
Analysis of Algorithms I

Deepayan Sarkar

Algorithms
• Procedure to perform a task or solve a problem

• We have seen some examples: find primes, compute factorials / binomial coefficients

• Important theoretical questions:

– Is an algorithm correct? (Does it always work?)

– How much resource does the algorithm need?

• These questions are particularly interesting when multiple algorithms are available

Correctness
• When is an algorithm correct?

• The answer may depend on the input

• An algorithm may be correct for some inputs, not for others

• A specific input for a general problem is often called an instance of the problem

• To be correct, an algorithm must

– Stop (after a finite number of steps), and

– produce the correct output

• This must happen for all possible inputs, i.e., all instances of the problem

Efficiency
• How efficient is an algorithm?

• That is, how much of resources does the algorithm need?

• We are usually interested in efficiency in terms of

– Time needed for the algorithm to execute

– Amount of memory / storage needed while the algorithm runs

• The answer may again depend on the specific instance of the problem

Sorting
• We will study these questions mainly in the context of one specific problem, namely sorting

• The basic problem:

– Input: A sequence of numbers (a1, a2, ..., an)

– Desired output: A permutation of the input, (b1, b2, ..., bn) such that b1 ≤ b2 ≤ ... ≤ bn
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• Sometimes we are interested in the permutation rather than the permuted output

• The ai-s are known as keys.

Arrays
• The analysis of algorithms is both a practical and a theoretical exercise

• For a theoretical analysis of algorithms, we need

– Abstract data structures to represent the input and output (and possibly intermediate objects)

– Some rules or conventions regarding how these structures behave

• These structures and rules should reflect actual practical implementations

• For sorting, we usually need a simple data structure known as an array:

– An array A[1, ..., n] of length n is a sequence of length n.

– The i-th element of an array A is denoted by A[i]

– Each A[i] acts as a variable, that is, we can assign values to it, and query its current value

– The sub-array with indices i to j (inclusive) is often indicated by A[i, ..., j]

Insertion sort
• Insertion sort is a simple and intuitive sorting algorithm

• Basic idea:

– Think of sorting a hand of cards

– Start with an empty left hand and the cards face down on the table

– Remove one card at a time from the table and insert it into the correct position in the left hand

– To find its correct position, compare it with each of the cards already in the hand, from right to
left

• Insertion sort is a good algorithm for sorting a small number of elements

• The following pseudo-code represents the insertion sort algorithm

• Here the input is an already-constructed array A

• The length of the array is given by the attribute A.length

insertion-sort(A)

for (j = 2 to A.length) {
key = A[j] // Value to insert into the sorted sequence A[1,. . . ,j-1]
i = j - 1
while (i > 0 and A[i] > key) {

A[i+1] = A[i]
i = i - 1

}
A[i+1] = key

}
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Exercise
• Is it obvious that this algorithm works?

• Can you think of any other sorting algorithm?

• Is your algorithm more efficient than insertion sort?

Insertion sort in R
insertion.sort <- function(A, verbose = FALSE)
{

if (length(A) < 2) return(A)
for (j in 2:length(A)) {

key <- A[j]
i <- j - 1
while (i > 0 && A[i] > key) {

A[i+1] <- A[i]
i <- i - 1

}
A[i+1] <- key
if (verbose) cat("j =", j, ", i =", i,

", A = (", paste(format(A), collapse = ", "), ")\n")
}
return (A)

}

• More or less same as the algorithm pseudo-code

• Addition verbose argument to print intermediate steps

• Due to R semantics, the result must be returned (not modified in place)

• This last behaviour has important practical implications (to be discussed later)

(A <- sample(10))

[1] 2 1 10 6 4 8 5 7 9 3

insertion.sort(A)

[1] 1 2 3 4 5 6 7 8 9 10

(A <- round(runif(10), 2))

[1] 0.67 0.33 0.92 0.84 0.35 1.00 0.55 0.18 0.90 0.05

insertion.sort(A)

[1] 0.05 0.18 0.33 0.35 0.55 0.67 0.84 0.90 0.92 1.00

A

[1] 0.67 0.33 0.92 0.84 0.35 1.00 0.55 0.18 0.90 0.05

insertion.sort(A, verbose = TRUE)

j = 2 , i = 0 , A = ( 0.33, 0.67, 0.92, 0.84, 0.35, 1.00, 0.55, 0.18, 0.90, 0.05 )
j = 3 , i = 2 , A = ( 0.33, 0.67, 0.92, 0.84, 0.35, 1.00, 0.55, 0.18, 0.90, 0.05 )
j = 4 , i = 2 , A = ( 0.33, 0.67, 0.84, 0.92, 0.35, 1.00, 0.55, 0.18, 0.90, 0.05 )
j = 5 , i = 1 , A = ( 0.33, 0.35, 0.67, 0.84, 0.92, 1.00, 0.55, 0.18, 0.90, 0.05 )
j = 6 , i = 5 , A = ( 0.33, 0.35, 0.67, 0.84, 0.92, 1.00, 0.55, 0.18, 0.90, 0.05 )
j = 7 , i = 2 , A = ( 0.33, 0.35, 0.55, 0.67, 0.84, 0.92, 1.00, 0.18, 0.90, 0.05 )
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j = 8 , i = 0 , A = ( 0.18, 0.33, 0.35, 0.55, 0.67, 0.84, 0.92, 1.00, 0.90, 0.05 )
j = 9 , i = 6 , A = ( 0.18, 0.33, 0.35, 0.55, 0.67, 0.84, 0.90, 0.92, 1.00, 0.05 )
j = 10 , i = 0 , A = ( 0.05, 0.18, 0.33, 0.35, 0.55, 0.67, 0.84, 0.90, 0.92, 1.00 )

[1] 0.05 0.18 0.33 0.35 0.55 0.67 0.84 0.90 0.92 1.00

Correctness
• Examples suggest that this algorithm works

• How can we formally prove correctness for all possible input (all instances)?

• Note that the algorithm works by running a loop

• The key observation is the following:

At the beginning of each loop (for any particular value of j), The first j − 1 elements in
A[1, ..., j − 1] are the same as the first j − 1 elements originally in the array, but they are
now sorted.

Loop invariant
• This kind of statement is known as a loop invariant

• Such loop invariants can be used to prove correctness if we can show three things:

– Initialization: It is true prior to the first iteration of the loop

– Maintenance: If it is true before an iteration of the loop, it remains true before the next iteration

– Termination: Upon termination, the invariant leads to a useful property

• The first two properties are similar to induction

• The third is important in the sense that a loop invariant is useless unless the third property holds

Loop invariant for insertion sort
Statement

At the beginning of each loop (for any particular value of j), The first j−1 elements in A[1, ..., j−1]
are the same as the first j − 1 elements originally in the array, but they are now sorted.

Initialization

• Before starting the for loop for j = 2, A[1, ..., j − 1] is basically just A[1], which is

– trivially sorted, and

– the same as the original A[1]

Maintenance

• At the beginning of the for loop with some value of j, A[1, ..., j − 1] is sorted

• Informally, the while loop within each iteration works by

– comparing key = A[j] with A[j − 1], A[j − 2], ..., A[1] (in that order)

– moving them one position to the right, until the correct position of key is found

• Clearly, this while loop must terminate within at most j steps

• After the while loop ends, key = A[j] is inserted in the correct position
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• At the end, A[1, ..., j] is a sorted version of the original A[1, ..., j].

• Thus, the loop invariant is now true for index j + 1

• To be more formal, we could prove a loop invariant for the while loop also

• Will not go into that much detail

Termination

• The for loop essentially increments j by 1 every time it runs

• The loop terminates when j > n = A.length

• As each loop iteration increases j by 1, we must have j = n + 1 at that time

• Substituting n + 1 for j in the loop invariant, we have

– A[1, ..., n] has the same elements as it originally had, and is now sorted.

• Hence, the algorithm is correct.

Run time analysis
• It is natural to be interested in studying the efficiency of an algorithm

• Usually, we are interested in running time and memory usage

• Both these may depend on the size of the input, and often on the specific input

• If we have a practical implementation, we can simply run the algorithm to study running time

• Let’s try this with the R implementation

Run time of R implementation
• We expect running time to depend on size of input

• To average out effect of individual inputs, we can consider multiple random inputs, e.g.,

x <- replicate(20, runif(100), simplify = FALSE) # list of 20 vectors
system.time(lapply(x, insertion.sort))

user system elapsed
0.008 0.000 0.008

x <- replicate(20, runif(1000), simplify = FALSE)
system.time(lapply(x, insertion.sort))

user system elapsed
0.548 0.000 0.549

• Do this systematically for various input sizes

timeSort <- function(size, nrep = 20, sort.fun = insertion.sort)
{

x <- replicate(nrep, runif(size), simplify = FALSE)
system.time(lapply(x, sort.fun))["elapsed"] / nrep

}
n <- seq(100, 3000, by = 100)
tinsertion <- sapply(n, timeSort, nrep = 5, sort.fun = insertion.sort)

xyplot(tinsertion ~ n, grid = TRUE, aspect = "xy")
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tsort <- sapply(n, timeSort, nrep = 5, sort.fun = sort) # built-in sort() function
xyplot(tinsertion + tsort ~ n, grid = TRUE, outer = TRUE, ylab = "time (seconds)")

Insertion sort in Python
• We can also implement the algorithm in Python

• Arrays are not copied when given as arguments, so changes modify original

• Python array index starts from 0, so need to suitably modify

def insertion_sort_py(A):
for j in range(1, len(A)):

key = A[j]
i = j - 1
while i > -1 and A[i] > key :
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A[i+1] = A[i]
i = i - 1

A[i+1] = key

import numpy as np
import time
x = np.random.uniform(0, 1, 10).round(2)
x

array([0.01, 0.84, 0.02, 0.06, 0.65, 0.17, 0.85, 0.26, 0.75, 0.93])

t0 = time.time()
insertion_sort_py(x)
t1 = time.time()
x

array([0.01, 0.02, 0.06, 0.17, 0.26, 0.65, 0.75, 0.84, 0.85, 0.93])

t1 - t0 # elapsed time in seconds

0.00815129280090332

Run time of Python implementation
def time_sort(size, nrep, sortfun):

total_time = 0.0
for i in range(nrep):

x = np.random.uniform(0, 1, size)
t0 = time.time()
sortfun(x)
t1 = time.time()
total_time += (t1 - t0)

return total_time / nrep

nvals = range(100, 3001, 100)
tvals = [time_sort(i, 5, insertion_sort_py) for i in nvals]
print(tvals)

[0.0007145404815673828, 0.0027111530303955077, 0.005713224411010742, 0.010121440887451172, 0.015952301025390626, 0.023524904251098634, 0.03125996589660644, 0.0422612190246582, 0.052682924270629886, 0.06547446250915527, 0.07987537384033203, 0.09612555503845215, 0.11255407333374023, 0.12784171104431152, 0.14759888648986816, 0.16877369880676268, 0.1877429485321045, 0.21367368698120118, 0.2357738971710205, 0.2633659839630127, 0.29071807861328125, 0.3196439266204834, 0.34430923461914065, 0.37818541526794436, 0.41265254020690917, 0.44728589057922363, 0.4800652027130127, 0.5193507194519043, 0.5596569061279297, 0.6053540229797363]

Run time comparison
library(reticulate) # to communicate between R and Python (ignore for now)
tpython <- py$tvals
xyplot(tinsertion + tpython ~ n, grid = TRUE, outer = TRUE, ylab = "time (seconds)")
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Insertion sort in C++
• Yet another possibility is to implement the algorithm in C / C++

• We will use Rcpp so that we can easily call the function from R

• Array indexing starts from 0 (like Python), so similar modifications needed

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector insertion_sort_rcpp_bad(NumericVector A)
{

int i, j, n = A.size();
double key;
for (int j = 1; j < n; j++) {

key = A[j];
i = j - 1;
while (i > -1 && A[i] > key) {

A[i+1] = A[i];
i = i - 1;

}
A[i+1] = key;

}
return A;

}

(A <- round(runif(10), 2))

[1] 0.74 0.69 0.62 0.39 0.57 0.94 0.27 0.53 0.99 0.32

insertion_sort_rcpp_bad(A)

[1] 0.27 0.32 0.39 0.53 0.57 0.62 0.69 0.74 0.94 0.99

A # changed!
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[1] 0.27 0.32 0.39 0.53 0.57 0.62 0.69 0.74 0.94 0.99

• C++ also does not copy arrays when given as arguments, so changes modify original

• This violates implicit contract of R functions, so we need to explicitly copy

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector insertion_sort_rcpp(NumericVector x)
{

int i, j, n = x.size();
double key;
NumericVector A = clone(x);
for (int j = 1; j < n; j++) {

key = A[j];
i = j - 1;
while (i > -1 && A[i] > key) {

A[i+1] = A[i];
i = i - 1;

}
A[i+1] = key;

}
return A;

}

(A <- round(runif(10), 2))

[1] 0.50 0.13 0.95 0.18 0.23 0.83 0.01 0.42 0.05 0.42

insertion_sort_rcpp(A)

[1] 0.01 0.05 0.13 0.18 0.23 0.42 0.42 0.50 0.83 0.95

A # unchanged

[1] 0.50 0.13 0.95 0.18 0.23 0.83 0.01 0.42 0.05 0.42

Run time comparison
trcpp <- sapply(n, timeSort, nrep = 5, sort.fun = insertion_sort_rcpp)
xyplot(tinsertion + tpython + trcpp ~ n, grid = TRUE, outer = TRUE, ylab = "time (seconds)")

9



xyplot(tinsertion + tpython + trcpp ~ n, grid = TRUE, outer = TRUE,
scales = list(y = "free"), ylab = "time (seconds)")

Run time comparison (for larger inputs)
trcpp10 <- sapply(10 * n, timeSort, nrep = 5, sort.fun = insertion_sort_rcpp)
tsort <- sapply(10 * n, timeSort, nrep = 5, sort.fun = sort)
xyplot(trcpp10 + tsort ~ (10 * n), grid = TRUE, outer = TRUE, ylab = "time (seconds)", aspect = 1)
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tsort <- sapply(100 * n, timeSort, nrep = 5, sort.fun = sort)
xyplot(tsort ~ (100 * n), grid = TRUE, outer = TRUE, ylab = "time (seconds)", aspect = 1)

Run time comparison: summary
• Run time may vary substantially depending on implementation

• Even a C++ implementation of insertion sort is mich slower than built in sort() in R

• As a crude approximation, run time of insertion sort seems to be roughly quadratic in input size

• Can we validate this observation theoretically?

Theoretical analysis of algorithms
• Analysis of an algorithm means predicting the resources requires by it, e.g.,

11



– amount of memory

– amount of input-output

– (most commonly) amount of computational time

• This helps identify efficient algorithms when multiple candidates available

• Such analysis may indicate multiple viable candidates, but helps to discard inferior ones

Theoretical model
• Analysis of an algorithm requires a model of the implementation technology

• Specifically, we need model for the resources and their associated costs

• We will assume a single-processor random access machine (RAM) model

• This has a precise technical meaning, but for our purposes, it means that

– Instructions are executed one after another, with no concurrent operations

– Accessing any location in memory has the same cost, regardless of the location

• In particular, accessing variable values (memory look-up) requires constant time

• Arrays are assumed to occupy contiguous locations in memory

• In other words, location of A[i] = location of A[1] + constant * (i− 1)

• So accessing any A[i] has same cost

• Drawback: arrays cannot be resized without incurring significant cost (by copying)

• We can be more precise, by

– listing the set of basic instructions the machine can perform

– E.g., add, multiply, data copy, move, branching, etc.

– Model the cost of each such operation

• We will not try to be that precise

• With reasonable assumptions, we will still be able to do reasonable analysis

Runtime analysis of insertion sort
• Intuitively clear that time taken by insertion sort depends on several factors:

– Size of the input (longer arrays will need more time)

– Whether the array is already (almost) sorted (then the position of the key is found quickly in
every step)

• We need to formalize both these dependencies

• Notion of input size depends on the context

– For sorting problem, length of the input array is the natural notion

– For multiplying two numbers, a reasonable notion may be their magnitudes

• To take the nature of input into account, we usually consider

– worst case
– best case
– average case
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How should we define “running time”?
• Ideally, sum of the times taken (or cost) for each basic instruction in the machine.

• We take a slightly different approach

• Instead of assigning a cost to each basic instruction, we assign a cost to each step in our algorithm

• Then, count the number of times each step is executed

Runtime analysis of insertion sort
• Try this for insertion sort

• Assume a cost for each line of the algorithm

insertion-sort(A) cost

for (j = 2 to A.length) { c1
key = A[j] c2
i = j - 1 c3
while (i > 0 and A[i] > key) { c4

A[i+1] = A[i] c5
i = i - 1 c6

} \
A[i+1] = key c7

}

• We need to count the number of times each step is executed

• This depends on the number of times the while loop runs, which depends on the input

• Let tj denote the number of times the while condition is tested for index j

• The test will be false for the last iteration (and the loop will not run)

insertion-sort(A) cost times

for (j = 2 to A.length) { c1 n
key = A[j] c2 n− 1
i = j - 1 c3 n− 1
while (i > 0 and A[i] > key) { c4

∑n
j=2 tj

A[i+1] = A[i] c5
∑n

j=2(tj − 1)
i = i - 1 c6

∑n
j=2(tj − 1)

} \
A[i+1] = key c7 n− 1

}

• The total running time (cost) is

T (n) = c1n + (c2 + c3 + c7)(n− 1) + c4

(∑
tj

)
+ (c5 + c6)

(∑
tj − 1

)
• Runtime of insertion sort

T (n) = c1n + (c2 + c3 + c7)(n− 1) + c4

(∑
tj

)
+ (c5 + c6)

(∑
tj − 1

)
• Depends on the values of tj

• If input is already sorted, then tj = 1 for all j, and hence

T (n) = c1n + (c2 + c3 + c7 + c4)(n− 1) = an + b,
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• In other words, T (n) is linear in n, with coefficients a and b that depend on the costs ci

• This is the best case scenario

• Runtime of insertion sort

T (n) = c1n + (c2 + c3 + c7)(n− 1) + c4

(∑
tj

)
+ (c5 + c6)

(∑
tj − 1

)
• The worst case scenario is when the array is reverse sorted

• In that case, tj = j for all j

• Noting that
n∑
2

j = n(n+1)
2 − 1 and

n∑
2

(j − 1) = n(n−1)
2 , we have

T (n) = an2 + bn + c

• In other words, T (n) is quadratic, with coefficients a, b, c that depend on the costs ci

• The best case scenario is usually not of interest

• An algorithm is typically evaluated based on its worst case running time

• Another reasonable definition is the average case running time

• For the sorting problem, this is defined as the

– Expected running time if the input is randomly ordered

– More precisely, “randomly ordered” means all permutations are equally likely

Exercises
• Derive the average case running time of insertion sort

• Modify the insertion sort algorithm to return a permutation that will sort the input

• Specifically, p <- insertion_order(A) should give an index vector p such that A[p] is sorted

• Implement this modified algorithm using both R and Rcpp

• To use Rcpp, you must first install a compiler and other tools from here

• See also the RStudio page for Rcpp for other resources

Order of growth
• Note that we have ignored the exact costs ci for each step

• Instead, we express the worst-case running time as T (n) = an2 + bn + c

• As n grows larger, this is dominated by the n2 term

• Lower order terms (linear and constant) are asymptotically insignificant compared to n2

• For this reason, we usually simplify further and say that the order of growth of T (n) is like n2

• This is indicated using the notation

T (n) = Θ(n2)

• One algorithm is considered better than another if it has lower order of growth

• This is true even if the second one is faster for small input (as it will be slower for large enough input)

• If two algorithms have same order of growth, the coefficients may be important in practice
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• However, theoretical analysis will usually consider them to be equivalent

Divide and Conquer
• Insertion sort is an incremental algorithm: modifies the input one step at a time

• Another common approach is known as “divide-and-conquer”

• Depends on a technique called recursion (an algorithm calling itself)

• The basic idea is:

– Divide the problem into a number of subproblems that are smaller instances of the same problem

– Conquer the subproblems by solving them recursively

– Combine the solutions to the subproblems into the solution for the original problem

Merge sort
• The first example of this we study is called merge sort

• Loosely, it operates as follows

– Divide: Divide the n-element sequence to be sorted into two subsequences of n/2 elements each

– Conquer: Sort the two subsequences

∗ If a subsequences is of length 1, it is already sorted, and there is nothing more to do
∗ Otherwise, sort it recursively using merge sort

– Combine: Merge the two sorted subsequences to produce the sorted answer

• The first two steps are essentially trivial

• Key operation: merge two sorted sequences in the “combine” step

The merge step
• Done using an auxiliary procedure MERGE(A, p, q, r), where

– A is an array

– p, q, and r are indices into the array such that p ≤ q < r

– Assumes that subarrays A[p, ..., q] and A[q + 1, ..., r] are in sorted order

– Goal is to merge them to into single sorted subarray that replaces the current subarray A[p, ..., r]

• The essential idea of MERGE is the following:

– Suppose we have two sorted piles on the table, with the smallest cards on top

– Start with a new empty pile

– Look at the top two cards, pick the smaller one, and add to new pile

– Repeat (if one pile empty, choose always from the other)

merge(A, p, q, r)

n1 = q - p + 1
n2 = r - q
Create new arrays L[1, . . . , n1+1] and R[1, . . . , n2+1]
for (i = 1, . . . , n1) { L[i] = A[ p+i-1] }
for (j = 1, . . . , n2) { R[j] = A[ q+j] }
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L[ n1+1 ] = ∞ ## sentinel values
R[ n2+1 ] = ∞ ## ensures that L and R never become empty
i = 1
j = 1
for (k = p, . . . , r) {

if (L[i] ≤ R[j]) {
A[k] = L[i]
i = i + 1

}
else {

A[k] = R[j]
j = j + 1

}
}

• It is easy to see that the runtime of merge is linear in n = r − p + 1

• One comparison needed to fill every position

• To prove correctness, consider the loop invariant

At the start of each iteration of the main for loop, the subarray A[p, ..., k − 1] contains the k − p
smallest elements of L[1, ..., n1 + 1] and R[1, ..., n2 + 1] in sorted order. Also, of the remaining
elements, L[i] and R[j] are the smallest elements in their respective arrays.

Correctness of merge

Initialization

• Prior to the first iteration, we have k = p, so that the subarray A[p, ..., k − 1] is empty

• This empty subarray contains the k − p = 0 smallest elements of L and R

• As i = j = 1, L[i] and R[j] are the respective smallest elements not copied back into A

Maintenance

• Suppose that L[i] ≤ R[j]

• Then L[i] is the smallest element not yet copied back into A

• A[p, ..., k − 1] already contains the k − p smallest elements of L and R

• So, after L[i] is copied into A[k], A[p, ..., k] will contain the k − p + 1 smallest elements

• Incrementing k (in for loop) and i reestablishes the loop invariant for the next iteration

• If instead L[i] > R[j], then the other branch maintains the loop invariant

Termination

• At termination, k = r + 1

• By loop invariant,

the subarray A[p, ..., k − 1] ≡ A[p, ..., r], contains the k − p = r − p + 1 smallest elements of
L[1, ..., n1] and R[1, ..., n2], in sorted order

• The arrays L and R together contain n1 + n2 + 2 = r − p + 3 elements

• All but the two largest have been copied back into A, and these two largest elements are the sentinels
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Merge sort
• Using merge, the merge sort algorithm is now implemented as

merge-sort(A, p, r)

if (p < r) {
q = floor( (p+r)/2 )
merge-sort(A, p, q)
merge-sort(A, q+1, r)
merge(A, p, q, r)

}

• In general, this sorts the subarray A[p, ..., r]

• It is initially called as merge(A, 1, n) for an n-element input array

Analysis of divide and conquer algorithms
• The runtime of merge sort can be expressed as a recurrence

T (n) =
{

Θ(1) n ≤ 1
2T (dn/2e) + Θ(n) otherwise

• Θ(1) represents a constant cost of sorting a 0 or 1-element array

• The Θ(n) term is the cost of merging, including the (constant) cost of computing the split

• We will later see a general result that helps to solve recurrences of this form

• For now, we will derive the solution for merge sort based on heuristic arguments

Analysis of merge sort
• We do this by constructing a so-called recursion tree

• For convenience, we assume that the input size n is an exact power of 2

• This means that each split is of exactly half the size

• This lets us rewrite the recurrence in a simpler form:

T (n) =
{

c n = 1
2T (n/2) + cn n > 1

Recursion tree for merge sort

• Main observations:

– Each level of the tree requires cn time

– There are 1 + log2 n levels in total

• This gives a total runtime of

T (n) = cn(1 + log2 n) = Θ(n log n)
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Growth of functions
• Before moving on, we will briefly discuss asymptotic growth notation

• Formally, we are interested in the behaviour of a function f(n) as n→∞

• All functions we consider are from N→ R

• Sometimes we may abuse notation and consider functions with domain R

Θ-notation
• Given a function g : N→ R, we define the set

Θ(g(n)) = {f(n) | ∃ c1, c2 > 0 and N ∈ N such that
n ≥ N =⇒ 0 ≤ c1g(n) ≤ f(n) ≤ c2g(n)}

• That is, f(n) ∈ Θ(g(n)) if f(n) can be asymptotically bounded on both sides by multiples of g(n)

• We will usually write f(n) = Θ(g(n)) to mean the same thing.

• Note that this definition implicitly requires f(n) to be asymptotically non-negative

• We will assume this here as well as for other asymptotic notations used in this course.

• The Θ notation is used to indicate exact order of growth

• The next two notations indicate upper and lower bounds

O-notation
• The O-notation (usually pronounced “big-oh”) indicates an asymptotic upper bound

O(g(n)) = {f(n) | ∃ c > 0 and N ∈ N such that n ≥ N =⇒ 0 ≤ f(n) ≤ cg(n)}

• As before, we usually write f(n) = Θ(g(n)) to mean f(n) ∈ Θ(g(n))

• Note that f(n) = Θ(g(n)) =⇒ f(n) = O(g(n)), that is, Θ(g(n)) ⊆ O(g(n))

• The O-notation is important because upper bounds are often easier to prove (than lower bounds)

• That is often a sufficiently useful characterization of an algorithm

Ω-notation
• The Ω-notation (pronounced “big-omega”) similarly indicates an asymptotic lower bound

Ω(g(n)) = {f(n) | ∃ c > 0 and N ∈ N such that n ≥ N =⇒ 0 ≤ cg(n) ≤ f(n)}

• The proof of the following theorem is an exercise:

f(n) = Θ(g(n)) ⇐⇒ f(n) = Ω(g(n)) and f(n) = O(g(n))

• So, for example, if T (n) is the running time of insertion sort, then we can say that

T (n) = Ω(n) and T (n) = O(n2)

• But not that
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T (n) = Θ(n) or T (n) = Θ(n2)

• However, if T (n) denotes the worst-case running time of insertion sort, then

T (n) = Θ(n2)

Arithmetic with asymptotic notation
• We will often do casual arithmetic with asymptotic notation

• Most of the time this is OK, but we should be careful about potential ambiguity

• Example: Consider the statement

an2 + bn + c = an2 + Θ(n)

• Here we use Θ(n) to actually mean a function f(n) ∈ Θ(n) (in this case, f(n) = bn + c)

• Similarly, we could write

2n2 + Θ(n) = Θ(n2)

• This means that whatever the choice of f(n) ∈ Θ(n) in the LHS, 2n2 + f(n) = Θ(n2)

• This kind of abuse of notation can sometimes lead to amiguity

• For example, if f(n) = Θ(n), then

n∑
i=1

f(i) = Θ(n(n + 1)/2) = Θ(n2)

• We may write the following to mean the same thing:

n∑
i=1

Θ(i)

• But this is not the same as Θ(1) + Θ(2) + · · ·+ Θ(n)
– This may not even make sense (what is Θ(2) ?)
– Each Θ(i) may represent a different function

o- and ω-notation
• The O- and Ω-notations indicate bounds that may or may not be asymptotically “tight”

• The “little-oh” and “little-omega” notations indicate strictly non-tight bounds

o(g(n)) = {f(n) : for all c > 0, ∃ N ∈ N such that n ≥ N =⇒ 0 ≤ f(n) ≤ cg(n)}

• and

ω(g(n)) = {f(n) : for all c > 0, ∃ N ∈ N such that n ≥ N =⇒ 0 ≤ cg(n) ≤ f(n)}

• Essentially, as f(n) and g(n) are asymptotically non-negative,

f(n) = o(g(n)) =⇒ lim sup f(n)
g(n) = 0 =⇒ lim f(n)

g(n) = 0
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• Similarly, f(n) = ω(g(n)) =⇒ lim f(n)
g(n) =∞

• Refer to Introduction to Algorithms (Cormen et al) for further properties of asymptotic notation

• We will use these properties as and when necessary

Analyzing Divide and Conquer algorithms
• As seen for merge sort, the runtime analysis of a divide-and-conquer algorithm usually involves solving

a recurrence

• Let T (n) be the running time on a problem of size n

• We can write

T (n) =
{

Θ(1) if n ≤ c

aT (n/b) + D(n) + C(n) otherwise

• where T (n) is constant if the problem is small enough (say n ≤ c for some constant c), and otherwise

– the division step produces a subproblems, each of size n/b

– D(n) is the time taken to divide the problem into subproblems,

– C(n) is the time taken to combine the sub-solutions.

• There are three common methods to solve recurrences.

– The substitution method: guess a bound and then use mathematical induction to prove it correct

– The recursion-tree method: convert the recurrence into a tree, and use techniques for bounding
summations to solve the recurrence

– The master method provides bounds for recurrences of the form T (n) = aT (n/b) + f(n) for certain
functions f(n) that cover most common cases

The substitution method
• The substitution method is basically to

1. Guess the form of the solution, and
2. Use mathematical induction to verify it

• Example (similar to merge sort): Find an upper bound for the recurrence

T (n) = 2T (n/2) + n

• Suppose we guess that the solution is T (n) = O(n log2 n)

• We need to prove that T (n) ≤ cn log2 n for some constant c > 0

• Assume this holds for all positive m < n, in particular,

T (n/2) ≤ cn

2 log2
n

2
• Substituting, we have (provided c ≥ 1)
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T (n) = 2T (n/2) + n

≤ 21
2cn log2(n/2) + n

= cn log2 n− cn log2 2 + n

= cn log2 n− cn + n

≤ cn log2 n

• Technically, we still need to prove the guess for a boundary condition.

• Let’s try for n = 1:

– Require T (1) ≤ c 1 log2 1 = 0
– Not possible for any realistic value of T (1)
– So the solution is not true for n = 1

• However, for n = 2:

– Require T (2) ≤ c 2 log2 2 = 2c
– Can be made to hold for some choice of c > 1, whatever the value of T (2) = 2T (1) + 2

• Similarly for T (3)

• Note that for n > 3, the induction step never makes use of T (1) directly

• Remark: be careful not to use asymptotic notation in the induction step

• Consider this proof to show T (n) = O(n), assuming T (m) ≤ cm for m < n

T (n) = 2T (n/2) + n

≤ 2cn/2 + n

≤ cn + n

= O(n)

• The last step is invalid

• Unfortunately, making a good guess is not always easy, limiting the usefulness of this method

The recursion tree method
• This is the method we used to calculate the merge sort run time

• Usually this is helpful to derive a guess that we can then formally prove using recursion

The master method
• The Master theorem: Let a ≥ 1 and b > 1 be constants, let f(n) be a function, and

T (n) = aT (n/b) + f(n)

• Here n/b could also floor or ceiling of n/b

• Then T (n) has the following asymptotic bounds:

1. If f(n) = O(nlogb a−ε) for some constant ε > 0, then T (n) = Θ(nlogb a)

2. If f(n) = Θ(nlogb a), then T (n) = Θ(nlogb a log2 n) = Θ(f(n) log2 n)

3. If f(n) = Ω(nlogb a+ε) for some constant ε > 0, and if af(n/b) ≤ cf(n) for some constant c < 1
and all sufficiently large n, then T (n) = Θ(f(n))
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• We will not prove the master theorem

• Note that we are essentially comparing f(n) with nlogb a

• whichever is bigger (by a polynomial factor) determines the solution

• If they are the same size, we get an additional log n factor

• Additionally, the third case needs a regularity condition on f(n)

• Exercise: Use the master theorem to obtain the asymptotic order for

T (n) = T (n/2) + cn
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