Computer Representation of Numbers

Deepayan Sarkar

Computer representation of numbers

- Statistical computations mostly deal with numerical data
- The numbers we work with are usually integers (\mathbb{N}, \mathbb{Z}) or real numbers (\mathbb{R})
- These are infinite sets, but computers have "finite" storage!
- Natural questions:
- Which numbers can computers store?
- How are they stored?
- What happens when a calculation results in a number that cannot be stored?

What could be possible models?

- Design constraints
- Finite storage
- Physical representation needs to be encoded using 0/1
- Some terminology:
- Bit : "binary digit" - basic unit of representation; can be either 0 or 1
- Byte : 8 bits; by convention, this is the smallest unit that can be manipulated
- Motivation: How does the decimal system work?
- Non-negative Integers:

$$
\sum_{i=0}^{n-1} d_{i} \times 10^{i}=d_{n-1} d_{n-2} \ldots d_{1} d_{0}
$$

- Signed integers: Same as above, along with a sign
- Fractions (between 0 and 1):

$$
\sum_{i=1}^{n} d_{i} \times 10^{-i}=0 . d_{1} d_{2} \ldots d_{n-1} d_{n}
$$

- General real numbers:

$$
\sum_{i=-m}^{n} d_{i} \times 10^{i}
$$

Integers

- Can we adapt this to use binary digits?
- Not very difficult for integers
- Unsigned integers (n bits):

$$
\sum_{i=0}^{n-1} d_{i} \times 2^{i}=d_{n-1} d_{n-2} \ldots d_{1} d_{0}
$$

- For example, the number 20 (decimal) in binary is 10100
- This is in fact how positive integers are usually stored
- How can we verify this?
- No built-in tool in R
- Easy with some semi-advanced C, using pointers and bitwise operators
- Instead, we will use a convenient built-in function in Julia
bitstring (20)
"00010100"

Integer types

- If we count, we will see that the representation has 64 bits
- Why 64? Summary:
- By convention, the basic memory storage unit is 8 bits (a byte)
- This has a long history, but basically became standard in the 1970s
- Subsequently, integer representations of $8,16,32$, and 64 bits have become standard
- These are also commonly referred to as "types"
- Unfortunately, these types traditionally have somewhat confusing names; e.g., in C,
- char : 8-bit integer; named char because of correspondence with ASCII
- short int: 16-bit integer
- int : At least 16-bit, but usually 32-bit integer
- long int: At least 32-bit integer
- long long int: At least 64-bit integer
- A more modern terminology, used by Julia (and in C / C++ using the stdint.h header):
- Int8, Int16, Int32, Int64: IntN represents N-bit integer
- UInt8, UInt16, UInt32, UInt64: Corresponding unsigned types (non-negative integers only)
bitstring(convert(UInt8, 20))
"00010100"
[bitstring(convert(UInt8, x)) for $x=[1,2,3,4,5,6,7,8,9,10]]$

```
10-element Array{String,1}:
    "00000001"
    "00000010"
    "00000011"
    "00000100"
    "00000101"
    "00000110"
    "00000111"
    "00001000"
    "00001001"
    "00001010"
```


Representation of unsigned integers

- Clearly, we can only store a finite number of integers with n bits (specifically, 2^{n})

```
typemin(UInt8)
0x00
typemax(UInt8)
0xff
bitstring(typemax(UInt8))
"11111111"
```

- Numbers prefixed with $0 x$ means hexadecimal coding, with 4-bit digits 0123456789abcdef meaning 0-16
- How can we add two numbers?
- Simply add bit by bit, with $1+1=0$ carrying 1 , and $1+1+1=1$ carrying 1 .

111
$001110+(14)$
$000111=(07)$

010101 (21)

- In Julia,
function add8(x, y)
convert(UInt8, x) + convert (UInt8, y)
end
add8 (generic function with 1 method)
[bitstring(convert(UInt8, x)) for $x=[14,7, \operatorname{add8(14,~7)]]~}$
3-element Array\{String,1\}:
"00001110"
"00000111"
"00010101"
- What happens if we add 1 to the maximum possible value?

```
bitstring(typemax(UInt8))
```

"11111111"
bitstring(add8(typemax(UInt8), convert(UInt8, 1)))

"00000000"

- This is known as "overflow"
- For efficiency (to minimize time needed to do checking), many systems will silently overflow without informing the user that something might have gone wrong

Representation of signed integers

- How do we store signed integers?
- By convention, the first (leftmost) bit is used for the sign
- In addition, negative numbers are stored using a convention known as "two's complement"
- This stores an $(N-1)$-bit negative number as the result of subtracting the number from 2^{N}
- Advantages: addition, multiplication, etc., are performed using the same algorithm as unsigned integers
- Also, zero has a unique representation, so 2^{N} distinct numbers can be stored

```
[bitstring(convert(Int8, x)) for x = -8:8]
17-element Array{String,1}:
    "11111000"
    "11111001"
    "11111010"
    "11111011"
    "11111100"
    "11111101"
    "11111110"
    "11111111"
    "00000000"
    "00000001"
    "00000010"
    "00000011"
    "00000100"
    "00000101"
    "00000110"
    "00000111"
    "00001000"
```


Real numbers - floating point representation

- Numerical computations usually require working with "real numbers"
- Analogous to decimal representation, we can think of them as binary numbers of the form

$$
b_{1} b_{2} \ldots b_{k}[.] b_{k+1} \ldots b_{n}
$$

- We could perhaps store this as the pair $\left(b_{1} \ldots b_{n}, k\right)$
- This is actually fairly close to what is done in practice
- The numbers that can be represented exactly have the form

$$
\text { significand } \times \text { base }^{\text {exponent }}
$$

- For example,

$$
1.2345=12345 \times 10^{-4}
$$

- Or, with base $=2$ and binary digits,

$$
110.1001=1.101001 \times 2^{10}
$$

- This is known as the floating point representation
- Note that in binary, the first non-zero digit in the significand is redundant, as it must be 1 (except for $0)$
- We still need to decide how to store the significand and the exponent
- Modern computers have two standard storage conventions for floating point representations:
- 32-bit : known as single precision / float / Float32
- 64-bit : known as double precision / double / Float64
- The conventions are detailed in the IEEE 754 standard
- Summarized in the following table

	Float32	Float64
sign	1	1
exponent	8	11
fraction	$23(+1)$	$52(+1)$
total	32	64
exponent offset	-127	-1023

- For example, bits in a Float64 is laid out in the following way:

$$
b_{63} b_{62} \ldots b_{52} b_{51} \ldots b_{0}
$$

- where,
$-s=b_{63}$ is the sign bit,
$-e=b_{62} \ldots b_{52}$ is the exponent interpreted as an 11-bit unsigned integer,
- The number represented is calculated as

$$
(-1)^{s}\left(1 . b_{51} \ldots b_{0}\right) \times 2^{e-1024}
$$

- Note that the fraction has an implicit 1 before the binary point that is not explicitly stored
- This is a form of "normalization" that
- Ensures uniqueness of the representation, and
- implicitly allows an extra bit of precision.
- The minimum (0) and maximum (2047) possible value of e are reserved for special use
- They are used as representations for
- Special numbers $\pm \infty, \mathrm{NaN}, \pm 0$, and
- "Subnormal" numbers between 0 and 1.0×2^{-1023}
- With usual interpretation of $e=0$, the smallest representable positive number would be 2^{-1023}
- Non-terminating representations

```
bitstring(0.1)
"0011111110111001100110011001100110011001100110011001100110011010"
bitstring(0.1 + 0.1 + 0.1)
"0011111111010011001100110011001100110011001100110011001100110100"
bitstring(0.6 / 2)
"0011111111010011001100110011001100110011001100110011001100110011"
bitstring(0.3)
"0011111111010011001100110011001100110011001100110011001100110011"
    - 0 and subnormal numbers (e=0)
bitstring(0.0)
"0000000000000000000000000000000000000000000000000000000000000000"
bitstring(-0.0)
"1000000000000000000000000000000000000000000000000000000000000000"
bitstring(0.125) # exact (terminating) binary expansion
"0011111111000000000000000000000000000000000000000000000000000000"
bitstring(0.125 * 1.0 * 2.0^(-1023))
"00000000000000010000000000000000000000000000000000000000000000000"
    - Inf and NaN ( e= 2047)
bitstring(Inf)
"0111111111110000000000000000000000000000000000000000000000000000"
bitstring(-Inf)
"1111111111110000000000000000000000000000000000000000000000000000"
bitstring(NaN)
"01111111111111000000000000000000000000000000000000000000000000000"
```

- Note in the above example that $0.1+0.1+0.1$ has a different representation than 0.3
- Binary representation of $0.1,0.2,0.3$, etc., are recurring, and cannot be represented exactly
- When represented as floating point numbers, they need to be approximated
- Ideally, approximation should be the nearest representable number
- This does not always happen in practice
- Depending on intermediate calculations, results that are supposed to be the same may not be

```
0.2+0.1 == 0.4-0.1
```

true
$0.2+0.1==0.6 / 2$
false
$0.2+0.1$

0.30000000000000004

- Note that in the representation (of what is supposed to be 0.3) is an approximation in all cases
- The equality tests above only check whether two approximations derived differently agree or not
- The same behaviour is seen in python

```
print(0.2 + 0.1 == 0.4-0.1)
True
print(0.2 + 0.1 == 0.6 / 2)
False
print(0.2 + 0.1)
0.300000000000000004
```

- As well as R
$0.2+0.1=0.4-0.1$
[1] TRUE

```
0.2+0.1 == 0.6 / 2
```

[1] FALSE
$0.2+0.1$
[1] 0.3

- Except that R tries to be "user-friendly" and rounds the result before printing (to 7 digits by default)

```
print(0.2 + 0.1, digits = 22)
```

[1] 0.3000000000000000444089

Consequences

- In the case of integer calculations, unreported overflow is the most common problem
- For example, in Julia, defining:

```
function Factorial(x)
    if (x == 0) tmp = 1
    else tmp = x * Factorial(x-1)
    end
    println(tmp)
    tmp
end
Factorial (generic function with 1 method)
Factorial(25)
```

1
1
2
6
24
120
720
5040

```
4 0 3 2 0
362880
3628800
39916800
4 7 9 0 0 1 6 0 0
6227020800
87178291200
1307674368000
20922789888000
355687428096000
6402373705728000
121645100408832000
2432902008176640000
-4249290049419214848
-1250660718674968576
8128291617894825984
-7835185981329244160
7034535277573963776
```

7034535277573963776

Consequences (floating point version)
Factorial(25.0)
1
1.0
2.0
6.0
24.0
120.0
720.0
5040.0
40320.0
362880.0
3.6288 e 6
3.99168 e 7
$4.790016 e 8$
6.2270208 e 9
8.71782912 e 10
1.307674368 e 12
2.0922789888 e 13
3.55687428096 e 14
6.402373705728 e 15
1.21645100408832 e 17
2.43290200817664 e 18
5.109094217170944 e 19
1.1240007277776077e21
2.585201673888498 e 22
6.204484017332394 e 23
1.5511210043330986 e 25
1.5511210043330986 e 25

Integer overflow in R

- R behaves similarly, except that it detects integer overflow
- The 1L in the code is to force integer calculations when x is integer
- In R, the literal 1 is interpreted as a floating point value and 1 L as integer

```
Factorial <- function(x) {
    if (x == 0) {
            tmp <- 1L
    }
    else {
        tmp <- x * Factorial(x-1L)
    }
    print(tmp)
    tmp
}
Factorial(15L)
```

[1] 1
[1] 1
[1] 2
[1] 6
[1] 24
[1] 120
[1] 720
[1] 5040
[1] 40320
[1] 362880
[1] 3628800
[1] 39916800
[1] 479001600
Warning in $\mathrm{x} *$ Factorial $(\mathrm{x}-1 \mathrm{~L})$: NAs produced by integer overflow
[1] NA
[1] NA
[1] NA
[1] NA

Floating point version

Factorial(25.0)
[1] 1
[1] 1
[1] 2
[1] 6
[1] 24
[1] 120
[1] 720
[1] 5040
[1] 40320
[1] 362880
[1] 3628800
[1] 39916800

```
[1] 479001600
[1] 6227020800
[1] 87178291200
[1] 1.307674e+12
[1] 2.092279e+13
[1] 3.556874e+14
[1] 6.402374e+15
[1] 1.216451e+17
[1] 2.432902e+18
[1] 5.109094e+19
[1] 1.124001e+21
[1] 2.585202e+22
[1] 6.204484e+23
[1] 1.551121e+25
[1] 1.551121e+25
```


Integer (non)-overflow in Python

- Python has more interesting behaviour
- It detects integer overflow and automatically
- Shifts to using a less efficient but higher precision representation

```
def Factorial(x):
        if x == 0:
            tmp = 1
    else:
            tmp = x * Factorial(x-1)
    print(tmp)
    return tmp
Factorial(25)
1
1
2
6
24
120
720
5 0 4 0
40320
362880
3628800
39916800
4 7 9 0 0 1 6 0 0
6 2 2 7 0 2 0 8 0 0
87178291200
1307674368000
20922789888000
355687428096000
6402373705728000
121645100408832000
2432902008176640000
51090942171709440000
```

```
1124000727777607680000
25852016738884976640000
620448401733239439360000
15511210043330985984000000
15511210043330985984000000
```


Floating point version

Factorial(25.0)
1
1.0
2.0
6.0
24.0
120.0
720.0
5040.0
40320.0
362880.0
3628800.0
39916800.0
479001600.0
6227020800.0
87178291200.0
1307674368000.0
20922789888000.0
355687428096000.0
6402373705728000.0
1.21645100408832e+17
$2.43290200817664 \mathrm{e}+18$
$5.109094217170944 \mathrm{e}+19$

1. $1240007277776077 \mathrm{e}+21$
$2.585201673888498 \mathrm{e}+22$
$6.204484017332394 \mathrm{e}+23$
$1.5511210043330986 \mathrm{e}+25$
$1.5511210043330986 \mathrm{e}+25$

Floating point arithmetic

- In practice, numerical calculations are done using floating point arithmetic
- Possible problems here are more subtle
- One obvious limitation:
- numbers of much larger magnitude can be represented, but
- only the first few significant digits are actually stored
- So, in all the examples above, we get something like

```
x <- factorial(25.0) # built-in factorial function in R
x
```

[1] $1.551121 \mathrm{e}+25$
$\mathrm{x}=\mathrm{x}+1$

[1] TRUE

- Given a value, how far away the closest representable value is depends on the value
- In Julia, eps (x) is such that $x+e p s(x)$ is the next representable value larger than x eps (1.0e-27)
$1.793662034335766 \mathrm{e}-43$
eps (1.55e+25)
2.147483648 e 9
eps(0.0)
5.0e-324
eps(1.0)
$2.220446049250313 e-16$
eps(1000.0)
$1.1368683772161603 \mathrm{e}-13$
- Another extreme example of this behaviour is the following
- Consider the mathematical identity

$$
f(x)=1-\cos (x)=\sin ^{2}(x) /(1+\cos (x))
$$

- Suppose that we are interesting in evaluating $f(x)$ for a given value of x
- In theory, we can use either formula
- In practice, near $x=0, \cos (x)$ is very close to 1 , so $1-\cos (x)$ loses precision

```
f1<- function(x) { 1 - cos(x) }
f2 <- function(x) {
    u <- sin(x)
    (u * u) / (1 + cos(x))
}
curve(f1, from = 0.0, to = 5e-8, n = 1001, col = "red")
curve(f2, from = 0.0, to = 5e-8, add = TRUE, n = 1001, col = "blue")
```


- Why does this happen?
- This is partly due to intrinsic limitations, but also partly due to choice of formula
- It is actually not very difficult to model this kind of behaviour formally
- We will not go into detail, but only cover the basic concepts

