- A[j]
        i <- j - 1
        while (i > 0 && A[i] > key) {
            A[i+1] <- A[i]
            i <- i - 1
        }
        A[i+1] <- key
        if (verbose) cat("j =", j, ", i =", i,
                ", A = (", paste(format(A), collapse = ", "), ")\n")
    }
    return (A)
}
```

- More or less same as the algorithm pseudo-code
- Addition verbose argument to print intermediate steps
- Due to R semantics, the result must be returned (not modified in place)
- This last behaviour has important practical implications (to be discussed later)

```
(A <- sample(10))
    [1] }\begin{array}{lllllllllll}{2}&{1}&{10}&{6}&{4}&{8}&{5}&{7}&{9}&{3}
insertion.sort(A)
    [1] }1
(A <- round(runif(10), 2))
    [1] 0.67 0.33 0.92 0.84 0.35 1.00 0.55 0.18 0.90 0.05
insertion.sort(A)
    [1] 0.05 0.18 0.33 0.35 0.55 0.67 0.84 0.90 0.92 1.00
A
    [1] 0.67 0.33 0.92 0.84 0.35 1.00 0. 0.55 0.18 0.90
insertion.sort(A, verbose = TRUE)
j=2, i = 0,A = ( 0.33, 0.67, 0.92, 0.84, 0.35, 1.00, 0.55, 0.18, 0.90, 0.05 )
j = 3, i = 2 , A = ( 0.33, 0.67, 0.92, 0.84, 0.35, 1.00, 0.55, 0.18, 0.90, 0.05 )
j=4,i=2 , A = ( 0.33, 0.67, 0.84, 0.92, 0.35, 1.00, 0.55, 0.18, 0.90, 0.05 )
j=5 , i = 1, A = ( 0.33, 0.35, 0.67, 0.84, 0.92, 1.00, 0.55, 0.18, 0.90, 0.05 )
j = 6 , i = 5 , A = ( 0.33, 0.35, 0.67, 0.84, 0.92, 1.00, 0.55, 0.18, 0.90, 0.05 )
j = 7, i = 2 , A = ( 0.33, 0.35, 0.55, 0.67, 0.84, 0.92, 1.00, 0.18, 0.90, 0.05 )
```

```
j = 8 , i = 0 , A = ( 0.18, 0.33, 0.35, 0.55, 0.67, 0.84, 0.92, 1.00, 0.90, 0.05 )
j = 9 , i = 6 , A = ( 0.18, 0.33, 0.35, 0.55, 0.67, 0.84, 0.90, 0.92, 1.00, 0.05 )
j=10,i = 0, A = ( 0.05, 0.18, 0.33, 0.35, 0.55, 0.67, 0.84, 0.90, 0.92, 1.00 )
    [1] 0.05 0.18 0.33 0.35 0.55 0.67 0.84 0.90 0.92 1.00
```


Correctness

- Examples suggest that this algorithm works
- How can we formally prove correctness for all possible input (all instances)?
- Note that the algorithm works by running a loop
- The key observation is the following:

At the beginning of each loop (for any particular value of j), The first $j-1$ elements in $A[1, \ldots, j-1]$ are the same as the first $j-1$ elements originally in the array, but they are now sorted.

Loop invariant

- This kind of statement is known as a loop invariant
- Such loop invariants can be used to prove correctness if we can show three things:
- Initialization: It is true prior to the first iteration of the loop
- Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration
- Termination: Upon termination, the invariant leads to a useful property
- The first two properties are similar to induction
- The third is important in the sense that a loop invariant is useless unless the third property holds

Loop invariant for insertion sort

Statement

At the beginning of each loop (for any particular value of j), The first $j-1$ elements in $A[1, \ldots, j-1]$ are the same as the first $j-1$ elements originally in the array, but they are now sorted.

Initialization

- Before starting the for loop for $j=2, A[1, \ldots, j-1]$ is basically just $A[1]$, which is
- trivially sorted, and
- the same as the original $A[1]$

Maintenance

- At the beginning of the for loop with some value of $j, A[1, \ldots, j-1]$ is sorted
- Informally, the while loop within each iteration works by
- comparing key $=A[j]$ with $A[j-1], A[j-2], \ldots, A[1]$ (in that order)
- moving them one position to the right, until the correct position of key is found
- Clearly, this while loop must terminate within at most j steps
- After the while loop ends, key $=A[j]$ is inserted in the correct position
- At the end, $A[1, \ldots, j]$ is a sorted version of the original $A[1, \ldots, j]$.
- Thus, the loop invariant is now true for index $j+1$
- To be more formal, we could prove a loop invariant for the while loop also
- Will not go into that much detail

Termination

- The for loop essentially increments j by 1 every time it runs
- The loop terminates when $j>n=$ A.length
- As each loop iteration increases j by 1 , we must have $j=n+1$ at that time
- Substituting $n+1$ for j in the loop invariant, we have
- $A[1, \ldots, n]$ has the same elements as it originally had, and is now sorted.
- Hence, the algorithm is correct.

Run time analysis

- It is natural to be interested in studying the efficiency of an algorithm
- Usually, we are interested in running time and memory usage
- Both these may depend on the size of the input, and often on the specific input
- If we have a practical implementation, we can simply run the algorithm to study running time
- Let's try this with the R implementation

Run time of R implementation

- We expect running time to depend on size of input
- To average out effect of individual inputs, we can consider multiple random inputs, e.g.,

```
x <- replicate(20, runif(100), simplify = FALSE) # list of 20 vectors
system.time(lapply(x, insertion.sort))
    user system elapsed
    0.008 0.000 0.008
x <- replicate(20, runif(1000), simplify = FALSE)
system.time(lapply(x, insertion.sort))
    user system elapsed
    0.548 0.000 0.549
- Do this systematically for various input sizes
```

```
timeSort <- function(size, nrep = 20, sort.fun = insertion.sort)
```

timeSort <- function(size, nrep = 20, sort.fun = insertion.sort)
{
{
x <- replicate(nrep, runif(size), simplify = FALSE)
x <- replicate(nrep, runif(size), simplify = FALSE)
system.time(lapply(x, sort.fun))["elapsed"] / nrep
system.time(lapply(x, sort.fun))["elapsed"] / nrep
}
}
n <- seq(100, 3000, by = 100)
n <- seq(100, 3000, by = 100)
tinsertion <- sapply(n, timeSort, nrep = 5, sort.fun = insertion.sort)
tinsertion <- sapply(n, timeSort, nrep = 5, sort.fun = insertion.sort)
xyplot(tinsertion ~ n, grid = TRUE, aspect = "xy")

```
xyplot(tinsertion ~ n, grid = TRUE, aspect = "xy")
```


tsort <- sapply(n, timeSort, nrep = 5, sort.fun = sort) \# built-in sort() function
xyplot(tinsertion + tsort ~ n, grid = TRUE, outer = TRUE, ylab = "time (seconds)")

Insertion sort in Python

- We can also implement the algorithm in Python
- Arrays are not copied when given as arguments, so changes modify original
- Python array index starts from 0 , so need to suitably modify

```
def insertion_sort_py(A):
    for j in range(1, len(A)):
        key = A[j]
        i = j - 1
        while i > -1 and A[i] > key :
```

```
        A[i+1] = A[i]
        i = i - 1
    A[i+1] = key
import numpy as np
import time
x = np.random.uniform(0, 1, 10).round(2)
x
array([0.01, 0.84, 0.02, 0.06, 0.65, 0.17, 0.85, 0.26, 0.75, 0.93])
t0 = time.time()
insertion_sort_py(x)
t1 = time.time()
x
array([0.01, 0.02, 0.06, 0.17, 0.26, 0.65, 0.75, 0.84, 0.85, 0.93])
t1 - t0 # elapsed time in seconds
0.00815129280090332
```


Run time of Python implementation

```
def time_sort(size, nrep, sortfun):
    total_time = 0.0
    for i in range(nrep):
        x = np.random.uniform(0, 1, size)
        t0 = time.time()
        sortfun(x)
        t1 = time.time()
        total_time += (t1 - t0)
    return total_time / nrep
nvals = range(100, 3001, 100)
tvals = [time_sort(i, 5, insertion_sort_py) for i in nvals]
print(tvals)
[0.0007145404815673828, 0.0027111530303955077, 0.005713224411010742, 0.010121440887451172,0.0159523010
```


Run time comparison

```
library(reticulate) # to communicate between R and Python (ignore for now)
tpython <- py$tvals
xyplot(tinsertion + tpython ~ n, grid = TRUE, outer = TRUE, ylab = "time (seconds)")
```


Insertion sort in C++

- Yet another possibility is to implement the algorithm in $\mathrm{C} / \mathrm{C}++$
- We will use Rcpp so that we can easily call the function from R
- Array indexing starts from 0 (like Python), so similar modifications needed

```
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector insertion_sort_rcpp_bad(NumericVector A)
{
    int i, j, n = A.size();
    double key;
    for (int j = 1; j < n; j++) {
        key = A[j];
        i = j - 1;
        while (i > -1 && A[i] > key) {
            A[i+1] = A[i];
            i = i - 1;
        }
        A[i+1] = key;
    }
    return A;
}
(A <- round(runif(10), 2))
```

[1] $0.740 .690 .620 .390 .570 .940 .270 .530 .99 \quad 0.32$
insertion_sort_rcpp_bad(A)
[1] $0.270 .320 .390 .530 .57 \quad 0.620 .690 .740 .940 .99$

```
A # changed!
```

[1] $0.270 .320 .390 .530 .57 \quad 0.620 .690 .740 .940 .99$

- $\mathrm{C}++$ also does not copy arrays when given as arguments, so changes modify original
- This violates implicit contract of R functions, so we need to explicitly copy

```
#include <Rcpp.h>
using namespace Rcpp;
// [[Rcpp::export]]
NumericVector insertion_sort_rcpp(NumericVector x)
{
        int i, j, n = x.size();
        double key;
        NumericVector A = clone(x);
        for (int j = 1; j < n; j++) {
            key = A[j];
        i = j - 1;
        while (i > -1 && A[i] > key) {
            A[i+1] = A[i];
            i = i - 1;
        }
        A[i+1] = key;
        }
        return A;
}
(A <- round(runif(10), 2))
    [1] 0.50}00.130.95 0.18 0.23 0.83 0.01 0.42 0.05 0.42
insertion_sort_rcpp(A)
    [1] 0.01 0.05 0.13 0.18 0.23 0.42 0.42 0.50}00.830.9
```

A \# unchanged
[1] $0.500 .130 .950 .18 \quad 0.230 .830 .010 .420 .050 .42$

Run time comparison

```
trcpp <- sapply(n, timeSort, nrep = 5, sort.fun = insertion_sort_rcpp)
xyplot(tinsertion + tpython + trcpp ~ n, grid = TRUE, outer = TRUE, ylab = "time (seconds)")
```


Run time comparison (for larger inputs)

```
trcpp10 <- sapply(10 * n, timeSort, nrep = 5, sort.fun = insertion_sort_rcpp)
tsort <- sapply(10 * n, timeSort, nrep = 5, sort.fun = sort)
xyplot(trcpp10 + tsort ~ (10 * n), grid = TRUE, outer = TRUE, ylab = "time (seconds)", aspect = 1)
```



```
tsort <- sapply(100 * n, timeSort, nrep = 5, sort.fun = sort)
xyplot(tsort ~ (100 * n), grid = TRUE, outer = TRUE, ylab = "time (seconds)", aspect = 1)
```


Run time comparison: summary

- Run time may vary substantially depending on implementation
- Even a C++ implementation of insertion sort is mich slower than built in sort() in R
- As a crude approximation, run time of insertion sort seems to be roughly quadratic in input size
- Can we validate this observation theoretically?

Theoretical analysis of algorithms

- Analysis of an algorithm means predicting the resources requires by it, e.g.,
- amount of memory
- amount of input-output
- (most commonly) amount of computational time
- This helps identify efficient algorithms when multiple candidates available
- Such analysis may indicate multiple viable candidates, but helps to discard inferior ones

Theoretical model

- Analysis of an algorithm requires a model of the implementation technology
- Specifically, we need model for the resources and their associated costs
- We will assume a single-processor random access machine (RAM) model
- This has a precise technical meaning, but for our purposes, it means that
- Instructions are executed one after another, with no concurrent operations
- Accessing any location in memory has the same cost, regardless of the location
- In particular, accessing variable values (memory look-up) requires constant time
- Arrays are assumed to occupy contiguous locations in memory
- In other words, location of $A[i]=$ location of $A[1]+\operatorname{constant}$ * $(i-1)$
- So accessing any $A[i]$ has same cost
- Drawback: arrays cannot be resized without incurring significant cost (by copying)
- We can be more precise, by
- listing the set of basic instructions the machine can perform
- E.g., add, multiply, data copy, move, branching, etc.
- Model the cost of each such operation
- We will not try to be that precise
- With reasonable assumptions, we will still be able to do reasonable analysis

Runtime analysis of insertion sort

- Intuitively clear that time taken by insertion sort depends on several factors:
- Size of the input (longer arrays will need more time)
- Whether the array is already (almost) sorted (then the position of the key is found quickly in every step)
- We need to formalize both these dependencies
- Notion of input size depends on the context
- For sorting problem, length of the input array is the natural notion
- For multiplying two numbers, a reasonable notion may be their magnitudes
- To take the nature of input into account, we usually consider
- worst case
- best case
- average case

How should we define "running time"?

- Ideally, sum of the times taken (or cost) for each basic instruction in the machine.
- We take a slightly different approach
- Instead of assigning a cost to each basic instruction, we assign a cost to each step in our algorithm
- Then, count the number of times each step is executed

Runtime analysis of insertion sort

- Try this for insertion sort
- Assume a cost for each line of the algorithm
for $(\mathrm{j}=2$ to A.length $)$ \{
key $=\mathrm{A}[\mathrm{j}]$
c_{2}
$\mathrm{i}=\mathrm{j}-1$
c_{3}
while $(\mathrm{i}>0$ and $\mathrm{A}[\mathrm{i}]>$ key $)\{$ c_{4}
$\mathrm{A}[\mathrm{i}+1]=\mathrm{A}[\mathrm{i}]$
c_{5}
$\mathrm{i}=\mathrm{i}-1$
\}
$\mathrm{A}[\mathrm{i}+1]=$ key $\quad c_{7}$
\}
- We need to count the number of times each step is executed
- This depends on the number of times the while loop runs, which depends on the input
- Let t_{j} denote the number of times the while condition is tested for index j
- The test will be false for the last iteration (and the loop will not run)

```
insertion-sort(A) cost times
for (j = 2 to A.length) { }\quad\mp@subsup{c}{1}{}
    key = A[j] }\quad\mp@subsup{c}{2}{}\quadn-
    i = j - 1 ccen n-1
```



```
        A[i+1]=\textrm{A}[\textrm{i}]\quad\mp@subsup{c}{5}{}\quad\mp@subsup{\sum}{j=2}{n}(\mp@subsup{t}{j}{}-1)
```



```
    & }\stackrel{}}{\textrm{A}+1+1]= key }\quad\\quad\mp@subsup{c}{7}{}\quadn-
}
```

- The total running time (cost) is

$$
T(n)=c_{1} n+\left(c_{2}+c_{3}+c_{7}\right)(n-1)+c_{4}\left(\sum t_{j}\right)+\left(c_{5}+c_{6}\right)\left(\sum t_{j}-1\right)
$$

- Runtime of insertion sort

$$
T(n)=c_{1} n+\left(c_{2}+c_{3}+c_{7}\right)(n-1)+c_{4}\left(\sum t_{j}\right)+\left(c_{5}+c_{6}\right)\left(\sum t_{j}-1\right)
$$

- Depends on the values of t_{j}
- If input is already sorted, then $t_{j}=1$ for all j, and hence

$$
T(n)=c_{1} n+\left(c_{2}+c_{3}+c_{7}+c_{4}\right)(n-1)=a n+b
$$

- In other words, $T(n)$ is linear in n, with coefficients a and b that depend on the costs c_{i}
- This is the best case scenario
- Runtime of insertion sort

$$
T(n)=c_{1} n+\left(c_{2}+c_{3}+c_{7}\right)(n-1)+c_{4}\left(\sum t_{j}\right)+\left(c_{5}+c_{6}\right)\left(\sum t_{j}-1\right)
$$

- The worst case scenario is when the array is reverse sorted
- In that case, $t_{j}=j$ for all j
- Noting that $\sum_{2}^{n} j=\frac{n(n+1)}{2}-1$ and $\sum_{2}^{n}(j-1)=\frac{n(n-1)}{2}$, we have

$$
T(n)=a n^{2}+b n+c
$$

- In other words, $T(n)$ is quadratic, with coefficients a, b, c that depend on the costs c_{i}
- The best case scenario is usually not of interest
- An algorithm is typically evaluated based on its worst case running time
- Another reasonable definition is the average case running time
- For the sorting problem, this is defined as the
- Expected running time if the input is randomly ordered
- More precisely, "randomly ordered" means all permutations are equally likely

Exercises

- Derive the average case running time of insertion sort
- Modify the insertion sort algorithm to return a permutation that will sort the input
- Specifically, p <- insertion_order (A) should give an index vector p such that $\mathrm{A}[\mathrm{p}]$ is sorted
- Implement this modified algorithm using both R and Rcpp
- To use Rcpp, you must first install a compiler and other tools from here
- See also the RStudio page for Rcpp for other resources

Order of growth

- Note that we have ignored the exact $\operatorname{costs} c_{i}$ for each step
- Instead, we express the worst-case running time as $T(n)=a n^{2}+b n+c$
- As n grows larger, this is dominated by the n^{2} term
- Lower order terms (linear and constant) are asymptotically insignificant compared to n^{2}
- For this reason, we usually simplify further and say that the order of growth of $T(n)$ is like n^{2}
- This is indicated using the notation

$$
T(n)=\Theta\left(n^{2}\right)
$$

- One algorithm is considered better than another if it has lower order of growth
- This is true even if the second one is faster for small input (as it will be slower for large enough input)
- If two algorithms have same order of growth, the coefficients may be important in practice
- However, theoretical analysis will usually consider them to be equivalent

Divide and Conquer

- Insertion sort is an incremental algorithm: modifies the input one step at a time
- Another common approach is known as "divide-and-conquer"
- Depends on a technique called recursion (an algorithm calling itself)
- The basic idea is:
- Divide the problem into a number of subproblems that are smaller instances of the same problem
- Conquer the subproblems by solving them recursively
- Combine the solutions to the subproblems into the solution for the original problem

Merge sort

- The first example of this we study is called merge sort
- Loosely, it operates as follows
- Divide: Divide the n-element sequence to be sorted into two subsequences of $n / 2$ elements each
- Conquer: Sort the two subsequences
* If a subsequences is of length 1 , it is already sorted, and there is nothing more to do
* Otherwise, sort it recursively using merge sort
- Combine: Merge the two sorted subsequences to produce the sorted answer
- The first two steps are essentially trivial
- Key operation: merge two sorted sequences in the "combine" step

The merge step

- Done using an auxiliary procedure $\operatorname{MERGE}(A, p, q, r)$, where
- A is an array
$-p, q$, and r are indices into the array such that $p \leq q<r$
- Assumes that subarrays $A[p, \ldots, q]$ and $A[q+1, \ldots, r]$ are in sorted order
- Goal is to merge them to into single sorted subarray that replaces the current subarray $A[p, \ldots, r]$
- The essential idea of MERGE is the following:
- Suppose we have two sorted piles on the table, with the smallest cards on top
- Start with a new empty pile
- Look at the top two cards, pick the smaller one, and add to new pile
- Repeat (if one pile empty, choose always from the other)
merge (A, p, q, r)
$\mathrm{n}_{1}=\mathrm{q}-\mathrm{p}+1$
$\mathrm{n}_{2}=\mathrm{r}-\mathrm{q}$
Create new arrays $\mathrm{L}\left[1, \ldots, \mathrm{n}_{1}+1\right]$ and $\mathrm{R}\left[1, \ldots, \mathrm{n}_{2}+1\right]$
for $\left(\mathrm{i}=1, \ldots, \mathrm{n}_{1}\right)\{\mathrm{L}[\mathrm{i}]=\mathrm{A}[\mathrm{p}+\mathrm{i}-1]\}$
for $\left(j=1, \ldots, n_{2}\right)\{R[j]=A[q+j]\}$

```
\(\mathrm{L}\left[\mathrm{n}_{1}+1\right]=\infty \quad \# \#\) sentinel values
\(\mathrm{R}\left[\mathrm{n}_{2}+1\right]=\infty \quad \# \#\) ensures that L and R never become empty
\(\mathrm{i}=1\)
\(\mathrm{j}=1\)
for \((k=p, \ldots, r)\{\)
    if \((\mathrm{L}[\mathrm{i}] \leq \mathrm{R}[\mathrm{j}])\{\)
        \(\mathrm{A}[\mathrm{k}]=\mathrm{L}[\mathrm{i}]\)
        \(\mathrm{i}=\mathrm{i}+1\)
    \}
    else \{
        \(\mathrm{A}[\mathrm{k}]=\mathrm{R}[\mathrm{j}]\)
        \(j=j+1\)
    \}
\}
```

- It is easy to see that the runtime of merge is linear in $n=r-p+1$
- One comparison needed to fill every position
- To prove correctness, consider the loop invariant

At the start of each iteration of the main for loop, the subarray $A[p, \ldots, k-1]$ contains the $k-p$ smallest elements of $L\left[1, \ldots, n_{1}+1\right]$ and $R\left[1, \ldots, n_{2}+1\right]$ in sorted order. Also, of the remaining elements, $L[i]$ and $R[j]$ are the smallest elements in their respective arrays.

Correctness of merge

Initialization

- Prior to the first iteration, we have $k=p$, so that the subarray $A[p, \ldots, k-1]$ is empty
- This empty subarray contains the $k-p=0$ smallest elements of L and R
- As $i=j=1, L[i]$ and $R[j]$ are the respective smallest elements not copied back into A

Maintenance

- Suppose that $L[i] \leq R[j]$
- Then $L[i]$ is the smallest element not yet copied back into A
- $A[p, \ldots, k-1]$ already contains the $k-p$ smallest elements of L and R
- So, after $L[i]$ is copied into $A[k], A[p, \ldots, k]$ will contain the $k-p+1$ smallest elements
- Incrementing k (in for loop) and i reestablishes the loop invariant for the next iteration
- If instead $L[i]>R[j]$, then the other branch maintains the loop invariant

Termination

- At termination, $k=r+1$
- By loop invariant,
the subarray $A[p, \ldots, k-1] \equiv A[p, \ldots, r]$, contains the $k-p=r-p+1$ smallest elements of $L\left[1, \ldots, n_{1}\right]$ and $R\left[1, \ldots, n_{2}\right]$, in sorted order
- The arrays L and R together contain $n_{1}+n_{2}+2=r-p+3$ elements
- All but the two largest have been copied back into A, and these two largest elements are the sentinels

Merge sort

- Using merge, the merge sort algorithm is now implemented as

```
merge-sort(A, p, r)
if (p<r) {
    q= floor((p+r)/2 )
    merge-sort(A, p, q)
    merge-sort(A, q+1, r)
    merge(A, p, q, r)
}
```

- In general, this sorts the subarray $A[p, \ldots, r]$
- It is initially called as merge $(A, 1, n)$ for an n-element input array

Analysis of divide and conquer algorithms

- The runtime of merge sort can be expressed as a recurrence

$$
T(n)= \begin{cases}\Theta(1) & n \leq 1 \\ 2 T(\lceil n / 2\rceil)+\Theta(n) & \text { otherwise }\end{cases}
$$

- $\Theta(1)$ represents a constant cost of sorting a 0 or 1 -element array
- The $\Theta(n)$ term is the cost of merging, including the (constant) cost of computing the split
- We will later see a general result that helps to solve recurrences of this form
- For now, we will derive the solution for merge sort based on heuristic arguments

Analysis of merge sort

- We do this by constructing a so-called recursion tree
- For convenience, we assume that the input size n is an exact power of 2
- This means that each split is of exactly half the size
- This lets us rewrite the recurrence in a simpler form:

$$
T(n)= \begin{cases}c & n=1 \\ 2 T(n / 2)+c n & n>1\end{cases}
$$

Recursion tree for merge sort

- Main observations:
- Each level of the tree requires cn time
- There are $1+\log _{2} n$ levels in total
- This gives a total runtime of

$$
T(n)=c n\left(1+\log _{2} n\right)=\Theta(n \log n)
$$

Growth of functions

- Before moving on, we will briefly discuss asymptotic growth notation
- Formally, we are interested in the behaviour of a function $f(n)$ as $n \rightarrow \infty$
- All functions we consider are from $\mathbb{N} \rightarrow \mathbb{R}$
- Sometimes we may abuse notation and consider functions with domain \mathbb{R}

Θ-notation

- Given a function $g: \mathbb{N} \rightarrow \mathbb{R}$, we define the set

$$
\begin{aligned}
& \Theta(g(n))=\left\{f(n) \quad \mid \quad \exists c_{1}, c_{2}>0 \text { and } N \in \mathbb{N}\right. \text { such that } \\
&\left.n \geq N \Longrightarrow 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}
\end{aligned}
$$

- That is, $f(n) \in \Theta(g(n))$ if $f(n)$ can be asymptotically bounded on both sides by multiples of $g(n)$
- We will usually write $f(n)=\Theta(g(n))$ to mean the same thing.
- Note that this definition implicitly requires $f(n)$ to be asymptotically non-negative
- We will assume this here as well as for other asymptotic notations used in this course.
- The Θ notation is used to indicate exact order of growth
- The next two notations indicate upper and lower bounds

O-notation

- The O-notation (usually pronounced "big-oh") indicates an asymptotic upper bound

$$
O(g(n))=\{f(n) \mid \exists c>0 \text { and } N \in \mathbb{N} \text { such that } n \geq N \Longrightarrow 0 \leq f(n) \leq c g(n)\}
$$

- As before, we usually write $f(n)=\Theta(g(n))$ to mean $f(n) \in \Theta(g(n))$
- Note that $f(n)=\Theta(g(n)) \Longrightarrow f(n)=O(g(n))$, that is, $\Theta(g(n)) \subseteq O(g(n))$
- The O-notation is important because upper bounds are often easier to prove (than lower bounds)
- That is often a sufficiently useful characterization of an algorithm

Ω-notation

- The Ω-notation (pronounced "big-omega") similarly indicates an asymptotic lower bound

$$
\Omega(g(n))=\{f(n) \mid \exists c>0 \text { and } N \in \mathbb{N} \text { such that } n \geq N \Longrightarrow 0 \leq c g(n) \leq f(n)\}
$$

- The proof of the following theorem is an exercise:

$$
f(n)=\Theta(g(n)) \Longleftrightarrow f(n)=\Omega(g(n)) \text { and } f(n)=O(g(n))
$$

- So, for example, if $T(n)$ is the running time of insertion sort, then we can say that

$$
T(n)=\Omega(n) \text { and } T(n)=O\left(n^{2}\right)
$$

- But not that

$$
T(n)=\Theta(n) \text { or } T(n)=\Theta\left(n^{2}\right)
$$

- However, if $T(n)$ denotes the worst-case running time of insertion sort, then

$$
T(n)=\Theta\left(n^{2}\right)
$$

Arithmetic with asymptotic notation

- We will often do casual arithmetic with asymptotic notation
- Most of the time this is OK, but we should be careful about potential ambiguity
- Example: Consider the statement

$$
a n^{2}+b n+c=a n^{2}+\Theta(n)
$$

- Here we use $\Theta(n)$ to actually mean a function $f(n) \in \Theta(n)$ (in this case, $f(n)=b n+c$)
- Similarly, we could write

$$
2 n^{2}+\Theta(n)=\Theta\left(n^{2}\right)
$$

- This means that whatever the choice of $f(n) \in \Theta(n)$ in the LHS, $2 n^{2}+f(n)=\Theta\left(n^{2}\right)$
- This kind of abuse of notation can sometimes lead to amiguity
- For example, if $f(n)=\Theta(n)$, then

$$
\sum_{i=1}^{n} f(i)=\Theta(n(n+1) / 2)=\Theta\left(n^{2}\right)
$$

- We may write the following to mean the same thing:

$$
\sum_{i=1}^{n} \Theta(i)
$$

- But this is not the same as $\Theta(1)+\Theta(2)+\cdots+\Theta(n)$
- This may not even make sense (what is $\Theta(2)$?)
- Each $\Theta(i)$ may represent a different function

and ω-notation

- The O - and Ω-notations indicate bounds that may or may not be asymptotically "tight"
- The "little-oh" and "little-omega" notations indicate strictly non-tight bounds

$$
o(g(n))=\{f(n): \text { for all } c>0, \exists N \in \mathbb{N} \text { such that } n \geq N \Longrightarrow 0 \leq f(n) \leq c g(n)\}
$$

- and

$$
\omega(g(n))=\{f(n): \text { for all } c>0, \exists N \in \mathbb{N} \text { such that } n \geq N \Longrightarrow 0 \leq c g(n) \leq f(n)\}
$$

- Essentially, as $f(n)$ and $g(n)$ are asymptotically non-negative,

$$
f(n)=o(g(n)) \Longrightarrow \lim \sup \frac{f(n)}{g(n)}=0 \Longrightarrow \lim \frac{f(n)}{g(n)}=0
$$

- Similarly, $f(n)=\omega(g(n)) \Longrightarrow \lim \frac{f(n)}{g(n)}=\infty$
- Refer to Introduction to Algorithms (Cormen et al) for further properties of asymptotic notation
- We will use these properties as and when necessary

Analyzing Divide and Conquer algorithms

- As seen for merge sort, the runtime analysis of a divide-and-conquer algorithm usually involves solving a recurrence
- Let $T(n)$ be the running time on a problem of size n
- We can write

$$
T(n)= \begin{cases}\Theta(1) & \text { if } n \leq c \\ a T(n / b)+D(n)+C(n) & \text { otherwise }\end{cases}
$$

- where $T(n)$ is constant if the problem is small enough (say $n \leq c$ for some constant c), and otherwise
- the division step produces a subproblems, each of size n / b
$-D(n)$ is the time taken to divide the problem into subproblems,
- $C(n)$ is the time taken to combine the sub-solutions.
- There are three common methods to solve recurrences.
- The substitution method: guess a bound and then use mathematical induction to prove it correct
- The recursion-tree method: convert the recurrence into a tree, and use techniques for bounding summations to solve the recurrence
- The master method provides bounds for recurrences of the form $T(n)=a T(n / b)+f(n)$ for certain functions $f(n)$ that cover most common cases

The substitution method

- The substitution method is basically to

1. Guess the form of the solution, and
2. Use mathematical induction to verify it

- Example (similar to merge sort): Find an upper bound for the recurrence

$$
T(n)=2 T(n / 2)+n
$$

- Suppose we guess that the solution is $T(n)=O\left(n \log _{2} n\right)$
- We need to prove that $T(n) \leq c n \log _{2} n$ for some constant $c>0$
- Assume this holds for all positive $m<n$, in particular,

$$
T(n / 2) \leq \frac{c n}{2} \log _{2} \frac{n}{2}
$$

- Substituting, we have (provided $c \geq 1$)

$$
\begin{array}{rlr}
T(n) & = & 2 T(n / 2)+n \\
& \leq & 2 \frac{1}{2} c n \log _{2}(n / 2)+n \\
& = & c n \log _{2} n-c n \log _{2} 2+n \\
& = & c n \log _{2} n-c n+n \\
& \leq & c n \log _{2} n
\end{array}
$$

- Technically, we still need to prove the guess for a boundary condition.
- Let's try for $n=1$:
- Require $T(1) \leq c 1 \log _{2} 1=0$
- Not possible for any realistic value of $T(1)$
- So the solution is not true for $n=1$
- However, for $n=2$:
- Require $T(2) \leq c 2 \log _{2} 2=2 c$
- Can be made to hold for some choice of $c>1$, whatever the value of $T(2)=2 T(1)+2$
- Similarly for $T(3)$
- Note that for $n>3$, the induction step never makes use of $T(1)$ directly
- Remark: be careful not to use asymptotic notation in the induction step
- Consider this proof to show $T(n)=O(n)$, assuming $T(m) \leq c m$ for $m<n$

$$
\begin{array}{rlr}
T(n) & = & 2 T(n / 2)+n \\
& \leq & 2 c n / 2+n \\
& \leq & c n+n \\
& = & O(n)
\end{array}
$$

- The last step is invalid
- Unfortunately, making a good guess is not always easy, limiting the usefulness of this method

The recursion tree method

- This is the method we used to calculate the merge sort run time
- Usually this is helpful to derive a guess that we can then formally prove using recursion

The master method

- The Master theorem: Let $a \geq 1$ and $b>1$ be constants, let $f(n)$ be a function, and

$$
T(n)=a T(n / b)+f(n)
$$

- Here n / b could also floor or ceiling of n / b
- Then $T(n)$ has the following asymptotic bounds:

1. If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some constant $\varepsilon>0$, then $T(n)=\Theta\left(n^{\log _{b} a}\right)$
2. If $f(n)=\Theta\left(n^{\log _{b} a}\right)$, then $T(n)=\Theta\left(n^{\log _{b} a} \log _{2} n\right)=\Theta\left(f(n) \log _{2} n\right)$
3. If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some constant $\varepsilon>0$, and if $a f(n / b) \leq c f(n)$ for some constant $c<1$ and all sufficiently large n, then $T(n)=\Theta(f(n))$

- We will not prove the master theorem
- Note that we are essentially comparing $f(n)$ with $n^{\log _{b} a}$
- whichever is bigger (by a polynomial factor) determines the solution
- If they are the same size, we get an additional $\log n$ factor
- Additionally, the third case needs a regularity condition on $f(n)$
- Exercise: Use the master theorem to obtain the asymptotic order for

$$
T(n)=T(n / 2)+c n
$$

