
Conditioning and Stability

Deepayan Sarkar

Condition of a problem
• Abstract problem: compute f : X → Y

• X and Y are normed vector spaces, usually Rk for some k

• f is referred to as the “problem”, and is usually continuous

• We are interested in the behaviour of the problem at a particular “instance” x ∈ X

• A problem instance f(x) is

– well-conditioned if small perturbations in x lead to only small changes in f(x)

– ill-conditioned if small perturbations in x can lead to large changes in f(x)

• Depending on context, “small” and “large” may be either absolute or relative change

Absolute condition number
• Consider a small perturbation δx in x

• Define the change in f to be δf = f(x+ δx)− f(x)

• The absolute condition number κ̂ = κ̂(x) of the problem f at x is

κ̂(x) = lim
h→0

sup
‖δx‖≤h

‖δf‖
‖δx‖

• For readability, this is often written informally as (implicitly assuming δx is infinitesimally small)

κ̂(x) = sup
δx

‖δf‖
‖δx‖

• If f : R→ R is differentiable, it is easy to see that κ̂(x) = |f ′(x)|

• More generally, if f : Rk → R is differentiable, and J(x) is the Jacobian function, then

κ̂(x) = ‖J(x)‖
• Here ‖J(x)‖ represents a “matrix norm” induced by a vector norm (on Rk)

• Definition: For Am×n, the matrix norm induced by vector norms on Rm and Rn is

‖A‖ = sup
{
‖Ax‖
‖x‖

: x ∈ Rn, x 6= 0
}

• Note that here, the first-order Taylor series expansion of f gives

δf = f(x+ δx)− f(x) ≈ J(x)δx =⇒ sup
δx

‖δf‖
‖δx‖

≈ sup
δx

‖J(x)δx‖
‖δx‖

1

• Exercise: Show that κ̂ = ‖J(x)‖

Relative condition number
• The nature of floating point computations makes it more important to study relative changes

• The relative condition number κ = κ(x) of f at x is

κ(x) = lim
h→0

sup
‖δx‖≤h

(
‖δf‖
‖f(x)‖

/
‖δx‖
‖x‖

)
= ‖x‖
‖f(x)‖ lim

h→0
sup
‖δx‖≤h

‖δf‖
‖δx‖

• If f is differentiable, we get

κ(x) = ‖J(x)‖ · ‖x‖
‖f(x)‖ =

∣∣∣∣f ′(x)x
f(x)

∣∣∣∣
• A problem f is well-conditioned if κ is small (e.g., 1, 10, 102) and ill-conditioned if κ is large (e.g., 106,

. . .)

Examples
• f(x) =

√
x, x ≥ 0

– f ′(x) = 1
2x
− 1

2

– So the condition of f at x is ∣∣∣∣f ′(x)x
f(x)

∣∣∣∣ = 1
2
x−

1
2

x
1
2
x = 1

2

– So f is well-conditioned for all x.

• f(x) = xα

– Exercise: Condition of f is |α| at all x

• f(x) = 1
1−x2

– f ′(x) = 2x(1− x2)−2

– So condition of f at x is ∣∣∣∣f ′(x)x
f(x)

∣∣∣∣ = |2x(1− x2)−2x(1− x2)| = 2x2

|1− x2|

– Can be large for x close to ±1.

• f(x1, x2) = x1 − x2

– The Jacobian of f is J =
[
∂f
∂x1

∂f
∂x2

]
=
[
1 −1

]
– So κ = ‖J‖·‖x‖

|x1−x2|

– What is ‖x‖? Common choices are

∗ L1: |x1|+ |x2|

∗ L2:
√
x2

1 + x2
2

∗ L∞: max{|x1|, |x2|}

– What is ‖J‖? Depends on vector norm, but some constant c for this J regardless of choice

2

– So κ is, with the L∞ norm, κ = cmax{|x1|,|x2|}
|x1−x2|

– Ill-conditioned when x1 ≈ x2

• Roots of polynomials: e.g., ax2 + bx+ c = 0

f(a, b, c) = −b±
√
b2 − 4ac

2a
• Exercise: Show that for x2 − 2x+ 1 = (x− 1)2 = 0, f(1,−2, 1) has κ =∞

• Hint: try perturbing one coefficient at a time

• Graphical demonstration:

qroot <- function(coefs) {
a <- coefs[1]; b <- coefs[2]; c <- coefs[3]
C <- sqrt(complex(real = b^2 - 4 * a * c, imaginary = 0))
(-b + c(-1, 1) * C) / (2 * a)

}
abc <- c(1, -2, 1)

par(mfrow = c(1, 3))
for (eps in c(0.1, 0.01, 0.001))
{

roots <- replicate(1000, qroot(abc + eps * runif(3, -1, 1)))
plot(roots, pch = ".", cex = 3, las = 1)
rect(1-eps, -eps, 1+eps, eps, col = "#FF000044")

}

Formal model for floating point arithmetic
• Recall that floating point numbers are represented as

significand× baseexponent

• Ignoring the limitations imposed by the finite range of the exponent, define

F = {0} ∪
{
±m2t × 2e : e ∈ Z and m integer with 1 ≤ m ≤ 2t

}
• Here the integer t is the precision of the representation (usually 24 or 53)

• e can be an arbitrary integer, so there is no “overflow” or “underflow” (F = 2F)

3

• This is still a useful formal model for the subset of R that has a floating point representation

• For example, with t = 53,

F ∩ [1, 2] = {1, 1 + 2−52, 1 + 2× 2−52, 1 + 3× 2−52, ..., 2},
F ∩ [2, 4] = {2, 2 + 2−51, 2 + 2× 2−51, 2 + 3× 2−51, ..., 4}, etc.

Machine epsilon
• The resolution of F is quantified by a number known as machine epsilon, εm
• Let us tentatively define εm to be half the distance between 1 and the next larger number in F

• Clearly, εm = 1
2 × 0.000 · · · 0001 = 1

2 × 2t−1 = 2−t, and has the following property:

For all x ∈ R, there exists x∗ ∈ F such that |x− x∗| ≤ εm · |x|

• For t = 24 (Float32), εm = 2−24 ≈ 6× 10−8

• For t = 53 (Float64), εm = 2−53 ≈ 1.1× 10−16

• For any x ∈ R, define fl(x) to be the element in F closest to x

• Then, a restatement of the above property is

For all x ∈ R, there exists ε with |ε| ≤ εm such that fl(x) = x(1 + ε)

• In other words, the relative approximation error of any real number is bounded by εm

Arithmetic of floating point numbers
• Consider the elementary arithmetic operations +,−,×,÷

• How should we expect these to behave on F?

• Let ∗ denote one of these elementary operations, and ~ denote the corresponding operation on F

• Then we would ideally want, for x, y ∈ F,

x~ y = fl(x ∗ y)

• If this is indeed true, then we have the Fundamental axiom of floating point arithmetic:

For all x, y ∈ F, there exists ε with |ε| ≤ εm such that x~ y = (x ∗ y)(1 + ε)

• In practice, this may not hold for the theoretical εm, but only for some larger value

• The smallest εm for which this is guaranteed (on a given machine) is defined to be the machine epsilon

Algorithms and stability
• Suppose we want to solve a problem f : X → Y

• There can be multiple algorithms to calculate a candidate solution

• Let f̃ : X → Y be the actual implementation of an algorithm to solve f

• At a minimum, this will involve the approximation of x by fl(x)

• In practice, suppose we want to calculate f(x), and actually compute f̃(x)

• The relative error is

4

‖f̃(x)− f(x)‖
‖f(x)‖

• Recall that fl(x) ≈ x(1 + εm) =⇒ ‖fl(x)−x‖
‖x‖ ≈ εm

• If κ = κ(x) is the relative condition number of f(x), we expect (note: for f , not f̃)

‖f(fl(x))− f(x)‖
‖f(x)‖ ≈ κ‖fl(x)− x‖

‖x‖
≈ κεm

• This is the best we can hope for with f̃ instead of f

‖f̃(x)− f(x)‖
‖f(x)‖ ≈ κεm

• Informally, an algorithm f̃ is unstable if this does not hold

Instability
• Instability arises due to ill-conditioned intermediate steps in an algorithm f̃

• The basic idea is to compare the (inherent) condition of f(x) with the conditions of intermediate steps

• Badly conditioned intermediate steps make the process unstable.

Instability: a toy example
• To make the idea concrete, consider the problem: f(x) =

√
x+ 1−

√
x, x > 0

• It is easily seen that the condition of f at x is 1
2

x√
x+1
√
x
≈ 1

2 when x is large

• A possible algorithm f̃ , directly using the definition, will proceed as follows

– x0 = x

– x1 = x0 + 1

– x2 = √x1

– x3 = √x0

– x4 = x2 − x3

• In general, suppose y = f̃(x) is computed in n steps

• Let xi be the output of the ith step (define x0 = x)

• Then y = f̃(x) = xn can also be viewed as a function of each of the intermediate xis

• Denote the ith such function by f̃i, such that y = f̃i(xi)

• In particular, f̃0 = f̃

• Then the instability in the total computation is dominated by the most ill-conditioned f̃i
• For the f̃ given above, we have

– f̃(t) =
√
t+ 1−

√
t

– x0 = x =⇒ f̃0(t) =
√
t+ 1−

√
t

– x1 = x0 + 1 =⇒ f̃1(t) =
√
t−√x0

– x2 = √x1 =⇒ f̃2(t) = t−√x0

5

– x3 = √x0 =⇒ f̃3(t) = x2 − t

• Consider the condition of f̃3 = x2 − t, which is (treating x2 as fixed)

∣∣∣∣∣ f̃3
′(t) t
f̃3(t)

∣∣∣∣∣ =
∣∣∣∣ t

x2 − t

∣∣∣∣
• This can be arbitrarily large for large x, e.g.,

x <- c(10, 100, 1000, 10000); t <- sqrt(x)
abs(t / (sqrt(x+1) - t))

[1] 20.48809 200.49876 2000.49988 20000.49999

• Here x2 and t are related, but the condition number is w.r.t. perturbations in t keeping x2 fixed

• An alternative formula for f is f(x) = 1√
x+1+

√
x

• An algorithm based on this formula would proceed as

– x0 = x =⇒ f̃0(t) = 1√
t+1+

√
t

– x1 = x0 + 1 =⇒ f̃1(t) = 1√
t+√x0

– x2 = √x1 =⇒ f̃2(t) = 1
t+√x0

– x3 = √x0 =⇒ f̃3(t) = 1
x2+t

– x4 = x2 + x3 =⇒ f̃4(t) = 1
t

– x5 = 1/x4

• Exercise: All these have good condition when t is large

6

	Condition of a problem
	Absolute condition number
	Relative condition number
	Examples
	Formal model for floating point arithmetic
	Machine epsilon
	Arithmetic of floating point numbers
	Algorithms and stability
	Instability
	Instability: a toy example

