
Analysis of Algorithms II

Deepayan Sarkar

Heapsort
• Next we study another sorting algorithm called heapsort

• It has the good properties of both merge sort and insertion sort

– It has O(n log2 n) worst-case running time

– It is in-place (requires only a constant amount of extra storage)

• It is based on a data structure known as a heap.

1

The abstract heap data structure

• The (binary) heap data structure is an object that we can view as a nearly complete binary tree.

– Each node corresponds to an element.

– The tree is completely filled on all levels except possibly the lowest, which is filled from the left up
to a point.

• For each node x, the following operations are defined:

– PARENT(x) returns the parent node

– LEFT(x) returns the left child node

– RIGHT(x) returns the right child node

2

How can we implement a heap?

• General graph G = (V, E) consists of

– V : set of vertices or nodes

– E : set of edges

• Usually stored as list of nodes and edges / adjacency matrix

• Trees are a subtype of graphs

– They have a special root node

– Each node has 0 or more child nodes

– Nodes with no children are called leafs

• Heaps are are (almost) complete binary trees

• This makes implementation of heaps easier than for general graphs

3

Implementation of a heap using arrays

• Suppose we number the nodes as shown

• Then we can define

PARENT

return floor(i/2)

LEFT

return 2i

RIGHT

return 2i + 1

• Because of this, heaps are usually implemented using an array

• Specifically, a heap is an array A with two attributes:

– length(A) gives the number of elements in the array

– The first heap-size(A) elements of the array are considered part of the heap

• Note that the number of elements of an array are usually fixed

• As we will see, it is common to change the heap size in heap-based algorithms

4

• Index the array by 1, 2, ..., n

• Root node has index 1

• Then as shown above, we can implement

PARENT(i)

return floor(i/2)

LEFT(i)

return 2i

RIGHT(i)

return 2i + 1

• In C / C++, there are shift operators << and >> that make these efficient

• Implementations need to change if arrays are indexed from 0

Height of a heap

• View the heap as a tree

5

• The height of a node is the number of edges on the longest simple downward path from the node to a
leaf.

• The height of the heap is the height of its root

• A heap of size n has height blog2 nc

Heap property
• We are usually interested in heaps that satisfy a particular property

• Depending on the property, the heap is called either a max-heap or a min-heap.

• Max-heap: A heap A is called a max-heap if it satisfies the “max-heap property”

A[PARENT (i)] ≥ A[i] for all i > 1

• That is, the value at every node (except the root node) is less than or equal to the value at its parent.
In particular,

– the largest element in a max-heap is stored at the root

– The subtree rooted at any node only contains values less that or equal to the value in that node

• Min-heap: Similarly, a heap A is a min-heap if it satisfies the “min-heap property”

A[PARENT (i)] ≤ A[i] for all i > 1

Example: max-heap

Algorithms for max-heaps
• For the heapsort algorithm, we will use max-heaps

• The key elements of the algorithm are

– The BUILD-MAX-HEAP procedure, which produces a max-heap from an unordered input array, and

– The MAX-HEAPIFY procedure, which is used to maintain the max-heap property

6

MAX-HEAPIFY
• Suppose that we have a heap that is almost a max-heap

• However, the max-heap property may not hold for the root element

• MAX-HEAPIFY fixes this error and makes it a max-heap

• The MAX-HEAPIFY procedure has the following inputs

– an array A, and

– an index i into the array

• When called, MAX-HEAPIFY assumes that

– the binary trees rooted at LEFT (i) and RIGHT (i) are max-heaps, but

– A[i] might be smaller than its children

• MAX-HEAPIFY moves A[i] down the max-heap so that the subtree rooted at i becomes a max-heap

• Outline: At each step,

– The largest of the elements A[i], A[LEFT (i)], A[RIGHT (i)] is determined

– Its index is stored in the variable largest

• If A[i] is largest, then the subtree rooted at node i is already a max-heap and the procedure terminates

• Otherwise, one of the two children has the largest element, and so

– A[i] is swapped with A[largest]

– Node i and its immediate children now satisfy the max-heap property

– But A[largest] now equals the original A[i], so that subtree might violate the max-heap property

– So we call MAX-HEAPIFY recursively on that subtree

MAX-HEAPIFY(A, i)

l = LEFT(i)
r = RIGHT(i)
largest = i
if (l ≤ heap-size(A) and A[l] > A[i]) {

largest = l
}
if (r ≤ heap-size(A) and A[r] > A[largest]) {

largest = r
}
if (largest != i) {

Swap A[i] and A[largest]
MAX-HEAPIFY(A, largest)

}

Running time of MAX-HEAPIFY
• Let T (n) be The running time of MAX-HEAPIFY for a sub-tree of size n

• Requires a constant time to compare the root with two children to decide which is largest

• If necessary, additionally requires time to MAX-HEAPIFY a subtree

• Claim: The size of a subtree can be at most 2n/3.

7

• Proof is an exercise: Hint:

– Height = k = blog2nc

– Size of subtree is at most 2k ≤ 2blog2nc

– Worst case when tree half-full (is that obvious?)

– Then, n = 2k − 1 + 2k/2 = 3/2× 2k − 1, and size of subtree is m = 2k − 1

– Then, m/n = 2/3× 1−1/L
1−2/3L , where L = 2k

– The extra factor simplifies to (3L− 3)/(3L− 2) < 1

• This gives the recurrence

T (n) = T (2n/3) + Θ(1)

• By the master theorem, the solution is T (n) = O(log2 n)

• We often state this by saying that runtime of MAX-HEAPIFY is linear in the height of the tree

Building a max-heap
• We can easily use MAX-HEAPIFY in a bottom-up manner to convert an array A[1, ..., n] into a max-heap

• All elements A[i] for i > PARENT (n) are leaves of the tree, and so are already 1-element max-heaps

BUILD-MAX-HEAP(A)

heap-size(A) = length(A)
for (i = PARENT(length(A)), . . . , 2, 1) {

MAX-HEAPIFY(A, i)
}

To prove correctness, we can use the following loop invariant:

At the start of each iteration of the for loop, each node i + 1, i + 2, ..., n is the root of a max-heap.

Initialization

• i = PARENT (length(A)). All subsequent nodes are leaves so trivially max-heaps

Maintenance

• Children of any node i are numbered higher than i

• Since these are max-heaps by the loop invariant condition, it is legitimate to apply MAX-HEAPIFY(A, i)

• This now makes i the root of a max-heap, and the property continues to hold for all nodes numbered
> i

• When i decreases by 1, the loop invariant becomes true for the next value of i

Termination

• At termination, i = 0. By the loop invariant, each node 1, 2, ..., n is the root of a max-heap

• In particular, this holds for node 1, the root node

8

Runtime of BUILD-MAX-HEAP(A)

• A simple upper bound for the running time is n log2 n

• Can we do better? Possibly yes, because

– Running time for MAX-HEAPIFY is lower for nodes of low height

– Such nodes are more in number

• In particular, An n-element heap has

– Height H = blog2 nc, and

– At height h (i.e., height H − h from root node), at most 2H−h nodes

• Runtime T (n) of MAX-HEAPIFY on a node of height h is O(h)

• So the total run time for BUILD-MAX-HEAP is bounded above by

H∑
h=0

2H−hO(h) = 2HO

(
H∑

h=0

h

2h

)
• Recall that

n∑
k=0

kxk <

∞∑
k=0

kxk = x
d
dx

∞∑
k=0

xk = x
d
dx

1
1− x

= x

(1− x)2

• Thus we can see that

H∑
h=0

h

2h
≤ 1/2

(1− 1/2)2 = 2

• As 2H ≤ n, T (n) = O(n)

Heapsort
Finally, we come to the heapsort algorithm

• Use BUILD-MAX-HEAP to build a max-heap on the input array A of length n

• Initial heap size s = n

• The maximum element of the array is now stored at the root A[1]

• Put it into its correct final position by swapping with A[s]

• Now, discard this maximum element in A[n] from the heap, by simply decreasing the heap size s by 1

• The remainder is almost a max-heap, except possibly at the root node

• Make it a max-heap by calling MAX-HEAPIFY

• Repeat

HEAPSORT(A)

BUILD-MAX-HEAP(A)
for (i = length(A), . . . , 3, 2) {

swap A[1] and A[i]
heap-size(A) = heap-size(A) - 1
MAX-HEAPIFY(A, 1)

}

9

• Exercise: Prove correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the for loop, the subarray A[1, ..., i] is a max-heap containing
the i smallest elements of A[1, ..., n], and the subarray A[i + 1, ..., n] contains the n − i largest
elements of A[1, ..., n] in sorted order.

• Exercise: Show that runtime T (n) of heapsort is

T (n) = O(n) +
∑

i

O(blog2 ic) = O(n) + O

(∑
i

log2 i

)
= O(n log2 n)

Probabilistic Analysis
• A common problem: finding the maximum

– given a list of things
– want to find the “best” among them

• Typical approach: look at each one by one, keeping track of the best

• Not much we can do to improve on this

• A variant of this problem: there is a substantial cost to updating the current ‘best’ value

• We can phrase this as the hiring problem

The hiring problem
• Suppose that your current office assistant is horribly bad, and you need to hire a new office assistant

• An employment agency sends you one candidate every day

• You interview a candidate and decide either to hire or not

• But if you don’t hire the candidate immediately, you cannot hire him / her later

• You pay the employment agency a small fee to interview an applicant

• Hiring an applicant is more costly because you must also compensate the current current office assistant
who you are firing

Hiring strategy: always hire the best
• You want to have the best possible person for the job at all times

• Therefore, you decide that, after interviewing each applicant, if that applicant is better qualified than
the current office assistant, you will fire the current office assistant and hire the new applicant

• You are willing to pay the resulting price of this strategy, but you wish to estimate what that price will
be

hire-assistant(n)

best = 0 // least-qualified dummy candidate
for (i = 1, . . . , n) {

interview candidate i
if (i is better than best) {

best = i
hire candidate i

}
}

10

• Let ci be interview cost, and ch be hiring cost.

• Then the total cost is nci + mch, where m is the number of times we hired someone new.

• The first part is fixed, so we concentrate on mch.

Probabilistic analysis
• Worst case:

– we get applicants in increasing order (worst to best)

– we hire everyone we interview

– So m = n

• Best case: m = 1

• What is the average case?

• We need to assume a probability distribution on the input order

• Simplest model: candidates come in random order

• More precisely, their order is a uniformly random permutation of 1, 2, ..., n

• Define

Xi = 1 {Candidate i is hired}
X =

∑
i

Xi

• Then E(Xi) = 1/i =⇒ E(X) =
∑n

i=1 1/i ≈ log n

• Exercise: Can we write E(X) = Θ(log n)?

• Exercise: Determine V ar(X).

Quicksort
• The final general sorting algorithm we study is called quicksort

• It is among the fastest sorting algorithms in practice

• Estimating the runtime theoretically is somewhat tricky

• Quicksort is a divide-and-conquer algorithm (like merge-sort)

• The steps to sort an array A[p, ..., r] are:

– Choose an element in A as the pivot element x

– Partition (rearrange) the array A[p, ..., r] and compute index p ≤ q ≤ r such that

∗ Each element of A[p, ..., q] ≤ x

∗ Each element of A[q + 1, ..., r] ≥ x

∗ Computing the index q is part of the partitioning procedure

– Sort the two subarrays A[p, ..., q] and A[q + 1, ..., r] by recursive calls to quicksort

– No further work needed, because the whole array is now sorted

• The procedure can thus be written as

11

QUICKSORT(A, p, r)

if (p < r) {
q = PARTITION(A, p, r)
QUICKSORT(A, p, q)
QUICKSORT(A, q+1, r)

}

• The full array A of length n can be sorted with QUICKSORT(A, 1, n)

• Of course, the important ingredient is PARTITION()

Partitioning in quicksort: original version
• Quicksort was originally invented by C. A. R. Hoare in 1959

• He proposed the following PARTITION() algorithm

PARTITION(A, p, r)

x = A[p] // choose first element as pivot
i = p - 1
j = r + 1
while (TRUE) {

repeat
j = j - 1

until (A[j] ≤ x)
repeat

i = i + 1
until (A[i] ≥ x)
if (i < j) {

swap A[i] and A[j]
}
else {

return j
}

}

Correctness
• Exercise: Assuming p < r, show that in the algorithm above,

– Elements outside the subarray A[p, ..., r] are never accessed

– The algorithm terminates after a finite number of steps

– On termination, the return value j satisfies p ≤ j < r

– Every element of A[p, ..., j] is less than or equal to every element of A[j + 1, ..., r]

Performance of quicksort (informally)
• Runtime of PARTITION is clearly Θ(n) (linear)

• Worst-case: partitioning produces one subproblem with n− 1 elements and one with 1 element

T (n) = T (n− 1) + T (1) + Θ(n) = T (n− 1) + Θ(n)

• Solved by T (n) = Θ(n2)

12

https://en.wikipedia.org/wiki/Tony_Hoare

• Best case: always balanced split

T (n) = 2T (n/2) + Θ(n)

• By master theorem gives T (n) = O(n log2 n)

• This happens if we can somehow ensure that the pivot is always the median

• That is of course impossible to ensure

• Average case: This turns out to be also O(n log2 n), but the proof of this is more involved

Lomuto partitioning scheme
• We will study a slightly different version of quicksort (due to Lomuto)

• Formal runtime analysis of this version is easier

PARTITION(A, p, r)

x = A[r] // choose last element as pivot
i = p - 1
for (j = p, . . . , r-1)

if (A[j] <= x) {
i = i + 1
swap(A[i], A[j])

}
swap(A[i+1], A[r])
return i + 1

• This rearranges A[p, ..., r] and computes index p ≤ q ≤ r such that

– A[q] = x

– Each element of A[p, ..., q − 1] ≤ x

– Each element of A[q + 1, ..., r] ≥ x

• The quicksort algorithm is modified as

QUICKSORT(A, p, r)

if (p < r) {
q = PARTITION(A, p, r)
QUICKSORT(A, p, q-1)
QUICKSORT(A, q+1, r)

}

Correctness of Lomuto partitioning scheme
• As the procedure runs, it partitions the array into four (possibly empty) regions.

• At the start of each iteration of the for loop in lines 3–7, the regions satisfy certain properties.

• We state these properties as a loop invariant:

At the beginning of each iteration of the loop, for any array index k,

1. If p ≤ k ≤ i, then A[k] ≤ x

2. If i + 1 ≤ k ≤ j − 1, then A[k] > x

3. If k = r, then A[k] = x

13

(The values of A[k] can be anything for j ≤ k < r)

Proof of loop invariant
Initialization:

• Prior to the first iteration of the loop, i = p− 1 and j = p

• No values lie between p and i and no values lie between i + 1 and j − 1

• So, the first two conditions of the loop invariant are trivially satisfied

• The assignment x = A[r] in line 1 satisfies the third condition

Maintenance:

• We have two cases, depending on the outcome of the test in line 4

• When A[j] > x, the only action is to increment j, after which

– condition 2 holds for A[j − 1]

– all other entries remain unchanged

• When A[j] ≤ x, the loop increments i, swaps A[i] and A[j], and then increments j

• Because of the swap, we now have that A[i] ≤ x, and condition 1 is satisfied

• Similarly, A[j − 1] > x, as the value swapped into A[j − 1] is, by the loop invariant, greater than x

Termination:

• At termination, j = r

• Every entry in the array is in one of the three sets described by the invariant

• We have partitioned the values in the array into three sets:

– those less than or equal to x

– those greater than x

– a singleton set containing x

• The second-last line of PARTITION swaps the pivot element with the leftmost element greater than x

• This moved the pivot into its correct place in the partitioned array

• The last line returns the pivot’s new index

Performance of quicksort
• Again, it is easy to see that the running time of PARTITION is Θ(n).

• Worst case: T (n) = Θ(n2) as before

• Best case: T (n) = O(n log2 n) as before

• Examples of worst case:

– Input data already sorted

– All input values constant

• Exercise:

– Are these worst cases for the original (Hoare) partition algorithm as well?

14

– Suggest simple modifications which can “fix” these worst cases
(without increasing order of runtime of PARTITION)

• Average case: What is the runtime of quicksort in the “average case”

• This is the expected runtime when the input order is random (uniformly over all permutations)

• A related concept: Randomized Algorithms

• An algorithm is randomized if it makes use of (pseudo)-random numbers

• We will analyze a randomized version of quicksort

– This requires a “random number generator” algorithm RANDOM(i, j)

– RANDOM(i, j) should return a random integer between i and j (inclusive) with uniform probability

Randomized quicksort
• Randomized quicksort chooses a random element as pivot (instead of the last) when partitioning

RANDOMIZED-PARTITION(A, p, r)

i = RANDOM(p,r)
swap(A[r], A[i])
return PARTITION(A, p, r)

• The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION

RANDOMIZED-QUICKSORT(A, p, r)

if (p < r) {
q = RANDOMIZED-PARTITION(A, p, r)
RANDOMIZED-QUICKSORT(A, p, q-1)
RANDOMIZED-QUICKSORT(A, q+1, r)

}

Randomized quicksort and average case
• A randomized algorithm can proceed differently on different runs with the same input

• In other words, the runtime for a given input is a random variable

• This leads to two distinct concepts:

– Expected runtime of RANDOMIZED-QUICKSORT (on a given input)

– Average case runtime of QUICKSORT (averaged over random input order)

• Claim: If all input elements are distinct, these two are essentially equivalent

• An alternative randomized version of quicksort is to randomly permute the input initially

• The expected runtime in that case is clearly equivalent to the average case of QUICKSORT

• Instead, we only choose the pivot randomly (in each partition step)

• However, this does not change the resulting partitions (as sets)

• A little thought shows that the number of comparisons is also the same

• The number of swaps may differ, but are less than the number of comparisons

15

Average-case analysis
• Assume that all elements of the input n-element array A[1, ..., n] are distinct

• Each call to PARTITION has a for loop where each iteration makes one comparison (A[j] ≤ x)

• Let X be the number of such comparisons in PARTITION over the entire execution of QUICKSORT

• Then the running time of QUICKSORT is O(n + X)

• This is easy to see, because

– PARTITION is called at most n times (actually less)

– In each such call, each iteration of the for loop makes one comparison contributing to X

– The remaining operations of PARTITION only contribute a constant term

• To analyze runtime of quicksort, we will try to find E(X)

• In other words, we will not analyze contribution of each PARTITION call separately

• Let

– z1 < z2 < · · · < zn be the elements of A in increasing order

– Zij = {zi, ..., zj} be the set of elements between zi and zj , inclusive.

– Xij = 1 {zi is compared with zj} sometime during the execution of QUICKSORT

• First, note that two elements may be compared at most once

– One of the elements being compared is always the pivot

– The pivot is never involved in subsequent recursive calls to QUICKSORT

• So, we can write

X =
n−1∑
i=1

n∑
j=i+1

Xij

• Therefore

E(X) =
n−1∑
i=1

n∑
j=i+1

E(Xij) =
n−1∑
i=1

n∑
j=i+1

P (zi is compared with zj)

• The trick to evaluating this probability is to notice that it only depends on Zij

• We want to compute

P (zi is compared with zj)

• Consider the first element x in Zij = {zi, ..., zj} that is chosen as a pivot (at some point)

• If zi < x < zj , then zi and zj will never be compared

• However, if x is either zi or zj , then they will be compared

• So, we want the probability that x is either zi or zj

• This is easy once we realize that

until the first time something in Zij is chosen as a pivot, all elements in Zij remain in the same
partition in any previous call to PARTITION (they are either all less than or greater than any
previous pivot)

16

• Recall that pivots are chosen uniformly randomly (in RANDOMIZED-PARTITION)

• So any element of Zij is equally likely to be the one chosen first

• Thus the required probability is 2/|Zij | = 2/(j − i + 1), and so

EX =
n−1∑
i=1

n∑
j=i+1

2
j − i + 1 =

n−1∑
i=1

n−i∑
k=1

2
k + 1 <

n−1∑
i=1

n∑
k=1

2
k

=
n−1∑
i=1

O(log2 n) = O(n log2 n)

General lower bound for comparison-based sort
• We have now seen four different sorting algorithms

• Three of them have O(n log n) runtime

• A common property: they all use only pairwise comparison of elements to determine the result

• In other words, only ranks are important, not the actual values

• Such sorting algorithms are called comparison sorts

• Claim: Any comparison sort algorithm requires Ω(n log n) comparisons in the worst case

• To see why, think of any comparison sort as a decision tree

– Each comparison leads to a decision

– A sequence of decisions leads to the correct sorted result

• For example, this is what happens when we do insertion sort on three elements a1, a2, a3

• Here, i ≤ j denotes the act of comparing ai and aj

• Generally, this decision tree must be a binary tree (two outcomes of each comparison)

• It must have at least n! leaf nodes (one or more for each possible permutation)

• Comparisons needed to reach a particular leaf: length of the path from the root node

• The worst case number of comparisons is the height of the binary tree (longest path)

• A binary tree of height h can have at most 2h leaf nodes

• A binary tree with at least n! leaf nodes must have height h ≥ log2 n!

• Using Stirling’s approximation log n! = n log n− n + O(log n),

17

https://en.wikipedia.org/wiki/Stirling%27s_approximation

h ≥ log2(n!)/ log2(2) = Θ(n log n)

Linear time sorting
• Sorting can be done in linear time in some special cases

• As shown above, they cannot be comparison-based algorithms

• Usually, these algorithms put restrictions on possible values

• Examples:

– Counting sort

– Radix sort

• Details left for a second semester project

Randomly permuting arrays
• A common requirement in randomized algorithms is to find a random permutation of an input array

• One option: assign random key values to each element, then sort the elements according to these keys

PERMUTE-BY-SORTING(A)

n = length(A)
let P [1„„n] be a new array
for (i = 1, . . . , n) {

P[i] = RANDOM(1, M)
}
sort A, using P as sort keys

• Here M should large enough that the possibility of keys being duplicated is small

• Exercise: Show that PERMUTE-BY-SORTING produces a uniform random permutation of the input,
assuming that all key values are distinct

• The runtime for PERMUTE-BY-SORTING will be Ω(n log2 n) if we use a comparison sort

• A better method for generating a random permutation is to permute the given array in place

• The procedure RANDOMIZE-IN-PLACE does so in Θ(n) time

RANDOMIZE-IN-PLACE(A)

n = length(A)
for (i = 1, . . . , n) {

swap(A[i], A[RANDOM(i, n)])
}

• In the ith iteration, A[i] is chosen randomly from among A[i], A[i + 1], ..., A[n]

• Subsequent to the ith iteration, A[i] is never altered.

• Procedure RANDOMIZE-IN-PLACE computes a uniform random permutation

• We prove this using the following loop invariant

Just prior to the ith iteration of the for loop, for each possible (i− 1)-permutation of the n el-
ements, the subarray A[1, ..., i−1] contains this (i−1)-permutation with probability (n−i+1)!/n!.

18

Initialization

• Holds trivially (i− 1 = 0)

• If this is not convincing, take (just before) i = 2 to be the initial step

Maintenance

• Assume true upto i = 1, ..., k

• Consider what happens just before i = (k + 1)th iteration (i.e., just after kth iteration)

• Let (X1, X2, ..., Xk) be the random variable denoting the observed permutation

• For any specific k-permutation (x1, x2, ..., xk),

P (X1 = x1, X2 = x2, ..., Xk = xk) = P (Xk = xk|X1 = x1, X2 = x2, ..., Xk−1 = xk−1)
×P (X1 = x1, X2 = x2, ..., Xk−1 = xk−1)

= 1
n− k + 1 ×

(n− k + 1)!
n! = (n− k)!

n!

Termination

• i = n + 1, so each n-permutation is observed with probability 1/n!

Further topics
• We will not discuss analysis of algorithms further

• If you are interested, an excellent book on this topic is
Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein

• We will discuss some more algorithms in second semester projects

19

	Heapsort
	The abstract heap data structure
	How can we implement a heap?
	Implementation of a heap using arrays
	Height of a heap
	Heap property
	Example: max-heap
	Algorithms for max-heaps
	MAX-HEAPIFY
	Running time of MAX-HEAPIFY
	Building a max-heap
	Initialization
	Maintenance
	Termination

	Runtime of BUILD-MAX-HEAP(A)
	Heapsort
	Probabilistic Analysis
	The hiring problem
	Hiring strategy: always hire the best
	Probabilistic analysis
	Quicksort
	Partitioning in quicksort: original version
	Correctness
	Performance of quicksort (informally)
	Lomuto partitioning scheme
	Correctness of Lomuto partitioning scheme
	Proof of loop invariant
	Initialization:
	Maintenance:
	Termination:

	Performance of quicksort
	Randomized quicksort
	Randomized quicksort and average case
	Average-case analysis
	General lower bound for comparison-based sort
	Linear time sorting
	Randomly permuting arrays
	Initialization
	Maintenance
	Termination

	Further topics

