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Computer representation of numbers
• Statistical computations mostly deal with numerical data

• The numbers we work with are usually integers (N,Z) or real numbers (R)

• These are infinite sets, but computers have “finite” storage!

• Natural questions:

– Which numbers can computers store?

– How are they stored?

– What happens when a calculation results in a number that cannot be stored?

What could be possible models?
• Design constraints

– Finite storage

– Physical representation needs to be encoded using 0/1

• Some terminology:

– Bit : “binary digit” — basic unit of representation; can be either 0 or 1

– Byte : 8 bits; by convention, this is the smallest unit that can be manipulated

• Motivation: How does the decimal system work?

• Non-negative Integers:
n−1∑
i=0

di × 10i = dn−1dn−2 . . . d1d0

• Signed integers: Same as above, along with a sign

• Fractions (between 0 and 1):
n∑

i=1
di × 10−i = 0.d1d2 . . . dn−1dn

• General real numbers:
n∑

i=−m

di × 10i
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Integers
• Can we adapt this to use binary digits?

• Not very difficult for integers

• Unsigned integers (n bits):

n−1∑
i=0

di × 2i = dn−1dn−2 . . . d1d0

• For example, the number 20 (decimal) in binary is 10100

• This is in fact how positive integers are usually stored

• How can we verify this?

• No built-in tool in R

• Easy with some semi-advanced C, using pointers and bitwise operators

• Instead, we will use a convenient built-in function in Julia

bitstring(20)

"0000000000000000000000000000000000000000000000000000000000010100"

Integer types
• If we count, we will see that the representation has 64 bits

• Why 64? Summary:

– By convention, the basic memory storage unit is 8 bits (a byte)

– This has a long history, but basically became standard in the 1970s

– Subsequently, integer representations of 8, 16, 32, and 64 bits have become standard

– These are also commonly referred to as “types”

• Unfortunately, these types traditionally have somewhat confusing names; e.g., in C,

– char : 8-bit integer; named char because of correspondence with ASCII

– short int : 16-bit integer

– int : At least 16-bit, but usually 32-bit integer

– long int : At least 32-bit integer

– long long int : At least 64-bit integer

• A more modern terminology, used by Julia (and in C / C++ using the stdint.h header):

– Int8, Int16, Int32, Int64 : IntN represents N-bit integer

– UInt8, UInt16, UInt32, UInt64: Corresponding unsigned types (non-negative integers only)

bitstring(convert(UInt8, 20))

"00010100"

[bitstring(convert(UInt8, x)) for x = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]]
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10-element Array{String,1}:
"00000001"
"00000010"
"00000011"
"00000100"
"00000101"
"00000110"
"00000111"
"00001000"
"00001001"
"00001010"

Representation of unsigned integers
• Clearly, we can only store a finite number of integers with n bits (specifically, 2n)

typemin(UInt8)

0x00

typemax(UInt8)

0xff

bitstring(typemax(UInt8))

"11111111"

• Numbers prefixed with 0x means hexadecimal coding, with 4-bit digits 0123456789abcdef meaning
0–16

• How can we add two numbers?

• Simply add bit by bit, with 1 + 1 = 0 carrying 1, and 1 + 1 + 1 = 1 carrying 1.

111

001110 + (14)
000111 = (07)

010101 (21)

• In Julia,

function add8(x, y)
convert(UInt8, x) + convert(UInt8, y)

end

add8 (generic function with 1 method)

[bitstring(convert(UInt8, x)) for x = [14, 7, add8(14, 7)]]

3-element Array{String,1}:
"00001110"
"00000111"
"00010101"

• What happens if we add 1 to the maximum possible value?

bitstring(typemax(UInt8))

"11111111"

bitstring(add8(typemax(UInt8), convert(UInt8, 1)))
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"00000000"

• This is known as “overflow”

• For efficiency (to minimize time needed to do checking), many systems will silently overflow without
informing the user that something might have gone wrong

Representation of signed integers
• How do we store signed integers?

– By convention, the first (leftmost) bit is used for the sign

– In addition, negative numbers are stored using a convention known as “two’s complement”

– This stores an (N − 1)-bit negative number as the result of subtracting the number from 2N

– Advantages: addition, multiplication, etc., are performed using the same algorithm as unsigned
integers

– Also, zero has a unique representation, so 2N distinct numbers can be stored

[bitstring(convert(Int8, x)) for x = -8:8]

17-element Array{String,1}:
"11111000"
"11111001"
"11111010"
"11111011"
"11111100"
"11111101"
"11111110"
"11111111"
"00000000"
"00000001"
"00000010"
"00000011"
"00000100"
"00000101"
"00000110"
"00000111"
"00001000"

Real numbers - floating point representation
• Numerical computations usually require working with “real numbers”

• Analogous to decimal representation, we can think of them as binary numbers of the form

b1b2 . . . bk [.] bk+1 . . . bn

• We could perhaps store this as the pair (b1 . . . bn, k)

• This is actually fairly close to what is done in practice

• The numbers that can be represented exactly have the form

significand× baseexponent

• For example,
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1.2345 = 12345× 10−4

• Or, with base=2 and binary digits,

110.1001 = 1.101001× 210

• This is known as the floating point representation

• Note that in binary, the first non-zero digit in the significand is redundant, as it must be 1 (except for
0)

• We still need to decide how to store the significand and the exponent

• Modern computers have two standard storage conventions for floating point representations:

– 32-bit : known as single precision / float / Float32

– 64-bit : known as double precision / double / Float64

• The conventions are detailed in the IEEE 754 standard

• Summarized in the following table

Float32 Float64
sign 1 1
exponent 8 11
fraction 23 (+1) 52 (+1)
total 32 64
exponent offset -127 -1023

• For example, bits in a Float64 is laid out in the following way:

b63 b62 . . . b52 b51 . . . b0

• where,

– s = b63 is the sign bit,

– e = b62 . . . b52 is the exponent interpreted as an 11-bit unsigned integer,

• The number represented is calculated as

(−1)s(1.b51 . . . b0)× 2e−1024

• Note that the fraction has an implicit 1 before the binary point that is not explicitly stored

• This is a form of “normalization” that

– Ensures uniqueness of the representation, and

– implicitly allows an extra bit of precision.

• The minimum (0) and maximum (2047) possible value of e are reserved for special use

• They are used as representations for

– Special numbers ±∞, NaN, ±0, and

– “Subnormal” numbers between 0 and 1.0× 2−1023

– With usual interpretation of e = 0, the smallest representable positive number would be 2−1023
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• Non-terminating representations

bitstring(0.1)

"0011111110111001100110011001100110011001100110011001100110011010"

bitstring(0.1 + 0.1 + 0.1)

"0011111111010011001100110011001100110011001100110011001100110100"

bitstring(0.6 / 2)

"0011111111010011001100110011001100110011001100110011001100110011"

bitstring(0.3)

"0011111111010011001100110011001100110011001100110011001100110011"

• 0 and subnormal numbers (e = 0)

bitstring(0.0)

"0000000000000000000000000000000000000000000000000000000000000000"

bitstring(-0.0)

"1000000000000000000000000000000000000000000000000000000000000000"

bitstring(0.125) # exact (terminating) binary expansion

"0011111111000000000000000000000000000000000000000000000000000000"

bitstring(0.125 * 1.0 * 2.0^(-1023))

"0000000000000001000000000000000000000000000000000000000000000000"

• Inf and NaN (e = 2047)

bitstring(Inf)

"0111111111110000000000000000000000000000000000000000000000000000"

bitstring(-Inf)

"1111111111110000000000000000000000000000000000000000000000000000"

bitstring(NaN)

"0111111111111000000000000000000000000000000000000000000000000000"

• Note in the above example that 0.1 + 0.1 + 0.1 has a different representation than 0.3

• Binary representation of 0.1, 0.2, 0.3, etc., are recurring, and cannot be represented exactly

• When represented as floating point numbers, they need to be approximated

• Ideally, approximation should be the nearest representable number

• This does not always happen in practice

• Depending on intermediate calculations, results that are supposed to be the same may not be

0.2 + 0.1 == 0.4 - 0.1

true

0.2 + 0.1 == 0.6 / 2

false

0.2 + 0.1
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0.30000000000000004

• Note that in the representation (of what is supposed to be 0.3) is an approximation in all cases

• The equality tests above only check whether two approximations derived differently agree or not

• The same behaviour is seen in python

print(0.2 + 0.1 == 0.4 - 0.1)

True

print(0.2 + 0.1 == 0.6 / 2)

False

print(0.2 + 0.1)

0.30000000000000004

• As well as R

0.2 + 0.1 == 0.4 - 0.1

[1] TRUE

0.2 + 0.1 == 0.6 / 2

[1] FALSE

0.2 + 0.1

[1] 0.3

• Except that R tries to be “user-friendly” and rounds the result before printing (to 7 digits by default)

print(0.2 + 0.1, digits = 22)

[1] 0.3000000000000000444089

Consequences
• In the case of integer calculations, unreported overflow is the most common problem

• For example, in Julia, defining:

function Factorial(x)
if (x == 0) tmp = 1
else tmp = x * Factorial(x-1)
end
println(tmp)
tmp

end

Factorial (generic function with 1 method)

Factorial(25)

1
1
2
6
24
120
720
5040
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40320
362880
3628800
39916800
479001600
6227020800
87178291200
1307674368000
20922789888000
355687428096000
6402373705728000
121645100408832000
2432902008176640000
-4249290049419214848
-1250660718674968576
8128291617894825984
-7835185981329244160
7034535277573963776

7034535277573963776

Consequences (floating point version)
Factorial(25.0)

1
1.0
2.0
6.0
24.0
120.0
720.0
5040.0
40320.0
362880.0
3.6288e6
3.99168e7
4.790016e8
6.2270208e9
8.71782912e10
1.307674368e12
2.0922789888e13
3.55687428096e14
6.402373705728e15
1.21645100408832e17
2.43290200817664e18
5.109094217170944e19
1.1240007277776077e21
2.585201673888498e22
6.204484017332394e23
1.5511210043330986e25

1.5511210043330986e25
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Integer overflow in R
• R behaves similarly, except that it detects integer overflow

• The 1L in the code is to force integer calculations when x is integer

• In R, the literal 1 is interpreted as a floating point value and 1L as integer

Factorial <- function(x) {
if (x == 0) {

tmp <- 1L
}
else {

tmp <- x * Factorial(x-1L)
}
print(tmp)
tmp

}

Factorial(15L)

[1] 1
[1] 1
[1] 2
[1] 6
[1] 24
[1] 120
[1] 720
[1] 5040
[1] 40320
[1] 362880
[1] 3628800
[1] 39916800
[1] 479001600

Warning in x * Factorial(x - 1L): NAs produced by integer overflow

[1] NA
[1] NA
[1] NA

[1] NA

Floating point version
Factorial(25.0)

[1] 1
[1] 1
[1] 2
[1] 6
[1] 24
[1] 120
[1] 720
[1] 5040
[1] 40320
[1] 362880
[1] 3628800
[1] 39916800
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[1] 479001600
[1] 6227020800
[1] 87178291200
[1] 1.307674e+12
[1] 2.092279e+13
[1] 3.556874e+14
[1] 6.402374e+15
[1] 1.216451e+17
[1] 2.432902e+18
[1] 5.109094e+19
[1] 1.124001e+21
[1] 2.585202e+22
[1] 6.204484e+23
[1] 1.551121e+25

[1] 1.551121e+25

Integer (non)-overflow in Python
• Python has more interesting behaviour

• It detects integer overflow and automatically

• Shifts to using a less efficient but higher precision representation

def Factorial(x):
if x == 0:

tmp = 1
else:

tmp = x * Factorial(x-1)
print(tmp)
return tmp

Factorial(25)

1
1
2
6
24
120
720
5040
40320
362880
3628800
39916800
479001600
6227020800
87178291200
1307674368000
20922789888000
355687428096000
6402373705728000
121645100408832000
2432902008176640000
51090942171709440000
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1124000727777607680000
25852016738884976640000
620448401733239439360000
15511210043330985984000000
15511210043330985984000000

Floating point version
Factorial(25.0)

1
1.0
2.0
6.0
24.0
120.0
720.0
5040.0
40320.0
362880.0
3628800.0
39916800.0
479001600.0
6227020800.0
87178291200.0
1307674368000.0
20922789888000.0
355687428096000.0
6402373705728000.0
1.21645100408832e+17
2.43290200817664e+18
5.109094217170944e+19
1.1240007277776077e+21
2.585201673888498e+22
6.204484017332394e+23
1.5511210043330986e+25
1.5511210043330986e+25

Floating point arithmetic
• In practice, numerical calculations are done using floating point arithmetic

• Possible problems here are more subtle

• One obvious limitation:

– numbers of much larger magnitude can be represented, but

– only the first few significant digits are actually stored

• So, in all the examples above, we get something like

x <- factorial(25.0) # built-in factorial function in R
x

[1] 1.551121e+25

x == x + 1
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[1] TRUE

• Given a value, how far away the closest representable value is depends on the value

• In Julia, eps(x) is such that x + eps(x) is the next representable value larger than x

eps(1.0e-27)

1.793662034335766e-43

eps(1.55e+25)

2.147483648e9

eps(0.0)

5.0e-324

eps(1.0)

2.220446049250313e-16

eps(1000.0)

1.1368683772161603e-13

• Another extreme example of this behaviour is the following

• Consider the mathematical identity

f(x) = 1− cos(x) = sin2(x)/(1 + cos(x))

• Suppose that we are interesting in evaluating f(x) for a given value of x

• In theory, we can use either formula

• In practice, near x = 0, cos(x) is very close to 1, so 1− cos(x) loses precision

f1 <- function(x) { 1 - cos(x) }
f2 <- function(x) {

u <- sin(x)
(u * u) / (1 + cos(x))

}
curve(f1, from = 0.0, to = 5e-8, n = 1001, col = "red")
curve(f2, from = 0.0, to = 5e-8, add = TRUE, n = 1001, col = "blue")
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• Why does this happen?

• This is partly due to intrinsic limitations, but also partly due to choice of formula

• It is actually not very difficult to model this kind of behaviour formally

• We will not go into detail, but only cover the basic concepts
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