Conditioning and Stability

Deepayan Sarkar

Condition of a problem

o Abstract problem: compute f: X — Y

e X and Y are normed vector spaces, usually R* for some k

e f is referred to as the “problem”, and is usually continuous

e We are interested in the behaviour of the problem at a particular “instance” z € X

o A problem instance f(z) is
— well-conditioned if small perturbations in x lead to only small changes in f(x)
— ill-conditioned if small perturbations in « can lead to large changes in f(x)

e Depending on context, “small” and “large” may be either absolute or relative change

Absolute condition number

e Consider a small perturbation dz in =
o Define the change in f to be 0f = f(x + dz) — f(x)

o The absolute condition number & = R(z) of the problem f at x is
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o For readability, this is often written informally as (implicitly assuming oz is infinitesimally small)
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o If f: R — R is differentiable, it is easy to see that &(x) = |f'(x)]
« More generally, if f : R¥ — R is differentiable, and J(z) is the Jacobian function, then

Ax) = [ J ()]
o Here ||J(z)|| represents a “matrix norm” induced by a vector norm (on R¥)

e Definition: For A,,«n, the matrix norm induced by vector norms on R™ and R" is

A
||A|l = sup {”;ﬂ rx e R x # 0}
e Note that here, the first-order Taylor series expansion of f gives
0 J(z)d
Of = f(x +dz) — f(z) = J(x)ox = sup 971 A2 sup |J(z)ox]
so 6zl 5w |6



o Exercise: Show that & = ||J ()|

Relative condition number
e The nature of floating point computations makes it more important to study relative changes

e The relative condition number k = k(x) of f at x is
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o If f is differentiable, we get
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o A problem f is well-conditioned if x is small (e.g., 1,10,10%) and ill-conditioned if « is large (e.g., 10°,

)

Examples
¢ fla)=Vz,z=0
— ['(x) = ga7

— So the condition of f at z is

[(x)x| lx_%m 1
flx)y | 2237 2
— So f is well-conditioned for all x.
. f@)=a
— Exercise: Condition of f is || at all x
® f(l') = 1,112

- fl(z) =22(1 —2?)2

— So condition of f at x is

— Can be large for x close to +1.
o f(w1,22) =21 — 22
— The Jacobian of f is J = [% g—é} =1 -1

[T [[]]
[z1—z2]

— S0k =
— What is ||z]|? Common choices are
x Ly |z + |22
* Lot \/a] + a3
% Loo: max{|z1|, |xa|}

— What is ||.J||? Depends on vector norm, but some constant ¢ for this J regardless of choice



cmax{|z1|,|z2|}

— So & is, with the Lo, norm, k = T —a]

— Ill-conditioned when z1 ~ x5

Roots of polynomials: e.g., az? + bz +c=0

—b+Vb?2 — dac
f(a’ b’ C) = 2
a

Exercise: Show that for 22 — 2z +1 = (x —1)2 =10, f(1,-2,1) has Kk = ©
Hint: try perturbing one coefficient at a time

Graphical demonstration:

qroot <- function(coefs) {

}

a <- coefs[1]; b <- coefs[2]; c <- coefs[3]
C <- sqrt(complex(real = b™2 - 4 * a * ¢, imaginary = 0))
(-b + c(-1, 1) = C) / (2 * a)

abc <- c(1, -2, 1)

par (mfrow = c(1, 3))
for (eps in c(0.1, 0.01, 0.001))

{

Im(roots)

roots <- replicate(1000, qroot(abc + eps * runif(3, -1, 1)))
plot(roots, pch = ".", cex = 3, las = 1)
rect(l-eps, -eps, l+eps, eps, col = "#FF000044")
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Formal model for floating point arithmetic

e Recall that floating point numbers are represented as

significand x base®*Porent

e Ignoring the limitations imposed by the finite range of the exponent, define

F:{O}U{ig><26:eGZandmintegerwith1§m§2t}

o Here the integer t is the precision of the representation (usually 24 or 53)

o e can be an arbitrary integer, so there is no “overflow” or “underflow” (F = 2F)



o This is still a useful formal model for the subset of R that has a floating point representation

e For example, with ¢ = 53,

FN[1,2] = {1,14+27°214+2x27%214+3x27%2 . 2},
FN[2,4 = {2,24+27°,24+2x27°1 243 %x27° .. 4} etc.

Machine epsilon
e The resolution of I is quantified by a number known as machine epsilon, ¢,
o Let us tentatively define €,, to be half the distance between 1 and the next larger number in F
o Clearly, €, = 3 x 0.000---0001 = § x 2/=1 =27 and has the following property:
For all z € R, there exists x* € F such that |z — z*| < €, - |z|
o For t =24 (Float32), €, =272 ~ 6 x 1078
o For t =53 (Float64), €, = 2753 a0 1.1 x 10716
o For any = € R, define fl(x) to be the element in F closest to =
e Then, a restatement of the above property is
For all z € R, there exists € with |¢| < €, such that fl(x) = z(1 +¢)

e In other words, the relative approximation error of any real number is bounded by €,,

Arithmetic of floating point numbers
e Consider the elementary arithmetic operations +, —, X, -+
e How should we expect these to behave on F?
e Let * denote one of these elementary operations, and ® denote the corresponding operation on F

e Then we would ideally want, for x,y € F,

@y ="f(zxy)
o If this is indeed true, then we have the Fundamental axiom of floating point arithmetic:
For all z,y € F, there exists € with |e| < €, such that t ® y = (z *y)(1 +¢)
e In practice, this may not hold for the theoretical €,,, but only for some larger value

o The smallest €, for which this is guaranteed (on a given machine) is defined to be the machine epsilon

Algorithms and stability
e Suppose we want to solve a problem f: X — Y
e There can be multiple algorithms to calculate a candidate solution
e Let f: X — Y be the actual implementation of an algorithm to solve f
o At a minimum, this will involve the approximation of z by fl(z)
« In practice, suppose we want to calculate f(z), and actually compute f (x)

e The relative error is
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o Recall that fl(z) = z2(1 4+ €,,) =

o If k = k(x) is the relative condition number of f(x), we expect (note: for f, not f)

If @ (=) — fF@Il,  [Hz) — =]
1/ (@) ]
o This is the best we can hope for with f instead of f

If () = f(@)l]
1)l

o Informally, an algorithm f is unstable if this does not hold

R K€,

Instability
o Instability arises due to ill-conditioned intermediate steps in an algorithm f
o The basic idea is to compare the (inherent) condition of f(x) with the conditions of intermediate steps

o Badly conditioned intermediate steps make the process unstable.

Instability: a toy example
o To make the idea concrete, consider the problem: f(z)=+vz+1—+/z,2 >0
1

e It is easily seen that the condition of f at x is %\/T#\/E ~ 5 when z is large

e A possible algorithm f, directly using the definition, will proceed as follows
—x9=x
—x1=x9+1
— xg = /T1
— 23 = /To
— Xy =29 — 23
e In general, suppose y = f (z) is computed in n steps
o Let x; be the output of the ith step (define xy = x)
e Then y = f(x) = x, can also be viewed as a function of each of the intermediate ;s
e Denote the ith such function by fi, such that y = fl(mz)
o In particular, fo = f
o Then the instability in the total computation is dominated by the most ill-conditioned f;
o For the f given above, we have
— ft)=ViFI-Vt
—zo=x = folt)=VEi+1—+1
—m=z+1 = fi(t)=Vi- o
—za= 71 = fo(t)=t— T



—183:\/% — fg(t):l'g—t

« Consider the condition of f3 = x5 — ¢, which is (treating x5 as fixed)

f3l(t)t
f3(t)

o This can be arbitrarily large for large z, e.g.,

t
$2—t

x <= c¢(10, 100, 1000, 10000); t <- sqrt(x)
abs(t / (sqrt(x+1) - t))

[1] 20.48809  200.49876 2000.49988 20000.49999
e Here x5 and t are related, but the condition number is w.r.t. perturbations in ¢ keeping xo fixed
. : _ 1
o An alternative formula for f is f(z) = Vo
e An algorithm based on this formula would proceed as
o Py 1
Ty =T — fO(t)*\/mjL\/{

*.Tl:l’()+1:>f~1(t): L

NGNS
— 2o =T = fo(t) = v
— I3 = /Ty — fg(t) = ﬁ

— T4 = To + T3 —> f4(t)=

=

— x5 =1/14

o Exercise: All these have good condition when t is large
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