
Introductory Computer Programming

Deepayan Sarkar

About this course
• Compulsory non-credit course (pass marks: 35%)

• Does not count towards composite score, but you need to pass

• Syllabus

– Basics in Programming: flow-charts, logic in programming

– Common syntax

– Handling input/output files

– Sorting

– Iterative algorithms

– Simulations from statistical distributions

– Programming for statistical data analyses: regression, estimation, parametric tests

Exercise
• Think of tasks that cannot be easily done without a computer

• Could be both related and unrelated to what you are studying

Some specific examples
• Can be solved using scalar variables only:

– Is a given natural number n ∈ N prime?

– Given integer k ≥ 0, compute its factorial k!, and log k!

– Given integers n, k ≥ 0 such that k ≤ n, compute
(

n
k

)
• Probably need vector objects to be solved:

– Find all prime numbers less than a given number N

– Sort a given collection of numbers

– Produce a random permutation of a given set of numbers

– Given set S and query object x, determine whether x ∈ S (set membership)

Some examples of simulation
• Simple random walk (+1 or -1 with probability p and 1− p):

– How long does it take to return to zero for the first time?
– When was the last return to zero before time 2n?

1

• Toss a coin (with probability of head p) until you get k consecutive heads.

– Based on observed value, can you test for p = 1
2?

• Given a game of snakes and ladders, how many throws of the dice does it take to reach the end?

• Shuffle a deck of cards.

– How can we probabilistically model a shuffle?

– How many times do we need to shuffle to make the deck approximately random?

– How can we “test” for randomness?

Some general problems
• Given a function f , solve for f(x) = 0, e.g.,

– solve non-linear equations like ex + sin x = 0

– solve linear equations (e.g., as part of fitting linear models)

• Optimization: given a function f , find x where f(x) is minimized

– Sometimes this can be done by solving f ′(x) = 0

• Solution used usually depends on context

Algorithms
• We will spend a lot of time discussing algorithms

• An algorithm is essentially a set of instructions to solve a problem

• Algorithms usually require some inputs

• Instructions are executed sequentially, finally resulting in an output

• You can think of an algorithm as a recipe (inputs: ingredients, output: food!)

Example: is a given number n prime?
• Basic idea: see if n is divisible by any number between 2 and n− 1

• Obviously, enough to check is n is divisible by any number between 2 and
√
n

• Intuitively, the second approach is more “efficient”

• We will usually write algorithms in the form of pseudo-code as follows:

is_prime(n)

i := 2
while (i ≤ sqrt(n)) {

if (n mod i == 0) {
return FALSE

}
i := i + 1

}
return TRUE

• The meaning of this algorithm / pseudo-code should be more or less obvious

• Assumes availability of certain basic operators / functions (mod, sqrt)

2

• We often employ some conventions and use some structures in pseudo-code

• For example,

is_prime(n)

i := 2 // variable assignment
while (i ≤ sqrt(n)) { // loop while condition holds

if (n mod i == 0) { // branch if condition holds
return FALSE // exits with output value

} // end of blocks within loops, branches, etc.
i := i + 1 // update variable value

}
return TRUE

• These conventions are not standard; alternative forms could be:

is_prime(n)

i = 2 // different assignment operator
while i ≤ sqrt(n) // end of loop indicated by indentation

if n mod i == 0
return FALSE

i = i + 1
return TRUE

is_prime(n)

i <- 2 // yet another assignment operator
while i ≤ sqrt(n) // end of loop indicated by end keyword

if n mod i == 0
return FALSE

end
i <- i + 1

end
return TRUE

Theoretical questions about algorithms
• Is an algorithm correct? To be correct, an algorithm must

– stop after a finite number of steps, and

– produce the correct output for all possible inputs (i.e., all instances of the problem).

• How efficient is the algorithm?

– What resources does the algorithm need to run, typically in terms of time and storage?

– How does it compare with other algorithms for the same problem?

• To answer such questions, we need a model for computation

Ingredients of a computational model
• There are actually many different approaches to programming

• We will mostly consider structured programming

• Characterized by use of various control flow constructs (if, then, while, for, etc.) and block structures

3

https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Block_(programming)

• More specifically, we will focus of procedural programming

• Characterized by use of modular procedures (usually called functions)

• We are mainly interested in procedures that perform some computations

• Most algorithms we will discuss directly correspond to procedures or functions when actually implemented

• We will not discuss other kinds of programs (e.g., operating system, web browser, editor, etc.).

Functions and control flow structures
• The main components of our programs are going to be functions.

• Usually a programming language will have many built-in functions

• Additional libraries or packages will provide more standard functions

• Functions usually

– have one or more input arguments,

– perform some computations, possibly calling other functions, and

– return one or more output values.

• The main contribution of a function is the second step

• The standard model for performing computations is sequential execution

• In other words, a function executes a set of instructions in a specified sequence

• Some control flow structures may be used to create branches or loops in the flow of execution

• Briefly, the main ingredients used are:

– Declaration of variables (implicit in some languages). The details of how variables store values,
and who can access them (scope) are important, and will be discussed later.

– Evaluation of expressions. Can involve variables provided they have been defined in an earlier step.

– Assignment to variables (to store intermediate results for later use).

– Logical tests (equal?, less than?, greater than?, is more input available?).

– Logical operations (AND, OR, NOT, XOR).

– Branching - take different paths based on result of a logical operation (if-then-else).

– Loops - repeat sequence of steps, usually a fixed number of times, or while a condition holds (for /
while).

Common operators (may have language-specific variants)
• Mathematical operators:

– + (addition)
– * (multiplication)
– / (division — possibly integer division)
– ˆ (power)
– % (the modulo operation)

• Logical operators:
– & (AND)
– | (OR)
– ! (NOT)

• Comparisons:

4

https://en.wikipedia.org/wiki/Procedural_programming

– == (equality)
– != (6=)
– <, > (strictly less than or greater than)
– <= >= (≤, ≥)

• Mathematical functions: round, floor, ceil, abs, sqrt, exp, log, sin, cos, ...

Practical implementation: programming languages
• The algorithms we discuss can be implemented in many programming languages

• Some standard languages suitable for structured programming are

– C (compiled)
– C++ (compiled)
– R (interpreted)
– Python (interpreted)
– Julia (interpreted)

• There are also many others with various relative strengths and weaknesses

• In this course, we will mainly focus on

– R because it already has an extensive collection of statistical software that we can use

– C / C++ because it is easy to call C / C++ code from R (useful when R code is inefficient)

Example: The is_prime algorithm in various languages
• Recall the is_prime algorithm to determine if a number is prime

• With slight modification to use only integer arithmetic

is_prime(n)

i := 2
while (i * i ≤ n) {

if (n mod i == 0) {
return FALSE

}
i := i + 1

}
return TRUE

• Implemented in C, the algorithm would look like this:

int is_prime_c(int n)
{

int i = 2;
while (i * i <= n) {

if (n % i == 0) {
return 0;

}
i = i + 1;

}
return 1;

}

• C is a compiled language, so actually running this code involves some additional work

• Note that all variable types need to be explicitly declared

5

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)

• This includes the types of function arguments (inputs) and return value (output)

• The same algorithm would look like this in R:

is_prime_r <- function(n)
{

i <- 2
while (i * i <= n) {

if (n %% i == 0) {
return (FALSE)

}
i <- i + 1;

}
return (TRUE);

}

• The basic structure is very similar, but with some differences:

– The assignment operator is different (but = also works in R)
– The function declaration looks like a variable assignment
– The modulo operator is %% instead of %
– Uses TRUE and FALSE instead of 1 and 0 for logical values
– Statements do not end with a semicolon (although they could)
– Variable types are not declared
– The return value must be put in parentheses

• We can call this function after starting R and copy-pasting the function definition

is_prime_r(4)

[1] FALSE

is_prime_r(10)

[1] FALSE

is_prime_r(100)

[1] FALSE

is_prime_r(101)

[1] TRUE

• The implementation looks a little different in Python:

def is_prime_py(n):
i = 2
while i * i <= n:

if n % i == 0:
return 0;

i = i + 1
return 1

• The main difference is that indentation defines code blocks

• Changing indentation will change meaning of code, which does not happen in C or R

• However, code in all languages should be indented properly for readability

• Again, we can start python, define the function, and run the following code

print(is_prime_py(4))

6

0

print(is_prime_py(10))

0

print(is_prime_py(100))

0

print(is_prime_py(101))

1

How can we run C / C++ code?
#include <stdio.h>
#include <stdlib.h>

int is_prime_c(int n)
{

int i = 2;
while (i * i <= n) {
if (n % i == 0) {

return 0;
}
i = i + 1;
}
return 1;

}

int main(int argc, char *argv[])
{

int i, n;
if (argc > 1) { /* one or more arguments supplied */
for (i = 1; i < argc; i++) {

n = atoi(argv[i]); /* converts string to integer */
printf("%d -> %d\n", n, is_prime_c(n));

}
}
else printf("Usage: %s <n1> <n2> ...\n", argv[0]);
return 0;

}

• The code needs to be “compiled” before it is run

• It also needs a main() function to be defined

• main() is run first when the program is executed

• Here is a complete file that can be compiled

• How to compile & run depends on the operating system

gcc -o is_prime cdemo/is_prime_wrapper.c
./is_prime

Usage: ./is_prime <n1> <n2> ...

./is_prime 4 10 100 101

7

cdemo/is_prime_wrapper.c

4 -> 0
10 -> 0
100 -> 0
101 -> 1

Compiled code vs interpreted code
• R, Python, etc., are “interpreted” languages that read and evaluate code interactively

• Compiled code is usually (but not always) much faster than interpreters

• Most interpreters are themselves written in a compiled language

• However, compiled languages have several disadvantages:

– They are not interactive!
– Trying out ideas (edit-compile-run) takes longer
– Most importantly: limited initial set of tools
– For example, you will need to write your own functions to import data, make plots, etc.

• Ultimately, choice depends on the purpose of the program

• We will mainly use R (to take advantage of its many useful features)

• We will not write C programs designed to be run directly

• However, we will sometimes call C / C++ code from R to take advantage of its speed

• The easiest way to do this is using a package called Rcpp

• Python code can similarly be called using the reticulate package

• And Julia code can be called using the JuliaCall package

• I will give an example of Rcpp to illustrate its usefulness

• We will look at it in more detail after learning more about R and C

An example of using Rcpp
• The first step is to compile a C function so that it can be called from R

library(package = "Rcpp")
sourceCpp(code =
"

#include <Rcpp.h>

// [[Rcpp::export]]
int is_prime_c(int n)
{

int i = 2;
while (i * i <= n) {

if (n % i == 0) {
return 0;

}
i = i + 1;

}
return 1;

}

8

https://cran.r-project.org/package=Rcpp
https://cran.r-project.org/package=reticulate
https://cran.r-project.org/package=JuliaCall

")

• Alternatively, compile code in a file

library(package = "Rcpp")
sourceCpp("cdemo/is_prime_rcpp.cpp")

• The C function can then be called just like an R function

is_prime_c(4)

[1] 0

is_prime_c(10)

[1] 0

is_prime_c(100)

[1] 0

is_prime_c(101)

[1] 1

• We can call both versions on a sequence of integers as follows

• The time required is recorded using system.time()

system.time(r_primes <- sapply(1:1000000, is_prime_r))

user system elapsed
11.950 0.008 11.958

system.time(c_primes <- sapply(1:1000000, is_prime_c))

user system elapsed
2.454 0.016 2.471

• The C version is clearly faster

• Would have been even faster if the loop was also in C

• We can try this later after we discuss vectors / arrays

What is the advantage of doing this in R?
• We can use R utilities to check that the results are the same

sum(r_primes == TRUE) # counts number of TRUE in a logical vector

[1] 78499

sum(c_primes == TRUE)

[1] 78499

tail(which(r_primes == TRUE)) # extracts last few elements

[1] 999931 999953 999959 999961 999979 999983

tail(which(c_primes == 1))

[1] 999931 999953 999959 999961 999979 999983

identical(r_primes == TRUE, c_primes == 1) # tests whether two arguments are identical

[1] TRUE

9

cdemo/is_prime_rcpp.cpp

• We can use R to visualize the prime counting function π(n)

plot(cumsum(c_primes), type = "l")

• Is π(n) ≈ n/ logn? (Prime Number Theorem)

n <- 1:1000000
plot(cumsum(c_primes) / (n / log(n)), type = "l", ylim = c(1, 1.4))

What next
• Over the next few classes, we will learn R more formally

• We will then come back to study algorithms in more detail

10

https://en.wikipedia.org/wiki/Prime_number_theorem

	About this course
	Exercise
	Some specific examples
	Some examples of simulation
	Some general problems
	Algorithms
	Example: is a given number n prime?
	Theoretical questions about algorithms
	Ingredients of a computational model
	Functions and control flow structures
	Common operators (may have language-specific variants)
	Practical implementation: programming languages
	Example: The is_prime algorithm in various languages
	How can we run C / C++ code?
	Compiled code vs interpreted code
	An example of using Rcpp
	What is the advantage of doing this in R?
	What next

