Analysis of Algorithms II

Deepayan Sarkar

Heapsort
e Next we study another sorting algorithm called heapsort
e It has the good properties of both merge sort and insertion sort
— It has O(nlog, n) worst-case running time
— It is in-place (requires only a constant amount of extra storage)

o It is based on a data structure known as a heap.

The abstract heap data structure

o The (binary) heap data structure is an object that we can view as a nearly complete binary tree.
— Each node corresponds to an element.

— The tree is completely filled on all levels except possibly the lowest, which is filled from the left up
to a point.

e For each node x, the following operations are defined:
— PARENT (%) returns the parent node
— LEFT(x) returns the left child node
— RIGHT (x) returns the right child node

How can we implement a heap?

o General graph G = (V, E) consists of
— V : set of vertices or nodes
— FE : set of edges
 Usually stored as list of nodes and edges / adjacency matrix
e Trees are a subtype of graphs
— They have a special root node
— Each node has 0 or more child nodes
— Nodes with no children are called leafs
o Heaps are are (almost) complete binary trees

e This makes implementation of heaps easier than for general graphs

Implementation of a heap using arrays

e Suppose we number the nodes as shown
e Then we can define
PARENT
return floor(i/2)
LEFT
return 2¢
RIGHT
return 27 4 1
e Because of this, heaps are usually implemented using an array
e Specifically, a heap is an array A with two attributes:
— length(A) gives the number of elements in the array
— The first heap-size(A) elements of the array are considered part of the heap
e Note that the number of elements of an array are usually fixed

o As we will see, it is common to change the heap size in heap-based algorithms

e Index the array by 1,2,...,n
e Root node has index 1
e Then as shown above, we can implement
PARENT (1)
return floor(i/2)
LEFT (i)
return 2¢
RIGHT (1)
return 27 4+ 1
e In C / C++, there are shift operators << and >> that make these efficient

e Implementations need to change if arrays are indexed from 0

e View the heap as a tree

Height of a heap

The height of a node is the number of edges on the longest simple downward path from the node to a
leaf.

The height of the heap is the height of its root

A heap of size n has height |log, n|

Heap property

We are usually interested in heaps that satisfy a particular property
Depending on the property, the heap is called either a max-heap or a min-heap.

Max-heap: A heap A is called a max-heap if it satisfies the “max-heap property”

A[PARENT(i)] > A[i] forall i> 1

That is, the value at every node (except the root node) is less than or equal to the value at its parent.
In particular,

— the largest element in a max-heap is stored at the root
— The subtree rooted at any node only contains values less that or equal to the value in that node

Min-heap: Similarly, a heap A is a min-heap if it satisfies the “min-heap property”

A[PARENT(i)] < A[d] for all i > 1

Example: max-heap

Not a max-heap

Max-heap with A different max-heap
same values with same values

Algorithms for max-heaps

For the heapsort algorithm, we will use max-heaps
The key elements of the algorithm are
— The BUILD-MAX-HEAP procedure, which produces a max-heap from an unordered input array, and

— The MAX-HEAPIFY procedure, which is used to maintain the max-heap property

MAX-HEAPIFY

Suppose that we have a heap that is almost a max-heap
However, the max-heap property may not hold for the root element
MAX-HEAPIFY fixes this error and makes it a max-heap
The MAX-HEAPIFY procedure has the following inputs
— an array A, and
— an index ¢ into the array
When called, MAX-HEAPIFY assumes that
— the binary trees rooted at LEFT (i) and RIGHT (i) are max-heaps, but
— A[i] might be smaller than its children
MAX-HEAPIFY moves A[i] down the max-heap so that the subtree rooted at i becomes a max-heap
Outline: At each step,
— The largest of the elements Ali], AI[LEFT(i)], AIRIGHT(i)] is determined
— Its index is stored in the variable largest
If A[i] is largest, then the subtree rooted at node i is already a max-heap and the procedure terminates
Otherwise, one of the two children has the largest element, and so

— Ali] is swapped with A[largest]

Node i and its immediate children now satisfy the max-heap property

But A[largest] now equals the original A[i], so that subtree might violate the max-heap property

So we call MAX-HEAPIFY recursively on that subtree

MAX-HEAPIFY(A, i)

1 = LEFT(i)

r = RIGHT(i)

largest = i

if (1 < heap-size(A) and A[l] > A[i]) {
largest =1

if (r < heap-size(A) and Afr] > Allargest]) {
largest = r

}

if (largest !=1) {
Swap Ali] and Allargest]
MAX-HEAPIFY (A, largest)

}

Running time of MAX-HEAPIFY

Let T(n) be The running time of MAX-HEAPIFY for a sub-tree of size n
Requires a constant time to compare the root with two children to decide which is largest
If necessary, additionally requires time to MAX-HEAPIFY a subtree

Claim: The size of a subtree can be at most 2n/3.

e Proof is an exercise: Hint:
Height = k = [logan]|

Size of subtree is at most 2% < 2ltog2n]

Worst case when tree half-full (is that obvious?)

Then, n = 28 — 1 +2%/2 = 3/2 x 2% — 1, and size of subtree is m = 2% — 1

Then, m/n =2/3 x 11:21//3LL, where L = 2F

The extra factor simplifies to (3L —3)/(3L —2) < 1

o This gives the recurrence

T(n) =T(2n/3) + 6(1)
o By the master theorem, the solution is T'(n) = O(logy n)
o We often state this by saying that runtime of MAX-HEAPIFY is linear in the height of the tree

Building a max-heap
o We can easily use MAX-HEAPIFY in a bottom-up manner to convert an array A[l,...,n] into a max-heap
o All elements A[i] for i > PARENT (n) are leaves of the tree, and so are already 1-element max-heaps
BUILD-MAX-HEAP (A4)

heap-size(A) = length(A)

for (i = PARENT(length(A)), ..., 2, 1) {
MAX-HEAPIFY (A, i)

}

To prove correctness, we can use the following loop invariant:

At the start of each iteration of the for loop, each node i + 1,7 + 2, ..., n is the root of a max-heap.

Initialization

o i =PARENT (length(A)). All subsequent nodes are leaves so trivially max-heaps

Maintenance
e Children of any node 4 are numbered higher than ¢
e Since these are max-heaps by the loop invariant condition, it is legitimate to apply MAX-HEAPIFY (A, i)

e This now makes i the root of a max-heap, and the property continues to hold for all nodes numbered
>

e When i decreases by 1, the loop invariant becomes true for the next value of 4

Termination
e At termination, ¢ = 0. By the loop invariant, each node 1,2, ...,n is the root of a max-heap

e In particular, this holds for node 1, the root node

Runtime of BUILD-MAX-HEAP (A)

A simple upper bound for the running time is nlog, n
Can we do better? Possibly yes, because
— Running time for MAX-HEAPIFY is lower for nodes of low height
— Such nodes are more in number
In particular, An n-element heap has
— Height H = [log, n|, and
— At height h (i.e., height H — h from root node), at most 27 =" nodes
Runtime T'(n) of MAX-HEAPIFY on a node of height & is O(h)
So the total run time for BUILD-MAX-HEAP is bounded above by

H

2 H—h H h
;02 O(h) =2 0<22h>

h=0
Recall that

- = d & d 1 T
k k k’ k: k: _

Z r <Z r xdxzﬂf Tl (-2

k=0 k=0 k=0

Thus we can see that

As 2 <n, T(n) = O(n)

Heapsort

Finally, we come to the heapsort algorithm

Use BUILD-MAX-HEAP to build a max-heap on the input array A of length n

Initial heap size s =n

The maximum element of the array is now stored at the root A[l]

Put it into its correct final position by swapping with A[s]

Now, discard this maximum element in A[n] from the heap, by simply decreasing the heap size s by 1
The remainder is almost a max-heap, except possibly at the root node

Make it a max-heap by calling MAX-HEAPIFY

Repeat

HEAPSORT (A)

BUILD-MAX-HEAP(A)

for (i = length(A), ..., 3,2) {
swap A[l] and A[i]
heap-size(A) = heap-size(A) - 1
MAX-HEAPIFY (A, 1)

}

Exercise: Prove correctness of HEAPSORT using the following loop invariant:

At the start of each iteration of the for loop, the subarray A[l,...,7] is a max-heap containing
the ¢ smallest elements of A[l,...,n], and the subarray A[i + 1,...,n] contains the n — i largest
elements of A[l,...,n] in sorted order.

Exercise: Show that runtime T'(n) of heapsort is

T(n) = O(n) + ZO(Llog2 i])=0(n)+0 (Z l0g, z) = O(nlogyn)

Probabilistic Analysis

A common problem: finding the maximum

— given a list of things
— want to find the “best” among them

Typical approach: look at each one by one, keeping track of the best
Not much we can do to improve on this
A variant of this problem: there is a substantial cost to updating the current ‘best’ value

We can phrase this as the hiring problem

The hiring problem

Suppose that your current office assistant is horribly bad, and you need to hire a new office assistant
An employment agency sends you one candidate every day

You interview a candidate and decide either to hire or not

But if you don’t hire the candidate immediately, you cannot hire him / her later

You pay the employment agency a small fee to interview an applicant

Hiring an applicant is more costly because you must also compensate the current current office assistant
who you are firing

Hiring strategy: always hire the best

You want to have the best possible person for the job at all times

Therefore, you decide that, after interviewing each applicant, if that applicant is better qualified than
the current office assistant, you will fire the current office assistant and hire the new applicant

You are willing to pay the resulting price of this strategy, but you wish to estimate what that price will
be

hire-assistant(n)

best = 0 // least-qualified dummy candidate
for i=1,...,n){

interview candidate i

if (i is better than best) {

best =1
hire candidate i

10

e Let ¢; be interview cost, and c¢p be hiring cost.
e Then the total cost is nc; + mey, where m is the number of times we hired someone new.

e The first part is fixed, so we concentrate on mcy,.

Probabilistic analysis
o Worst case:
— we get applicants in increasing order (worst to best)
— we hire everyone we interview
—Som=n
e Best case: m =1
e What is the average case?
e We need to assume a probability distribution on the input order
e Simplest model: candidates come in random order
e More precisely, their order is a uniformly random permutation of 1,2,....,n

e Define

X; = 1{Candidate i is hired}

X =) X

e Then E(X;)=1/i = E(X)=>",1/i~logn
o Exercise: Can we write E(X) = O(logn)?

o Exercise: Determine Var(X).

Quicksort
e The final general sorting algorithm we study is called quicksort
e It is among the fastest sorting algorithms in practice
e Estimating the runtime theoretically is somewhat tricky
o Quicksort is a divide-and-conquer algorithm (like merge-sort)
o The steps to sort an array Alp, ...,r] are:

— Choose an element in A as the pivot element x

Partition (rearrange) the array A[p, ...,r] and compute index p < ¢ < r such that
* Fach element of Alp,...,q] <z
*x Each element of Alg+1,....,7] >
+x Computing the index ¢ is part of the partitioning procedure
— Sort the two subarrays A[p, ...,q] and A[g + 1, ..., 7] by recursive calls to quicksort
— No further work needed, because the whole array is now sorted

e The procedure can thus be written as

11

QUICKSORT(A, p, 1)

if (p <) {
q = PARTITION(A, p, r)
QUICKSORT(A, p, q)
QUICKSORT(A, q+1, 1)

e The full array A of length n can be sorted with QUICKSORT(A, 1, n)
e Of course, the important ingredient is PARTITION ()

Partitioning in quicksort: original version
e Quicksort was originally invented by C. A. R. Hoare in 1959
e He proposed the following PARTITION() algorithm
PARTITION(A, p,)

x = A[p] // choose first element as pivot
i=p-1
j=r+1
while (TRUE) {
repeat
j=ij-1
until (Afj] < x)
repeat
i=i4+1
until (Afi] > x)
if (i < j) {
swap Afi] and Al[j
}
else {
return j

}
}

Correctness

e FExercise: Assuming p < r, show that in the algorithm above,

Elements outside the subarray A[p, ...,r| are never accessed

The algorithm terminates after a finite number of steps

On termination, the return value j satisfies p < j <7

Every element of A[p, ..., j] is less than or equal to every element of A[j + 1, ...,7]

Performance of quicksort (informally)
o Runtime of PARTITION is clearly ©(n) (linear)

o Worst-case: partitioning produces one subproblem with n — 1 elements and one with 1 element

Tn)=Tn-1)+T1)+06(n)=T(n—-1)+06(n)
e Solved by T'(n) = ©(n?)

12

https://en.wikipedia.org/wiki/Tony_Hoare

e Best case: always balanced split

T(n) =2T(n/2) + O(n)
o By master theorem gives T'(n) = O(nlogyn)
e This happens if we can somehow ensure that the pivot is always the median
e That is of course impossible to ensure

o Average case: This turns out to be also O(nlog, n), but the proof of this is more involved

Lomuto partitioning scheme
o We will study a slightly different version of quicksort (due to Lomuto)
e Formal runtime analysis of this version is easier

PARTITION(A, p, 1)

x = Alr] // choose last element as pivot
i=p-1
for j=p,...,r-1)
if (A <=) {
i=i4+1

swap(A[i+1], Alr])
returni + 1

o This rearranges A[p, ...,r] and computes index p < ¢ < r such that
— Algl ==
— Each element of Alp,....q—1] <=z
— Each element of Alg+1,...,7] >«
e The quicksort algorithm is modified as
QUICKSORT(A, p, r)

if (p<r){
q = PARTITION(A, p, r)
QUICKSORT (A, p, g-1)
QUICKSORT(A, q+1, 1)

}

Correctness of Lomuto partitioning scheme

o As the procedure runs, it partitions the array into four (possibly empty) regions.

o At the start of each iteration of the for loop in lines 3-7, the regions satisfy certain properties.

o We state these properties as a loop invariant:
At the beginning of each iteration of the loop, for any array index k,
1. If p < k <, then A[k] <z
2. Ifi+1<k<j—1,then Alk] >z
3. If k =r, then Alk] =z

13

(The values of A[k] can be anything for j < k < r)

Proof of loop invariant

Initialization:
e Prior to the first iteration of the loop, i =p—1and j=p
e No values lie between p and ¢ and no values lie between 7 4+ 1 and j — 1
e So, the first two conditions of the loop invariant are trivially satisfied

o The assignment z = A[r] in line 1 satisfies the third condition

Maintenance:
e We have two cases, depending on the outcome of the test in line 4
o When A[j] > z, the only action is to increment j, after which
— condition 2 holds for A[j — 1]
— all other entries remain unchanged
o When A[j] < z, the loop increments i, swaps A[i] and A[j], and then increments j
o Because of the swap, we now have that A[i] < z, and condition 1 is satisfied

o Similarly, A[j — 1] > «, as the value swapped into A[j — 1] is, by the loop invariant, greater than x

Termination:
e At termination, j =17
e Every entry in the array is in one of the three sets described by the invariant
e We have partitioned the values in the array into three sets:
— those less than or equal to x
— those greater than x
— a singleton set containing x
e The second-last line of PARTITION swaps the pivot element with the leftmost element greater than x
e This moved the pivot into its correct place in the partitioned array

e The last line returns the pivot’s new index

Performance of quicksort
o Again, it is easy to see that the running time of PARTITION is ©(n).
o Worst case: T(n) = ©(n?) as before
o Best case: T'(n) = O(nlogy n) as before
o Examples of worst case:
— Input data already sorted
— All input values constant
o Exercise:

— Are these worst cases for the original (Hoare) partition algorithm as well?

14

— Suggest simple modifications which can “fix” these worst cases
(without increasing order of runtime of PARTITION)

o Average case: What is the runtime of quicksort in the “average case”
o This is the expected runtime when the input order is random (uniformly over all permutations)
o A related concept: Randomized Algorithms
o An algorithm is randomized if it makes use of (pseudo)-random numbers
e We will analyze a randomized version of quicksort
— This requires a “random number generator” algorithm RANDOM(i, j)

— RANDOM(i, j) should return a random integer between i and j (inclusive) with uniform probability

Randomized quicksort
o Randomized quicksort chooses a random element as pivot (instead of the last) when partitioning
RANDOMIZED-PARTITION(A, p, r)

i = RANDOM(p,r)
swap(A[r], Ali])
return PARTITION(A, p, r)

e The new quicksort calls RANDOMIZED-PARTITION in place of PARTITION
RANDOMIZED-QUICKSORT(A, p, r)

if (p<r1){
q = RANDOMIZED-PARTITION(A, p, 1)
RANDOMIZED-QUICKSORT(A, p, g-1)
RANDOMIZED-QUICKSORT(A, q+1, 1)

Randomized quicksort and average case
¢ A randomized algorithm can proceed differently on different runs with the same input
e In other words, the runtime for a given input is a random variable
e This leads to two distinct concepts:
— Expected runtime of RANDOMIZED-QUICKSORT (on a given input)
— Average case runtime of QUICKSORT (averaged over random input order)
e Claim: If all input elements are distinct, these two are essentially equivalent
e An alternative randomized version of quicksort is to randomly permute the input initially
e The expected runtime in that case is clearly equivalent to the average case of QUICKSORT
« Instead, we only choose the pivot randomly (in each partition step)
o However, this does not change the resulting partitions (as sets)
o A little thought shows that the number of comparisons is also the same

e The number of swaps may differ, but are less than the number of comparisons

15

Average-case analysis

Assume that all elements of the input n-element array A[l,...,n] are distinct
Each call to PARTITION has a for loop where each iteration makes one comparison (A[j] < z)
Let X be the number of such comparisons in PARTITION over the entire execution of QUICKSORT
Then the running time of QUICKSORT is O(n + X)
This is easy to see, because
— PARTITION is called at most n times (actually less)
— In each such call, each iteration of the for loop makes one comparison contributing to X
— The remaining operations of PARTITION only contribute a constant term
To analyze runtime of quicksort, we will try to find F(X)
In other words, we will not analyze contribution of each PARTITION call separately
Let
— 21 < 29 < -++ < z, be the elements of A in increasing order
— Zij ={%,...,z;} be the set of elements between z; and z;, inclusive.
— X;j = 1{z; is compared with z;} sometime during the execution of QUICKSORT
First, note that two elements may be compared at most once
— One of the elements being compared is always the pivot
— The pivot is never involved in subsequent recursive calls to QUICKSORT

So, we can write

n—1 n
=Sy
i=1 j=i+1
Therefore
n—1 n n—1 n
E(X)=)Y_ > E(Xy;)=>_ Y P(z is compared with z;)
i=1 j=i+1 i=1 j=i+1

The trick to evaluating this probability is to notice that it only depends on Z;;

We want to compute

P(z; is compared with z;)
Consider the first element z in Z;; = {z;, ..., z; } that is chosen as a pivot (at some point)
If z; <& < 2z, then z; and z; will never be compared
However, if x is either z; or z;, then they will be compared
So, we want the probability that x is either z; or z;
This is easy once we realize that

until the first time something in Z;; is chosen as a pivot, all elements in Z;; remain in the same
partition in any previous call to PARTITION (they are either all less than or greater than any
previous pivot)

16

Recall that pivots are chosen uniformly randomly (in RANDOMIZED-PARTITION)
So any element of Z;; is equally likely to be the one chosen first

Thus the required probability is 2/|Z;;| = 2/(j — i+ 1), and so

n n—1

n—1 n 9 n—1n—1 9 n—1 9
=1 j=i+1 =1 k=1 =1 k=1 =1

General lower bound for comparison-based sort

We have now seen four different sorting algorithms
Three of them have O(nlogn) runtime
A common property: they all use only pairwise comparison of elements to determine the result
In other words, only ranks are important, not the actual values
Such sorting algorithms are called comparison sorts
Claim: Any comparison sort algorithm requires Q(nlogn) comparisons in the worst case
To see why, think of any comparison sort as a decision tree
— Each comparison leads to a decision
— A sequence of decisions leads to the correct sorted result
For example, this is what happens when we do insertion sort on three elements ay, as, as

Here, ¢ < j denotes the act of comparing a; and a;

Generally, this decision tree must be a binary tree (two outcomes of each comparison)
It must have at least n! leaf nodes (one or more for each possible permutation)
Comparisons needed to reach a particular leaf: length of the path from the root node
The worst case number of comparisons is the height of the binary tree (longest path)
A binary tree of height h can have at most 2" leaf nodes

A binary tree with at least n! leaf nodes must have height A > log, n!

Using Stirling’s approximation log n! = nlogn —n + O(logn),

17

https://en.wikipedia.org/wiki/Stirling%27s_approximation

h > logy(n!)/logy(2) = ©(nlogn)

Linear time sorting
e Sorting can be done in linear time in some special cases
o As shown above, they cannot be comparison-based algorithms
o Usually, these algorithms put restrictions on possible values
o Examples:
— Counting sort
— Radix sort

o Details left for a second semester project

Randomly permuting arrays
e A common requirement in randomized algorithms is to find a random permutation of an input array
e One option: assign random key values to each element, then sort the elements according to these keys
PERMUTE-BY-SORTING (A)

n = length(A)
let P[1,,,n] be a new array
for (i=1,...,n){

P[i] = RANDOM(1, M)
}

sort A, using P as sort keys
e Here M should large enough that the possibility of keys being duplicated is small

e Exercise: Show that PERMUTE-BY-SORTING produces a uniform random permutation of the input,
assuming that all key values are distinct

o The runtime for PERMUTE-BY-SORTING will be Q(nlog, n) if we use a comparison sort
e A better method for generating a random permutation is to permute the given array in place
o The procedure RANDOMIZE-IN-PLACE does so in O(n) time

RANDOMIZE-IN-PLACE(A)

n = length(A)
for (i=1,...,n){
\ swap(A[i], Al RANDOM(, n)])

« In the ith iteration, A[i] is chosen randomly from among A[i], A[¢ 4+ 1], ..., A[n]
o Subsequent to the ith iteration, A[i] is never altered.

e Procedure RANDOMIZE-IN-PLACE computes a uniform random permutation

e We prove this using the following loop invariant

Just prior to the ith iteration of the for loop, for each possible (i — 1)-permutation of the n el-
ements, the subarray A[l, ...,7— 1] contains this (i — 1)-permutation with probability (n—i+1)!/nl.

18

Initialization
o Holds trivially (i — 1 = 0)

o If this is not convincing, take (just before) i = 2 to be the initial step

Maintenance
e Assume true uptoi =1,..., k
o Consider what happens just before i = (k 4 1)th iteration (i.e., just after kth iteration)
o Let (X1, Xs,..., Xi) be the random variable denoting the observed permutation

 For any specific k-permutation (z1, 2, ..., Tx),

P(Xl = xl,Xg = T, ...7Xk = {L'k) = P(Xk = $k|X1 = xth = T, ...7Xk,1 = {L'kfl)
xP(X1 =21,X0 =9, ...; X1 = Tp—1)

1 x(nkarl)!_(nfk)!
n—k+1 n! n!

Termination

e i =mn+ 1, so each n-permutation is observed with probability 1/n!

Further topics
o We will not discuss analysis of algorithms further

o If you are interested, an excellent book on this topic is
Introduction to Algorithms by Cormen, Leiserson, Rivest and Stein

e We will discuss some more algorithms in second semester projects

19

	Heapsort
	The abstract heap data structure
	How can we implement a heap?
	Implementation of a heap using arrays
	Height of a heap
	Heap property
	Example: max-heap
	Algorithms for max-heaps
	MAX-HEAPIFY
	Running time of MAX-HEAPIFY
	Building a max-heap
	Initialization
	Maintenance
	Termination

	Runtime of BUILD-MAX-HEAP(A)
	Heapsort
	Probabilistic Analysis
	The hiring problem
	Hiring strategy: always hire the best
	Probabilistic analysis
	Quicksort
	Partitioning in quicksort: original version
	Correctness
	Performance of quicksort (informally)
	Lomuto partitioning scheme
	Correctness of Lomuto partitioning scheme
	Proof of loop invariant
	Initialization:
	Maintenance:
	Termination:

	Performance of quicksort
	Randomized quicksort
	Randomized quicksort and average case
	Average-case analysis
	General lower bound for comparison-based sort
	Linear time sorting
	Randomly permuting arrays
	Initialization
	Maintenance
	Termination

	Further topics

