
LINEAR MODELS AND GLM: ASSIGNMENT 1

Exercise 1. (2 points) Linear models are called “linear” because they are linear in the parameters β, or more
technically, the expected value E(y | β) as a function of β is linear in β. Make this statement more precise
and prove it.

A model {Pθ, θ ∈ Θ} is said to be identifiable if for any θ1,θ2 ∈ Θ, θ1 6= θ2 =⇒ Pθ1 6= Pθ2 . We have already
seen that the one-way model is not identifiable.

Exercise 2. (2 points) Consider the model given by N (θ, 1), θ ∈ R. Show that the model is identifiable; that
is, if θ1 6= θ2, then the distributions defined by them are different.

Some basic linear algebra concepts reviewed

A set of vectors x1, . . . ,xn is linearly dependent if there exist coefficients c1, . . . , cn, not all zero, such that∑
i cixi = 0. This can be rephrased in matrix notation as follows: the columns of a matrix X are said to be

linearly dependent if there exists c 6= 0 such that Xc = 0.
A set of vectors x1, . . . ,xn (the columns of matrix X) is linearly independent if∑

i

cixi = Xc = 0 =⇒ c = 0

In Rd, no more than d vectors can be linearly independent.
Two vectors are orthogonal if their inner product is zero, i.e.,

x ′y = y ′x =
∑
i

xiyi = 0

A set of vectors is mutually orthogonal if they are pairwise orthogonal. If the columns of a matrix Q are
orthogonal, then Q ′Q is a diagonal matrix. In addition, if the columns of Q are of unit length
(‖x‖ =

√
x ′y = 1), then Q ′Q = I, and Q is said to be orthonormal.

Exercise 3. (2 points) Show that a set of mutually orthogonal vectors is linearly independent.

A vector space is a set of vectors closed under addition and scalar multiplication.
The span of a set of vectors x1, . . . ,xn is the set of all linear combinations

span{x1, . . . ,xn} =

{
x | x =

∑
i

cixi for some ci, i = 1, . . . , n

}
span{x1, . . . ,xn} is a vector space, and is said to be generated by x1, . . . ,xn.
A basis for a vector space V is a set of linearly independent vectors x1, . . . ,xn that generate V (i.e.,
V = span{x1, . . . ,xn}).
The dimension of a vector space is the number of vectors in a basis for the vector space.
Dimension is unique, although basis is not. The set of elementary vectors {e1, . . . , en} is an orthonormal basis
for Rn, where ei ∈ Rn has ith element 1 and all other elements 0.
The rank of a matrix X, denoted by rank(X), is the number of linearly independent columns (or rows). X
has full column rank if rank equals the number of columns (similarly full row rank).
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The column space of a matrix X, denoted by C(X), is the span of the columns of X; that is,
C(X) = {z | z = Xy for some y}.
dim(C(X)) = rank(X), the number of linearly independent columns.

Exercise 4. (2 points) Show that rank(AB) ≤ min(rank(A), rank(B))

Exercise 5. (3 points) Show that C(A) ⊆ C(B) ⇐⇒ A = BC for some C.

The null space or kernel of a matrix A is N (A) = {x | Ax = 0}

Exercise 6. (0 points) Show that if A has full column rank, then N (A) = {0}.

Vector spaces U ,V ⊆ Rn are said to form orthogonal complements if (1) U ∩ V = {0},
(2) dim(U) + dim(V) = n, and (3) u ⊥ v for all u ∈ U ,v ∈ V. Then, we write U ⊕⊥ V = Rn.

Exercise 7. (4 points) Show that if U ⊕⊥ V = Rn, then any x ∈ Rn can be written as x = u+ v where
u ∈ U ,v ∈ V, and the decomposition is unique. Note that for such a decomposition, ‖x‖2 = ‖u‖2 + ‖v‖2.

Exercise 8. (6 points) Prove that for any matrix Am×n, dim(N (A)) + dim(C(A)) = n.

Exercise 9. (3 points) Show that for any matrix Am×n, C(A) and N (A ′) are orthogonal complements in Rm.

Exercise 10. (3 points) Prove the following results:

• U ,V vector spaces, U ⊆ V,dim(U) = dim(V) =⇒ U = V.
• Ax+ b = 0 ∀ x ∈ Rn =⇒ A = 0, b = 0.
• Ax = Bx ∀ x =⇒ A = B.
• If A has full column rank, then AB = AC =⇒ B = C.

Exercise 11. (3 points) Show that N (X ′X) = N (X), and as a corollary, that C(X ′X) = C(X ′).

Exercise 12. (3 points) The goal of this exercise is to prove the existence of a g-inverse for an arbitrary
matrix A by constructing one. Let B and C be nonsingular matrices such that BAC = ∆ is a diagonal
matrix (not necessarily square). Find a candidate ∆−. Prove that C∆−B is a g-inverse of A.


