
Computer Representation of Numbers

Deepayan Sarkar

Computer representation of numbers
• Statistical computations mostly deal with numerical data

• The numbers we work with are usually integers (N,Z) or real numbers (R)

• These are infinite sets, but computers have “finite” storage!

• Natural questions:

– Which numbers can computers store?

– How are they stored?

– What happens when a calculation results in a number that cannot be stored?

What could be possible models?
• Design constraints

– Finite storage

– Physical representation needs to be encoded using 0/1

• Some terminology:

– Bit : “binary digit” — basic unit of representation; can be either 0 or 1

– Byte : 8 bits; by convention, this is the smallest unit that can be manipulated

• Motivation: How does the decimal system work?

• Non-negative Integers:
n−1∑
i=0

di × 10i = dn−1dn−2 . . . d1d0

• Signed integers: Same as above, along with a sign

• Fractions (between 0 and 1):
n∑

i=1
di × 10−i = 0.d1d2 . . . dn−1dn

• General real numbers:
n∑

i=−m

di × 10i

1



Integers
• Can we adapt this to use binary digits?

• Not very difficult for integers

• Unsigned integers (n bits):

n−1∑
i=0

di × 2i = dn−1dn−2 . . . d1d0

• For example, the number 20 (decimal) in binary is 10100

• This is in fact how positive integers are usually stored

• How can we verify this?

• No built-in tool in R

• Easy with some semi-advanced C, using pointers and bitwise operators

• Instead, we will use a convenient built-in function in Julia

bitstring(20)

"0000000000000000000000000000000000000000000000000000000000010100"

Integer types
• If we count, we will see that the representation has 64 bits

• Why 64? Summary:

– By convention, the basic memory storage unit is 8 bits (a byte)

– This has a long history, but basically became standard in the 1970s

– Subsequently, integer representations of 8, 16, 32, and 64 bits have become standard

– These are also commonly referred to as “types”

• Unfortunately, these types traditionally have somewhat confusing names; e.g., in C,

– char : 8-bit integer; named char because of correspondence with ASCII

– short int : 16-bit integer

– int : At least 16-bit, but usually 32-bit integer

– long int : At least 32-bit integer

– long long int : At least 64-bit integer

• A more modern terminology, used by Julia (and in C / C++ using the stdint.h header):

– Int8, Int16, Int32, Int64 : IntN represents N-bit integer

– UInt8, UInt16, UInt32, UInt64: Corresponding unsigned types (non-negative integers only)

bitstring(convert(UInt8, 20))

"00010100"

[bitstring(convert(UInt8, x)) for x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]

2

https://julialang.org
https://www.cs.cmu.edu/~pattis/15-1XX/common/handouts/ascii.html
https://en.wikibooks.org/wiki/C_Programming/stdint.h


10-element Array{String,1}:
"00000001"
"00000010"
"00000011"
"00000100"
"00000101"
"00000110"
"00000111"
"00001000"
"00001001"
"00001010"

Representation of unsigned integers
• Clearly, we can only store a finite number of integers with n bits (specifically, 2n)

typemin(UInt8)

0x00

typemax(UInt8)

0xff

bitstring(typemax(UInt8))

"11111111"

• Numbers prefixed with 0x means hexadecimal coding, with 4-bit digits 0123456789abcdef meaning
0–16

• How can we add two numbers?

• Simply add bit by bit, with 1 + 1 = 0 carrying 1, and 1 + 1 + 1 = 1 carrying 1.

111

001110 + (14)
000111 = (07)

010101 (21)

• In Julia,

function add8(x, y)
convert(UInt8, x) + convert(UInt8, y)

end

add8 (generic function with 1 method)

[bitstring(convert(UInt8, x)) for x = [14, 7, add8(14, 7)]]

3-element Array{String,1}:
"00001110"
"00000111"
"00010101"

• What happens if we add 1 to the maximum possible value?

bitstring(typemax(UInt8))

"11111111"

bitstring(add8(typemax(UInt8), convert(UInt8, 1)))

3



"00000000"

• This is known as “overflow”

• For efficiency (to minimize time needed to do checking), many systems will silently overflow without
informing the user that something might have gone wrong

Representation of signed integers
• How do we store signed integers?

– By convention, the first (leftmost) bit is used for the sign

– In addition, negative numbers are stored using a convention known as “two’s complement”

– This stores an (N − 1)-bit negative number as the result of subtracting the number from 2N

– Advantages: addition, multiplication, etc., are performed using the same algorithm as unsigned
integers

– Also, zero has a unique representation, so 2N distinct numbers can be stored

[bitstring(convert(Int8, x)) for x = -8:8]

17-element Array{String,1}:
"11111000"
"11111001"
"11111010"
"11111011"
"11111100"
"11111101"
"11111110"
"11111111"
"00000000"
"00000001"
"00000010"
"00000011"
"00000100"
"00000101"
"00000110"
"00000111"
"00001000"

Real numbers - floating point representation
• Numerical computations usually require working with “real numbers”

• Analogous to decimal representation, we can think of them as binary numbers of the form

b1b2 . . . bk [.] bk+1 . . . bn

• We could perhaps store this as the pair (b1 . . . bn, k)

• This is actually fairly close to what is done in practice

• The numbers that can be represented exactly have the form

significand× baseexponent

• For example,

4



1.2345 = 12345× 10−4

• Or, with base=2 and binary digits,

110.1001 = 1.101001× 210

• This is known as the floating point representation

• Note that in binary, the first non-zero digit in the significand is redundant, as it must be 1 (except for
0)

• We still need to decide how to store the significand and the exponent

• Modern computers have two standard storage conventions for floating point representations:

– 32-bit : known as single precision / float / Float32

– 64-bit : known as double precision / double / Float64

• The conventions are detailed in the IEEE 754 standard

• Summarized in the following table

Float32 Float64
sign 1 1
exponent 8 11
fraction 23 (+1) 52 (+1)
total 32 64
exponent offset -127 -1023

• For example, bits in a Float64 is laid out in the following way:

b63 b62 . . . b52 b51 . . . b0

• where,

– s = b63 is the sign bit,

– e = b62 . . . b52 is the exponent interpreted as an 11-bit unsigned integer,

• The number represented is calculated as

(−1)s(1.b51 . . . b0)× 2e−1024

• Note that the fraction has an implicit 1 before the binary point that is not explicitly stored

• This is a form of “normalization” that

– Ensures uniqueness of the representation, and

– implicitly allows an extra bit of precision.

• The minimum (0) and maximum (2047) possible value of e are reserved for special use

• They are used as representations for

– Special numbers ±∞, NaN, ±0, and

– “Subnormal” numbers between 0 and 1.0× 2−1023

– With usual interpretation of e = 0, the smallest representable positive number would be 2−1023

5

https://en.wikipedia.org/wiki/IEEE_754


• Non-terminating representations

bitstring(0.1)

"0011111110111001100110011001100110011001100110011001100110011010"

bitstring(0.1 + 0.1 + 0.1)

"0011111111010011001100110011001100110011001100110011001100110100"

bitstring(0.6 / 2)

"0011111111010011001100110011001100110011001100110011001100110011"

bitstring(0.3)

"0011111111010011001100110011001100110011001100110011001100110011"

• 0 and subnormal numbers (e = 0)

bitstring(0.0)

"0000000000000000000000000000000000000000000000000000000000000000"

bitstring(-0.0)

"1000000000000000000000000000000000000000000000000000000000000000"

bitstring(0.125) # exact (terminating) binary expansion

"0011111111000000000000000000000000000000000000000000000000000000"

bitstring(0.125 * 1.0 * 2.0^(-1023))

"0000000000000001000000000000000000000000000000000000000000000000"

• Inf and NaN (e = 2047)

bitstring(Inf)

"0111111111110000000000000000000000000000000000000000000000000000"

bitstring(-Inf)

"1111111111110000000000000000000000000000000000000000000000000000"

bitstring(NaN)

"0111111111111000000000000000000000000000000000000000000000000000"

• Note in the above example that 0.1 + 0.1 + 0.1 has a different representation than 0.3

• Binary representation of 0.1, 0.2, 0.3, etc., are recurring, and cannot be represented exactly

• When represented as floating point numbers, they need to be approximated

• Ideally, approximation should be the nearest representable number

• This does not always happen in practice

• Depending on intermediate calculations, results that are supposed to be the same may not be

0.2 + 0.1 == 0.4 - 0.1

true

0.2 + 0.1 == 0.6 / 2

false

0.2 + 0.1

6



0.30000000000000004

• Note that in the representation (of what is supposed to be 0.3) is an approximation in all cases

• The equality tests above only check whether two approximations derived differently agree or not

• The same behaviour is seen in python

print(0.2 + 0.1 == 0.4 - 0.1)

True

print(0.2 + 0.1 == 0.6 / 2)

False

print(0.2 + 0.1)

0.30000000000000004

• As well as R

0.2 + 0.1 == 0.4 - 0.1

[1] TRUE

0.2 + 0.1 == 0.6 / 2

[1] FALSE

0.2 + 0.1

[1] 0.3

• Except that R tries to be “user-friendly” and rounds the result before printing (to 7 digits by default)

print(0.2 + 0.1, digits = 22)

[1] 0.3000000000000000444089

Consequences
• In the case of integer calculations, unreported overflow is the most common problem

• For example, in Julia, defining:

function Factorial(x)
if (x == 0) tmp = 1
else tmp = x * Factorial(x-1)
end
println(tmp)
tmp

end

Factorial (generic function with 1 method)

Factorial(25)

1
1
2
6
24
120
720
5040

7



40320
362880
3628800
39916800
479001600
6227020800
87178291200
1307674368000
20922789888000
355687428096000
6402373705728000
121645100408832000
2432902008176640000
-4249290049419214848
-1250660718674968576
8128291617894825984
-7835185981329244160
7034535277573963776

7034535277573963776

Consequences (floating point version)
Factorial(25.0)

1
1.0
2.0
6.0
24.0
120.0
720.0
5040.0
40320.0
362880.0
3.6288e6
3.99168e7
4.790016e8
6.2270208e9
8.71782912e10
1.307674368e12
2.0922789888e13
3.55687428096e14
6.402373705728e15
1.21645100408832e17
2.43290200817664e18
5.109094217170944e19
1.1240007277776077e21
2.585201673888498e22
6.204484017332394e23
1.5511210043330986e25

1.5511210043330986e25

8



Integer overflow in R
• R behaves similarly, except that it detects integer overflow

• The 1L in the code is to force integer calculations when x is integer

• In R, the literal 1 is interpreted as a floating point value and 1L as integer

Factorial <- function(x) {
if (x == 0) {

tmp <- 1L
}
else {

tmp <- x * Factorial(x-1L)
}
print(tmp)
tmp

}

Factorial(15L)

[1] 1
[1] 1
[1] 2
[1] 6
[1] 24
[1] 120
[1] 720
[1] 5040
[1] 40320
[1] 362880
[1] 3628800
[1] 39916800
[1] 479001600

Warning in x * Factorial(x - 1L): NAs produced by integer overflow

[1] NA
[1] NA
[1] NA

[1] NA

Floating point version
Factorial(25.0)

[1] 1
[1] 1
[1] 2
[1] 6
[1] 24
[1] 120
[1] 720
[1] 5040
[1] 40320
[1] 362880
[1] 3628800
[1] 39916800

9



[1] 479001600
[1] 6227020800
[1] 87178291200
[1] 1.307674e+12
[1] 2.092279e+13
[1] 3.556874e+14
[1] 6.402374e+15
[1] 1.216451e+17
[1] 2.432902e+18
[1] 5.109094e+19
[1] 1.124001e+21
[1] 2.585202e+22
[1] 6.204484e+23
[1] 1.551121e+25

[1] 1.551121e+25

Integer (non)-overflow in Python
• Python has more interesting behaviour

• It detects integer overflow and automatically

• Shifts to using a less efficient but higher precision representation

def Factorial(x):
if x == 0:

tmp = 1
else:

tmp = x * Factorial(x-1)
print(tmp)
return tmp

Factorial(25)

1
1
2
6
24
120
720
5040
40320
362880
3628800
39916800
479001600
6227020800
87178291200
1307674368000
20922789888000
355687428096000
6402373705728000
121645100408832000
2432902008176640000
51090942171709440000

10



1124000727777607680000
25852016738884976640000
620448401733239439360000
15511210043330985984000000
15511210043330985984000000

Floating point version
Factorial(25.0)

1
1.0
2.0
6.0
24.0
120.0
720.0
5040.0
40320.0
362880.0
3628800.0
39916800.0
479001600.0
6227020800.0
87178291200.0
1307674368000.0
20922789888000.0
355687428096000.0
6402373705728000.0
1.21645100408832e+17
2.43290200817664e+18
5.109094217170944e+19
1.1240007277776077e+21
2.585201673888498e+22
6.204484017332394e+23
1.5511210043330986e+25
1.5511210043330986e+25

Floating point arithmetic
• In practice, numerical calculations are done using floating point arithmetic

• Possible problems here are more subtle

• One obvious limitation:

– numbers of much larger magnitude can be represented, but

– only the first few significant digits are actually stored

• So, in all the examples above, we get something like

x <- factorial(25.0) # built-in factorial function in R
x

[1] 1.551121e+25

x == x + 1

11



[1] TRUE

• Given a value, how far away the closest representable value is depends on the value

• In Julia, eps(x) is such that x + eps(x) is the next representable value larger than x

eps(1.0e-27)

1.793662034335766e-43

eps(1.55e+25)

2.147483648e9

eps(0.0)

5.0e-324

eps(1.0)

2.220446049250313e-16

eps(1000.0)

1.1368683772161603e-13

• Another extreme example of this behaviour is the following

• Consider the mathematical identity

f(x) = 1− cos(x) = sin2(x)/(1 + cos(x))

• Suppose that we are interesting in evaluating f(x) for a given value of x

• In theory, we can use either formula

• In practice, near x = 0, cos(x) is very close to 1, so 1− cos(x) loses precision

f1 <- function(x) { 1 - cos(x) }
f2 <- function(x) {

u <- sin(x)
(u * u) / (1 + cos(x))

}
curve(f1, from = 0.0, to = 5e-8, n = 1001, col = "red")
curve(f2, from = 0.0, to = 5e-8, add = TRUE, n = 1001, col = "blue")

12



• Why does this happen?

• This is partly due to intrinsic limitations, but also partly due to choice of formula

• It is actually not very difficult to model this kind of behaviour formally

• We will not go into detail, but only cover the basic concepts

13


	Computer representation of numbers
	What could be possible models?
	Integers
	Integer types
	Representation of unsigned integers
	Representation of signed integers
	Real numbers - floating point representation
	Consequences
	Consequences (floating point version)
	Integer overflow in R
	Floating point version
	Integer (non)-overflow in Python
	Floating point version
	Floating point arithmetic

