Introductory Computer Programming

Deepayan Sarkar

About this course
o Compulsory non-credit course (pass marks: 35%)
e Does not count towards composite score, but you need to pass
« Syllabus
— Basics in Programming: flow-charts, logic in programming

— Common syntax

Handling input/output files

Sorting

Tterative algorithms

Simulations from statistical distributions

— Programming for statistical data analyses: regression, estimation, parametric tests

Exercise
e Think of tasks that cannot be easily done without a computer

¢ Could be both related and unrelated to what you are studying

Some specific examples

e Can be solved using scalar variables only:
— Is a given natural number n € N prime?
— Given integer k > 0, compute its factorial k!, and log k!
— Given integers n, k > 0 such that £ < n, compute (:)

e Probably need vector objects to be solved:
— Find all prime numbers less than a given number N
— Sort a given collection of numbers
— Produce a random permutation of a given set of numbers

— Given set S and query object z, determine whether x € S (set membership)

Some examples of simulation
o Simple random walk (41 or -1 with probability p and 1 — p):

— How long does it take to return to zero for the first time?
— When was the last return to zero before time 2n?

o Toss a coin (with probability of head p) until you get k consecutive heads.

19
11

— Based on observed value, can you test for p =
e Given a game of snakes and ladders, how many throws of the dice does it take to reach the end?
e Shuffle a deck of cards.

— How can we probabilistically model a shuffle?

— How many times do we need to shuffle to make the deck approximately random?

— How can we “test” for randomness?

Some general problems
o Given a function f, solve for f(z) =0, e.g.,
— solve non-linear equations like e* 4+ sinx =0
— solve linear equations (e.g., as part of fitting linear models)
o Optimization: given a function f, find « where f(x) is minimized
— Sometimes this can be done by solving f'(x) =0

e Solution used usually depends on context

Algorithms
o We will spend a lot of time discussing algorithms
e An algorithm is essentially a set of instructions to solve a problem
e Algorithms usually require some inputs
o Instructions are executed sequentially, finally resulting in an output

e You can think of an algorithm as a recipe (inputs: ingredients, output: food!)

Example: is a given number n prime?
o Basic idea: see if n is divisible by any number between 2 and n — 1
o Obviously, enough to check is n is divisible by any number between 2 and /n
¢ Intuitively, the second approach is more “efficient”

e We will usually write algorithms in the form of pseudo-code as follows:

is_prime(n)
i=2
while (i < sqrt(n)) {
if (nmodi==0) {
return FALSE
}

i=i4+1
}
return TRUE

o The meaning of this algorithm / pseudo-code should be more or less obvious

o Assumes availability of certain basic operators / functions (mod, sqrt)

o We often employ some conventions and use some structures in pseudo-code

e For example,

is_prime(n)

i=2 // variable assignment
while (i <sqrt(n)) { // loop while condition holds
if (nmodi==0){ // branch if condition holds
return FALSE // exits with output value
} // end of blocks within loops, branches, etc.
i=i+1 // update variable value

}

return TRUE

e These conventions are not standard; alternative forms could be:

is_prime(n)

i =2 // different assignment operator
while i < sqrt(n) // end of loop indicated by indentation

if nmodi==0
return FALSE
i=i+1

return TRUE
is_prime(n)

i <- 2 // yet another assignment operator
while i < sqrt(n) // end of loop indicated by end keyword
if n mod i ==
return FALSE
end
i<-i+1
end
return TRUE

Theoretical questions about algorithms
e Is an algorithm correct? To be correct, an algorithm must
— stop after a finite number of steps, and
— produce the correct output for all possible inputs (i.e., all instances of the problem).
o How efficient is the algorithm?
— What resources does the algorithm need to run, typically in terms of time and storage?
— How does it compare with other algorithms for the same problem?

e To answer such questions, we need a model for computation

Ingredients of a computational model
e There are actually many different approaches to programming
o We will mostly consider structured programming

o Characterized by use of various control flow constructs (if, then, while, for, etc.) and block structures

https://en.wikipedia.org/wiki/Structured_programming
https://en.wikipedia.org/wiki/Block_(programming)

More specifically, we will focus of procedural programming

Characterized by use of modular procedures (usually called functions)

We are mainly interested in procedures that perform some computations

Most algorithms we will discuss directly correspond to procedures or functions when actually implemented

We will not discuss other kinds of programs (e.g., operating system, web browser, editor, etc.).

Functions and control flow structures

The main components of our programs are going to be functions.
Usually a programming language will have many built-in functions
Additional libraries or packages will provide more standard functions
Functions usually

— have one or more input arguments,

— perform some computations, possibly calling other functions, and

— return one or more output values.
The main contribution of a function is the second step
The standard model for performing computations is sequential execution
In other words, a function executes a set of instructions in a specified sequence
Some control flow structures may be used to create branches or loops in the flow of execution
Briefly, the main ingredients used are:

— Declaration of variables (implicit in some languages). The details of how variables store values,
and who can access them (scope) are important, and will be discussed later.

— Evaluation of expressions. Can involve variables provided they have been defined in an earlier step.
— Assignment to variables (to store intermediate results for later use).
— Logical tests (equal?, less than?, greater than?, is more input available?).

Logical operations (AND, OR, NOT, XOR).

Branching - take different paths based on result of a logical operation (if-then-else).

Loops - repeat sequence of steps, usually a fixed number of times, or while a condition holds (for /
while).

Common operators (may have language-specific variants)

Mathematical operators:
— + (addition)

— x (multiplication)
— / (division — possibly integer division)
— " (power)

(

— % (the modulo operation)
Logical operators:

— & (AND)

— | (OR)

— 1 (NOT)
Comparisons:

https://en.wikipedia.org/wiki/Procedural_programming

|
— <, > (strictly less than or greater than)
—<=>= (<, >)
e Mathematical functions: round, floor, ceil, abs, sqrt, exp, log, sin, cos,

Practical implementation: programming languages
e The algorithms we discuss can be implemented in many programming languages
e Some standard languages suitable for structured programming are
— C (compiled)
— C++ (compiled)
R (interpreted)

— Python (interpreted)
Julia (interpreted)

e There are also many others with various relative strengths and weaknesses

o In this course, we will mainly focus on

— R because it already has an extensive collection of statistical software that we can use

— C / C++ because it is easy to call C / C++ code from R (useful when R code is inefficient)

Example: The is_prime algorithm in various languages
o Recall the is_prime algorithm to determine if a number is prime

e With slight modification to use only integer arithmetic

is_prime(n)

i:=2
while (i *i < n) {
if (n modi==0){
return FALSE
}

i=i+1

return TRUE
e Implemented in C, the algorithm would look like this:

int is_prime_c(int n)

{
int i = 2;
while (i * i <=n) {
if (n % i==0) {
return O;
}
i=1+1;
}
return 1;
}

o C is a compiled language, so actually running this code involves some additional work

e Note that all variable types need to be explicitly declared

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Julia_(programming_language)

 This includes the types of function arguments (inputs) and return value (output)
e The same algorithm would look like this in R:

is_prime_r <- function(n)

{
i<-2
while (i * i <= n) {
if (m %% i == 0) {
return (FALSE)
}
i<-1i+ 1;
}
return (TRUE);
}

o The basic structure is very similar, but with some differences:

— The assignment operator is different (but = also works in R)

— The function declaration looks like a variable assignment

The modulo operator is %% instead of %

— Uses TRUE and FALSE instead of 1 and 0 for logical values

— Statements do not end with a semicolon (although they could)
— Variable types are not declared

— The return value must be put in parentheses

e We can call this function after starting R and copy-pasting the function definition
is_prime_r(4)
[1] FALSE
is_prime_r(10)
[1] FALSE
is_prime_r(100)
[1] FALSE
is_prime_r(101)
[1] TRUE
e The implementation looks a little different in Python:
def is_prime_py(n):

i=2
while i * i <= n:
if n? i==
return O;
i=1i+1
return 1

e The main difference is that indentation defines code blocks

e Changing indentation will change meaning of code, which does not happen in C or R
e However, code in all languages should be indented properly for readability

e Again, we can start python, define the function, and run the following code

print(is_prime_py(4))

0
print(is_prime_py(10))
0
print(is_prime_py(100))
0
print(is_prime_py(101))
1

How can we run C / C++ code?

#include <stdio.h>
#include <stdlib.h>

int is_prime_c(int n)

{
int i = 2;
while (i * i <=n) {
if (n % i == 0) {
return O;
}
i=1i+1;
}
return 1;
}

int main(int argc, char *argv[])

{
int i, n;
if (arge > 1) { /* one or more arguments supplied */
for (i = 1; i < argc; i++) {
n = atoi(argv[il); /* converts string to integer */
printf("%d -> %d\n", n, is_prime_c(n));
}
¥
else printf("Usage: %s <nl> <n2> ...\n", argv[0]);
return O;
}

e The code needs to be “compiled” before it is run

o It also needs a main() function to be defined

e main() is run first when the program is executed

e Here is a complete file that can be compiled

e How to compile & run depends on the operating system

gcc -o is_prime cdemo/is_prime_wrapper.c
./is_prime

Usage: ./is_prime <nl> <n2> ...

./is_prime 4 10 100 101

cdemo/is_prime_wrapper.c

4 ->0

10 -=> 0
100 -> O
101 > 1

Compiled code vs interpreted code
e R, Python, etc., are “interpreted” languages that read and evaluate code interactively
o Compiled code is usually (but not always) much faster than interpreters
e Most interpreters are themselves written in a compiled language
e However, compiled languages have several disadvantages:

— They are not interactive!

— Trying out ideas (edit-compile-run) takes longer

— Most importantly: limited initial set of tools

For example, you will need to write your own functions to import data, make plots, etc.

o Ultimately, choice depends on the purpose of the program

o We will mainly use R (to take advantage of its many useful features)

e We will not write C programs designed to be run directly

o However, we will sometimes call C / C++ code from R to take advantage of its speed
o The easiest way to do this is using a package called Repp

e Python code can similarly be called using the reticulate package

e And Julia code can be called using the JuliaCall package

o [will give an example of Rcpp to illustrate its usefulness

e We will look at it in more detail after learning more about R and C

An example of using Rcpp
e The first step is to compile a C function so that it can be called from R
library(package = "Rcpp")

sourceCpp(code =

#include <Rcpp.h>

// [[Rcpp: :export]]
int is_prime_c(int n)

{
int i = 2;
while (i * i <= n) {
if (@ % 1i==0) {
return 0;
}
i=1i+1;
}
return 1;
}

https://cran.r-project.org/package=Rcpp
https://cran.r-project.org/package=reticulate
https://cran.r-project.org/package=JuliaCall

n)
o Alternatively, compile code in a file

library(package = "Rcpp")
sourceCpp("cdemo/is_prime_rcpp.cpp")

e The C function can then be called just like an R function
is_prime_c(4)
[11 0
is_prime_c(10)
[1] o
is_prime_c(100)
[11 0
is_prime_c(101)
[1] 1
e We can call both versions on a sequence of integers as follows
o The time required is recorded using system.time ()
system.time(r_primes <- sapply(1:1000000, is_prime_r))

user system elapsed
11.950 0.008 11.958

system.time(c_primes <- sapply(1:1000000, is_prime_c))

user system elapsed
2.454 0.016 2.471

e The C version is clearly faster
e Would have been even faster if the loop was also in C

o We can try this later after we discuss vectors / arrays

What is the advantage of doing this in R?

o We can use R utilities to check that the results are the same
sum(r_primes == TRUE) # counts number of TRUE in a logical wvector
[1] 78499
sum(c_primes == TRUE)

[1] 78499

tail(which(r_primes == TRUE)) # extracts last few elements

[1] 999931 999953 999959 999961 999979 999983

tail(which(c_primes == 1))

[1] 999931 999953 999959 999961 999979 999983

identical(r_primes == TRUE, c_primes == 1) # tests whether two arquments are identical

[1] TRUE

cdemo/is_prime_rcpp.cpp

o We can use R to visualize the prime counting function m(n)

plot (cumsum(c_primes), type = "1")

40000 60000 80000
1 | |

cumsum(c_primes)

20000
|

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

Index

Is m(n) ~ n/logn? (Prime Number Theorem)

n <- 1:1000000
plot(cumsum(c_primes) / (n / log(n)), type = "1", ylim = c(1, 1.4))

1.3 1.4

cumsum(c_primes)/(n/log(n))
1.2
1

1.0

0e+00 2e+05 4e+05 6e+05 8e+05 1e+06

Index

What next

e Over the next few classes, we will learn R more formally

e We will then come back to study algorithms in more detail

10

https://en.wikipedia.org/wiki/Prime_number_theorem

	About this course
	Exercise
	Some specific examples
	Some examples of simulation
	Some general problems
	Algorithms
	Example: is a given number n prime?
	Theoretical questions about algorithms
	Ingredients of a computational model
	Functions and control flow structures
	Common operators (may have language-specific variants)
	Practical implementation: programming languages
	Example: The is_prime algorithm in various languages
	How can we run C / C++ code?
	Compiled code vs interpreted code
	An example of using Rcpp
	What is the advantage of doing this in R?
	What next

