Conditioning and Stability

Deepayan Sarkar

Condition of a problem

- Abstract problem: compute $f: X \rightarrow Y$
- X and Y are normed vector spaces, usually \mathbb{R}^{k} for some k
- f is referred to as the "problem", and is usually continuous
- We are interested in the behaviour of the problem at a particular "instance" $x \in X$
- A problem instance $f(x)$ is
- well-conditioned if small perturbations in x lead to only small changes in $f(x)$
- ill-conditioned if small perturbations in x can lead to large changes in $f(x)$
- Depending on context, "small" and "large" may be either absolute or relative change

Absolute condition number

- Consider a small perturbation δx in x
- Define the change in f to be $\delta f=f(x+\delta x)-f(x)$
- The absolute condition number $\hat{\kappa}=\hat{\kappa}(x)$ of the problem f at x is

$$
\hat{\kappa}(x)=\lim _{h \rightarrow 0} \sup _{\|\delta x\| \leq h} \frac{\|\delta f\|}{\|\delta x\|}
$$

- For readability, this is often written informally as (implicitly assuming δx is infinitesimally small)

$$
\hat{\kappa}(x)=\sup _{\delta x} \frac{\|\delta f\|}{\|\delta x\|}
$$

- If $f: \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, it is easy to see that $\hat{\kappa}(x)=\left|f^{\prime}(x)\right|$
- More generally, if $f: \mathbb{R}^{k} \rightarrow \mathbb{R}$ is differentiable, and $J(x)$ is the Jacobian function, then

$$
\hat{\kappa}(x)=\|J(x)\|
$$

- Here $\|J(x)\|$ represents a "matrix norm" induced by a vector norm (on \mathbb{R}^{k})
- Definition: For $A_{m \times n}$, the matrix norm induced by vector norms on \mathbb{R}^{m} and \mathbb{R}^{n} is

$$
\|A\|=\sup \left\{\frac{\|A x\|}{\|x\|}: x \in \mathbb{R}^{n}, x \neq 0\right\}
$$

- Note that here, the first-order Taylor series expansion of f gives

$$
\delta f=f(x+\delta x)-f(x) \approx J(x) \delta x \Longrightarrow \sup _{\delta x} \frac{\|\delta f\|}{\|\delta x\|} \approx \sup _{\delta x} \frac{\|J(x) \delta x\|}{\|\delta x\|}
$$

- Exercise: Show that $\hat{\kappa}=\|J(x)\|$

Relative condition number

- The nature of floating point computations makes it more important to study relative changes
- The relative condition number $\kappa=\kappa(x)$ of f at x is

$$
\kappa(x)=\lim _{h \rightarrow 0} \sup _{\|\delta x\| \leq h}\left(\frac{\|\delta f\|}{\|f(x)\|} / \frac{\|\delta x\|}{\|x\|}\right)=\frac{\|x\|}{\|f(x)\|} \lim _{h \rightarrow 0} \sup _{\|\delta x\| \leq h} \frac{\|\delta f\|}{\|\delta x\|}
$$

- If f is differentiable, we get

$$
\kappa(x)=\frac{\|J(x)\| \cdot\|x\|}{\|f(x)\|}=\left|\frac{f^{\prime}(x) x}{f(x)}\right|
$$

- A problem f is well-conditioned if κ is small (e.g., $1,10,10^{2}$) and ill-conditioned if κ is large (e.g., 10^{6}, ...)

Examples

- $f(x)=\sqrt{x}, x \geq 0$
$-f^{\prime}(x)=\frac{1}{2} x^{-\frac{1}{2}}$
- So the condition of f at x is

$$
\left|\frac{f^{\prime}(x) x}{f(x)}\right|=\frac{1}{2} \frac{x^{-\frac{1}{2}}}{x^{\frac{1}{2}}} x=\frac{1}{2}
$$

- So f is well-conditioned for all x.
- $f(x)=x^{\alpha}$
- Exercise: Condition of f is $|\alpha|$ at all x
- $f(x)=\frac{1}{1-x^{2}}$
$-f^{\prime}(x)=2 x\left(1-x^{2}\right)^{-2}$
- So condition of f at x is

$$
\left|\frac{f^{\prime}(x) x}{f(x)}\right|=\left|2 x\left(1-x^{2}\right)^{-2} x\left(1-x^{2}\right)\right|=\frac{2 x^{2}}{\left|1-x^{2}\right|}
$$

- Can be large for x close to ± 1.
- $f\left(x_{1}, x_{2}\right)=x_{1}-x_{2}$
- The Jacobian of f is $J=\left[\begin{array}{ll}\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}}\end{array}\right]=\left[\begin{array}{ll}1 & -1\end{array}\right]$
- So $\kappa=\frac{\|J\| \cdot\|x\|}{\left|x_{1}-x_{2}\right|}$
- What is $\|x\|$? Common choices are

$$
\begin{aligned}
& * L_{1}:\left|x_{1}\right|+\left|x_{2}\right| \\
& * L_{2}: \sqrt{x_{1}^{2}+x_{2}^{2}} \\
& * L_{\infty}: \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}
\end{aligned}
$$

- What is $\|J\|$? Depends on vector norm, but some constant c for this J regardless of choice
- So κ is, with the L_{∞} norm, $\kappa=\frac{c \max \left\{\left|x_{1}\right|,\left|x_{2}\right|\right\}}{\left|x_{1}-x_{2}\right|}$
- Ill-conditioned when $x_{1} \approx x_{2}$
- Roots of polynomials: e.g., $a x^{2}+b x+c=0$

$$
f(a, b, c)=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

- Exercise: Show that for $x^{2}-2 x+1=(x-1)^{2}=0, f(1,-2,1)$ has $\kappa=\infty$
- Hint: try perturbing one coefficient at a time
- Graphical demonstration:

```
qroot <- function(coefs) {
    a <- coefs[1]; b <- coefs[2]; c <- coefs[3]
    C <- sqrt(complex(real = b^2 - 4* a * c, imaginary = 0))
    (-b + c(-1, 1) * C) / (2 * a)
}
abc <- c(1, -2, 1)
par(mfrow = c(1, 3))
for (eps in c(0.1, 0.01, 0.001))
{
    roots <- replicate(1000, qroot(abc + eps * runif(3, -1, 1)))
    plot(roots, pch = ".", cex = 3, las = 1)
    rect(1-eps, -eps, 1+eps, eps, col = "#FF000044")
}
```


Formal model for floating point arithmetic

- Recall that floating point numbers are represented as

$$
\text { significand } \times \text { base }^{\text {exponent }}
$$

- Ignoring the limitations imposed by the finite range of the exponent, define

$$
\mathbb{F}=\{0\} \cup\left\{ \pm \frac{m}{2^{t}} \times 2^{e}: e \in \mathbb{Z} \text { and } m \text { integer with } 1 \leq m \leq 2^{t}\right\}
$$

- Here the integer t is the precision of the representation (usually 24 or 53)
- e can be an arbitrary integer, so there is no "overflow" or "underflow" $(\mathbb{F}=2 \mathbb{F})$
- This is still a useful formal model for the subset of \mathbb{R} that has a floating point representation
- For example, with $t=53$,

$$
\begin{aligned}
& \mathbb{F} \cap[1,2]=\left\{1,1+2^{-52}, 1+2 \times 2^{-52}, 1+3 \times 2^{-52}, \ldots, 2\right\} \\
& \mathbb{F} \cap[2,4]=\left\{2,2+2^{-51}, 2+2 \times 2^{-51}, 2+3 \times 2^{-51}, \ldots, 4\right\}, \text { etc. }
\end{aligned}
$$

Machine epsilon

- The resolution of \mathbb{F} is quantified by a number known as machine epsilon, ϵ_{m}
- Let us tentatively define ϵ_{m} to be half the distance between 1 and the next larger number in \mathbb{F}
- Clearly, $\epsilon_{m}=\frac{1}{2} \times 0.000 \cdots 0001=\frac{1}{2} \times 2^{t-1}=2^{-t}$, and has the following property:

For all $x \in \mathbb{R}$, there exists $x^{*} \in \mathbb{F}$ such that $\left|x-x^{*}\right| \leq \epsilon_{m} \cdot|x|$

- For $t=24$ (Float32), $\epsilon_{m}=2^{-24} \approx 6 \times 10^{-8}$
- For $t=53$ (Float64), $\epsilon_{m}=2^{-53} \approx 1.1 \times 10^{-16}$
- For any $x \in \mathbb{R}$, define $\mathrm{fl}(x)$ to be the element in \mathbb{F} closest to x
- Then, a restatement of the above property is

For all $x \in \mathbb{R}$, there exists ϵ with $|\epsilon| \leq \epsilon_{m}$ such that $\mathrm{f}(x)=x(1+\epsilon)$

- In other words, the relative approximation error of any real number is bounded by ϵ_{m}

Arithmetic of floating point numbers

- Consider the elementary arithmetic operations,,$+- \times, \div$
- How should we expect these to behave on \mathbb{F} ?
- Let $*$ denote one of these elementary operations, and \circledast denote the corresponding operation on \mathbb{F}
- Then we would ideally want, for $x, y \in \mathbb{F}$,

$$
x \circledast y=\mathrm{fl}(x * y)
$$

- If this is indeed true, then we have the Fundamental axiom of floating point arithmetic:

For all $x, y \in \mathbb{F}$, there exists ϵ with $|\epsilon| \leq \epsilon_{m}$ such that $x \circledast y=(x * y)(1+\epsilon)$

- In practice, this may not hold for the theoretical ϵ_{m}, but only for some larger value
- The smallest ϵ_{m} for which this is guaranteed (on a given machine) is defined to be the machine epsilon

Algorithms and stability

- Suppose we want to solve a problem $f: X \rightarrow Y$
- There can be multiple algorithms to calculate a candidate solution
- Let $\tilde{f}: X \rightarrow Y$ be the actual implementation of an algorithm to solve f
- At a minimum, this will involve the approximation of x by $\mathrm{fl}(x)$
- In practice, suppose we want to calculate $f(x)$, and actually compute $\tilde{f}(x)$
- The relative error is

$$
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|}
$$

- Recall that $\mathrm{f}(x) \approx x\left(1+\epsilon_{m}\right) \Longrightarrow \frac{\|\mathrm{f}(x)-x\|}{\|x\|} \approx \epsilon_{m}$
- If $\kappa=\kappa(x)$ is the relative condition number of $f(x)$, we expect (note: for f, not \tilde{f})

$$
\frac{\|f(\mathrm{fl}(x))-f(x)\|}{\|f(x)\|} \approx \kappa \frac{\|\mathrm{fl}(x)-x\|}{\|x\|} \approx \kappa \epsilon_{m}
$$

- This is the best we can hope for with \tilde{f} instead of f

$$
\frac{\|\tilde{f}(x)-f(x)\|}{\|f(x)\|} \approx \kappa \epsilon_{m}
$$

- Informally, an algorithm \tilde{f} is unstable if this does not hold

Instability

- Instability arises due to ill-conditioned intermediate steps in an algorithm \tilde{f}
- The basic idea is to compare the (inherent) condition of $f(x)$ with the conditions of intermediate steps
- Badly conditioned intermediate steps make the process unstable.

Instability: a toy example

- To make the idea concrete, consider the problem: $f(x)=\sqrt{x+1}-\sqrt{x}, x>0$
- It is easily seen that the condition of f at x is $\frac{1}{2} \frac{x}{\sqrt{x+1} \sqrt{x}} \approx \frac{1}{2}$ when x is large
- A possible algorithm \tilde{f}, directly using the definition, will proceed as follows

$$
\begin{aligned}
& -x_{0}=x \\
& -x_{1}=x_{0}+1 \\
& -x_{2}=\sqrt{x_{1}} \\
& -x_{3}=\sqrt{x_{0}} \\
& -x_{4}=x_{2}-x_{3}
\end{aligned}
$$

- In general, suppose $y=\tilde{f}(x)$ is computed in n steps
- Let x_{i} be the output of the i th step (define $x_{0}=x$)
- Then $y=\tilde{f}(x)=x_{n}$ can also be viewed as a function of each of the intermediate $x_{i} \mathrm{~S}$
- Denote the i th such function by \tilde{f}_{i}, such that $y=\tilde{f}_{i}\left(x_{i}\right)$
- In particular, $\tilde{f}_{0}=\tilde{f}$
- Then the instability in the total computation is dominated by the most ill-conditioned \tilde{f}_{i}
- For the \tilde{f} given above, we have

$$
\begin{aligned}
& -\tilde{f}(t)=\sqrt{t+1}-\sqrt{t} \\
& -x_{0}=x \Longrightarrow \tilde{f}_{0}(t)=\sqrt{t+1}-\sqrt{t} \\
& -x_{1}=x_{0}+1 \Longrightarrow \tilde{f}_{1}(t)=\sqrt{t}-\sqrt{x_{0}} \\
& -x_{2}=\sqrt{x_{1}} \Longrightarrow \tilde{f}_{2}(t)=t-\sqrt{x_{0}}
\end{aligned}
$$

$$
-x_{3}=\sqrt{x_{0}} \Longrightarrow \tilde{f}_{3}(t)=x_{2}-t
$$

- Consider the condition of $\tilde{f}_{3}=x_{2}-t$, which is (treating x_{2} as fixed)

$$
\left|\frac{\tilde{f}_{3}^{\prime}(t) t}{\tilde{f}_{3}(t)}\right|=\left|\frac{t}{x_{2}-t}\right|
$$

- This can be arbitrarily large for large x, e.g.,

```
x <- c(10, 100, 1000, 10000); t <- sqrt(x)
abs(t / (sqrt(x+1) - t))
```

[1] $20.48809 \quad 200.49876 \quad 2000.49988 \quad 20000.49999$

- Here x_{2} and t are related, but the condition number is w.r.t. perturbations in t keeping x_{2} fixed
- An alternative formula for f is $f(x)=\frac{1}{\sqrt{x+1}+\sqrt{x}}$
- An algorithm based on this formula would proceed as

$$
\begin{aligned}
& -x_{0}=x \Longrightarrow \tilde{f}_{0}(t)=\frac{1}{\sqrt{t+1}+\sqrt{t}} \\
& -x_{1}=x_{0}+1 \Longrightarrow \tilde{f}_{1}(t)=\frac{1}{\sqrt{t}+\sqrt{x_{0}}} \\
& -x_{2}=\sqrt{x_{1}} \Longrightarrow \tilde{f}_{2}(t)=\frac{1}{t+\sqrt{x_{0}}} \\
& -x_{3}=\sqrt{x_{0}} \Longrightarrow \tilde{f}_{3}(t)=\frac{1}{x_{2}+t} \\
& -x_{4}=x_{2}+x_{3} \Longrightarrow \tilde{f}_{4}(t)=\frac{1}{t} \\
& -x_{5}=1 / x_{4}
\end{aligned}
$$

- Exercise: All these have good condition when t is large

