
An overview of the R programming environment

Deepayan Sarkar

Indian Statistical Institute, Delhi

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 1 / 58

Software for Statistics

Computing software is essential for modern statistics
Large datasets

Visualization

Simulation

Iterative methods

Many softwares are available

We will learn about R
Available as Free / Open Source Software

Very popular (both academia and industry)

Easy to try out on your own

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 2 / 58

https://en.wikipedia.org/wiki/Free_software_movement
https://en.wikipedia.org/wiki/The_Open_Source_Definition

Software for Statistics

Computing software is essential for modern statistics
Large datasets

Visualization

Simulation

Iterative methods

Many softwares are available

We will learn about R
Available as Free / Open Source Software

Very popular (both academia and industry)

Easy to try out on your own

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 2 / 58

https://en.wikipedia.org/wiki/Free_software_movement
https://en.wikipedia.org/wiki/The_Open_Source_Definition

Outline

Installing R

Some examples

A little bit of history

Some thoughts on why R has been successful

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 3 / 58

Installing R

R is most commonly used as a REPL (Read-Eval-Print-Loop)

This is essentially the model used by a calculator:
Waits for user input

Evaluates and prints result

Waits for more input

There are several different interfaces to do this

R itself works on many platforms (Windows, Mac, UNIX, Linux)

Some interfaces are platform-specific, some work on most

R and the interface may need to be installed separately

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 4 / 58

https://en.wikipedia.org/wiki/Read-eval-print_loop

Installing R

R is most commonly used as a REPL (Read-Eval-Print-Loop)

This is essentially the model used by a calculator:
Waits for user input

Evaluates and prints result

Waits for more input

There are several different interfaces to do this

R itself works on many platforms (Windows, Mac, UNIX, Linux)

Some interfaces are platform-specific, some work on most

R and the interface may need to be installed separately

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 4 / 58

https://en.wikipedia.org/wiki/Read-eval-print_loop

Installing R

R is most commonly used as a REPL (Read-Eval-Print-Loop)

This is essentially the model used by a calculator:
Waits for user input

Evaluates and prints result

Waits for more input

There are several different interfaces to do this

R itself works on many platforms (Windows, Mac, UNIX, Linux)

Some interfaces are platform-specific, some work on most

R and the interface may need to be installed separately

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 4 / 58

https://en.wikipedia.org/wiki/Read-eval-print_loop

Installing R

Go to https://cran.r-project.org/ (or choose a mirror first)

Follow instructions depending on your platform (probably Windows)

This will install R, as well as a default graphical interface on Windows and Mac

I will recommend a different interface called R Studio that needs to be installed
separately

I personally use yet another interface called ESS which works with a general purpose
editor called Emacs (download link for Windows)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 5 / 58

https://cran.r-project.org/
https://cran.r-project.org/mirrors.html
https://www.rstudio.com/
https://ess.r-project.org/
https://www.gnu.org/software/emacs/
https://vigou3.github.io/emacs-modified-windows/

Installing R

Go to https://cran.r-project.org/ (or choose a mirror first)

Follow instructions depending on your platform (probably Windows)

This will install R, as well as a default graphical interface on Windows and Mac

I will recommend a different interface called R Studio that needs to be installed
separately

I personally use yet another interface called ESS which works with a general purpose
editor called Emacs (download link for Windows)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 5 / 58

https://cran.r-project.org/
https://cran.r-project.org/mirrors.html
https://www.rstudio.com/
https://ess.r-project.org/
https://www.gnu.org/software/emacs/
https://vigou3.github.io/emacs-modified-windows/

Installing R

Go to https://cran.r-project.org/ (or choose a mirror first)

Follow instructions depending on your platform (probably Windows)

This will install R, as well as a default graphical interface on Windows and Mac

I will recommend a different interface called R Studio that needs to be installed
separately

I personally use yet another interface called ESS which works with a general purpose
editor called Emacs (download link for Windows)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 5 / 58

https://cran.r-project.org/
https://cran.r-project.org/mirrors.html
https://www.rstudio.com/
https://ess.r-project.org/
https://www.gnu.org/software/emacs/
https://vigou3.github.io/emacs-modified-windows/

Running R

Once installed, you can start the appropriate interface (or R directly) to get something
like this:

R Under development (unstable) (2018-05-05 r74699) -- "Unsuffered Consequences"
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

Loading required package: utils
>

The > represents a prompt indicating that R is waiting for input.

The difficult part is to learn what to do next

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 6 / 58

Before we start, an experiment!

Color combination: Is it white & gold or blue & black ? Let’s count!

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 7 / 58

Before we start, an experiment!

Color combination: Is it white & gold or blue & black ? Let’s count!

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 7 / 58

Question: What proportion of population sees white & gold?

Statistics uses data to make inferences

Model:
Let p be the probability of seeing white & gold

Assume that individuals are independent

Data:
Suppose X out of N sampled individuals see white & gold; e.g., N = 44, X = 26.

According to model, X ∼ Bin(N, p)

“Obvious” estimate of p = X/N = 26/44 = 0.5909

But how is this estimate derived?

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 8 / 58

Question: What proportion of population sees white & gold?

Statistics uses data to make inferences

Model:
Let p be the probability of seeing white & gold

Assume that individuals are independent

Data:
Suppose X out of N sampled individuals see white & gold; e.g., N = 44, X = 26.

According to model, X ∼ Bin(N, p)

“Obvious” estimate of p = X/N = 26/44 = 0.5909

But how is this estimate derived?

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 8 / 58

Question: What proportion of population sees white & gold?

Statistics uses data to make inferences

Model:
Let p be the probability of seeing white & gold

Assume that individuals are independent

Data:
Suppose X out of N sampled individuals see white & gold; e.g., N = 44, X = 26.

According to model, X ∼ Bin(N, p)

“Obvious” estimate of p = X/N = 26/44 = 0.5909

But how is this estimate derived?

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 8 / 58

Generally useful method: maximum likelihood

Likelihood function: probability of observed data as function of p

L(p) = P (X = 26) =
(

44
26

)
p26(1− p)(44−26), p ∈ (0, 1)

Intuition: p that gives higher L(p) is more “likely” to be correct

Maximum likelihood estimate p̂ = arg max L(p)

By differentiating
log L(p) = c + 26 log p + 18 log(1− p)

we get

d

dp
log L(p) = 26

p
− 18

1− p
= 0 =⇒ 26(1− p)− 18p = 0 =⇒ p = 26

44

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 9 / 58

Generally useful method: maximum likelihood

Likelihood function: probability of observed data as function of p

L(p) = P (X = 26) =
(

44
26

)
p26(1− p)(44−26), p ∈ (0, 1)

Intuition: p that gives higher L(p) is more “likely” to be correct

Maximum likelihood estimate p̂ = arg max L(p)

By differentiating
log L(p) = c + 26 log p + 18 log(1− p)

we get

d

dp
log L(p) = 26

p
− 18

1− p
= 0 =⇒ 26(1− p)− 18p = 0 =⇒ p = 26

44

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 9 / 58

How could we do this numerically?

Pretend for the moment that we did not know how to do this.

How could we arrive at the same solution numerically?

Basic idea: Compute L(p) for various values of p and find minimum.

To do this in R, the most important thing to understand is that R works like a
calculator:

The user types in an expression, R calculates the answer

The expression can involve numbers, variables, and functions

For example:

N = 44
x = 26

p = 0.5
choose(N, x) * p^x * (1-p)^(N-x)

[1] 0.05852204

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 10 / 58

How could we do this numerically?

Pretend for the moment that we did not know how to do this.

How could we arrive at the same solution numerically?

Basic idea: Compute L(p) for various values of p and find minimum.

To do this in R, the most important thing to understand is that R works like a
calculator:

The user types in an expression, R calculates the answer

The expression can involve numbers, variables, and functions

For example:

N = 44
x = 26

p = 0.5
choose(N, x) * p^x * (1-p)^(N-x)

[1] 0.05852204

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 10 / 58

How could we do this numerically?

Pretend for the moment that we did not know how to do this.

How could we arrive at the same solution numerically?

Basic idea: Compute L(p) for various values of p and find minimum.

To do this in R, the most important thing to understand is that R works like a
calculator:

The user types in an expression, R calculates the answer

The expression can involve numbers, variables, and functions

For example:

N = 44
x = 26

p = 0.5
choose(N, x) * p^x * (1-p)^(N-x)

[1] 0.05852204

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 10 / 58

“Vectorized” computations

One distinguishing feature of R is that it operates on “vectors”

pvec = seq(0, 1, by = 0.01)
pvec

[1] 0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20 0.21 0.22
[24] 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37 0.38 0.39 0.40 0.41 0.42 0.43 0.44 0.45
[47] 0.46 0.47 0.48 0.49 0.50 0.51 0.52 0.53 0.54 0.55 0.56 0.57 0.58 0.59 0.60 0.61 0.62 0.63 0.64 0.65 0.66 0.67 0.68
[70] 0.69 0.70 0.71 0.72 0.73 0.74 0.75 0.76 0.77 0.78 0.79 0.80 0.81 0.82 0.83 0.84 0.85 0.86 0.87 0.88 0.89 0.90 0.91
[93] 0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99 1.00

Lvec = choose(N, x) * pvec^x * (1-pvec)^(N-x)
Lvec

[1] 0.000000e+00 8.591575e-41 4.802734e-33 1.512457e-28 2.223726e-25 6.093745e-23 5.765981e-21 2.617468e-19
[9] 6.936811e-18 1.218119e-16 1.545270e-15 1.506153e-14 1.180429e-13 7.700395e-13 4.294774e-12 2.091957e-11

[17] 9.052864e-11 3.529530e-10 1.254220e-09 4.101694e-09 1.244626e-08 3.528813e-08 9.404416e-08 2.368078e-07
[25] 5.659476e-07 1.288790e-06 2.806191e-06 5.860149e-06 1.176882e-05 2.278440e-05 4.261443e-05 7.714841e-05
[33] 1.354251e-04 2.308597e-04 3.827207e-04 6.178014e-04 9.721737e-04 1.492843e-03 2.239047e-03 3.282888e-03
[41] 4.708923e-03 6.612349e-03 9.095461e-03 1.226215e-02 1.621039e-02 2.102292e-02 2.675658e-02 3.343099e-02
[49] 4.101773e-02 4.943113e-02 5.852204e-02 6.807589e-02 7.781593e-02 8.741246e-02 9.649794e-02 1.046874e-01
[57] 1.116031e-01 1.169009e-01 1.202969e-01 1.215909e-01 1.206845e-01 1.175920e-01 1.124418e-01 1.054689e-01
[65] 9.699819e-02 8.742011e-02 7.716176e-02 6.665536e-02 5.630807e-02 4.647572e-02 3.744302e-02 2.941171e-02
[73] 2.249722e-02 1.673329e-02 1.208326e-02 8.455753e-03 5.722622e-03 3.736794e-03 2.348049e-03 1.415438e-03
[81] 8.156783e-04 4.475222e-04 2.326508e-04 1.139594e-04 5.224689e-05 2.224201e-05 8.707704e-06 3.098277e-06
[89] 9.873047e-07 2.765972e-07 6.651882e-08 1.330702e-08 2.121986e-09 2.540743e-10 2.092599e-11 1.034935e-12
[97] 2.447773e-14 1.806704e-16 1.596089e-19 7.927831e-25 0.000000e+00

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 11 / 58

Plotting is very easy

plot(x = pvec, y = Lvec, type = "l")

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 12 / 58

Functions

Functions can be used to encapsulate repetitive computations

Like mathematical functions, R function also take arguments as input and “returns”
an output

L = function(p) choose(N, x) * p^x * (1-p)^(N-x)
L(0.5)

[1] 0.05852204

L(x/N)

[1] 0.1216

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 13 / 58

Functions can be plotted directly

plot(L, from = 0, to = 1)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 14 / 58

. . . and they can be numerically “optimized”

optimize(L, interval = c(0, 1), maximum = TRUE)

$maximum
[1] 0.5909084

$objective
[1] 0.1216

Compare with

x / N

[1] 0.5909091

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 15 / 58

A more complicated example

Suppose X1, X2, ..., Xn ∼ Bin(N, p), and are independent

Instead of observing each Xi, we only get to know M = max(X1, X2, ..., Xn)

What is the maximum likelihood estimate of p? (N and n are known, M = m is
observed)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 16 / 58

A more complicated example

To compute likelihood, we need p.m.f. of M :

P (M ≤ m) = P (X1 ≤ m, ..., Xn ≤ m) =

[
m∑

x=0

(
N

x

)
px(1− p)(N−x)

]n

and
P (M = m) = P (M ≤ m)− P (M ≤ m− 1)

In R,

n = 10
N = 50
M = 30
F <- function(p, m)
{

x = seq(0, m)
(sum(choose(N, x) * p^x * (1-p)^(N-x)))^n

}
L = function(p)
{

F(p, M) - F(p, M-1)
}

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 17 / 58

A more complicated example

To compute likelihood, we need p.m.f. of M :

P (M ≤ m) = P (X1 ≤ m, ..., Xn ≤ m) =

[
m∑

x=0

(
N

x

)
px(1− p)(N−x)

]n

and
P (M = m) = P (M ≤ m)− P (M ≤ m− 1)

In R,

n = 10
N = 50
M = 30
F <- function(p, m)
{

x = seq(0, m)
(sum(choose(N, x) * p^x * (1-p)^(N-x)))^n

}
L = function(p)
{

F(p, M) - F(p, M-1)
}

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 17 / 58

Maximum Likelihood estimate

optimize(L, interval = c(0, 1), maximum = TRUE)

$maximum
[1] 0.4996703

$objective
[1] 0.1981222

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 18 / 58

“The Dress” revisited

What factors determine perceived color? (From 23andme.com)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 19 / 58

https://blog.23andme.com/23andme-research/genetics-and-that-striped-dress/

Simulation: birthday problem

R can be used to simulate random events

Example: how likely is a common birthday in a group of 20 people?

N = 20
days = sample(365, N, rep = TRUE)
days

[1] 112 320 19 42 66 41 73 182 314 266 154 313 351 276 218 359 257 246 195 42

length(unique(days))

[1] 19

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 20 / 58

Law of Large Numbers

With enough replications, sample proportion should converge to probability

haveCommon = function()
{

days = sample(365, N, rep = TRUE)
length(unique(days)) < N

}
haveCommon()

[1] FALSE

haveCommon()

[1] FALSE

haveCommon()

[1] TRUE

haveCommon()

[1] TRUE

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 21 / 58

Law of Large Numbers

With enough replications, sample proportion should converge to probability

Do this sytematically:

replicate(100, haveCommon())

[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FALSE FALSE FALSE TRUE TRUE FALSE TRUE TRUE
[20] TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE FALSE FALSE
[39] TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FALSE TRUE TRUE FALSE TRUE FALSE FALSE FALSE
[58] TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TRUE FALSE FALSE
[77] FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE
[96] FALSE TRUE FALSE FALSE FALSE

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 22 / 58

Law of Large Numbers

With enough replications, sample proportion should converge to probability

plot(cumsum(replicate(1000, haveCommon())) / 1:1000, type = "l")
lines(cumsum(replicate(1000, haveCommon())) / 1:1000, col = "red")
lines(cumsum(replicate(1000, haveCommon())) / 1:1000, col = "blue")

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 23 / 58

A more serious example: climate change

Year

Temp

CO2

CH4

NO2

1861

-0.411

286.5

838.2

288.9

1862

-0.518

286.6

839.6

288.9

1863

-0.315

286.8

840.9

289.0

1864

-0.491

287.0

842.3

289.1

1865

-0.296

287.2

843.8

289.1

1866

-0.295

287.4

845.5

289.2

1867

-0.315

287.6

847.1

289.3

1868

-0.268

287.8

848.6

289.3

1869

-0.287

288.0

850.2

289.4

1870

-0.282

288.2

851.8

289.5

1871

-0.335

288.4

853.4

289.5

1872

-0.277

288.7

855.1

289.6

1873

-0.335

288.9

856.9

289.7

1874

-0.377

289.1

858.8

289.7

1875

-0.406

289.4

860.5

289.8

1876

-0.372

289.7

862.3

289.9

1877

-0.127

289.9

864.0

290.0

1878

-0.014

290.2

865.8

290.0

1879

-0.258

290.5

867.6

290.1

1880

-0.247

290.8

869.4

290.2

1881

-0.251

291.1

871.2

290.3

1882

-0.256

291.4

872.9

290.3

1883

-0.308

291.7

874.7

290.4

1884

-0.373

292.0

876.5

290.5

1885

-0.363

292.3

878.3

290.6

1886

-0.289

292.6

880.0

290.7

1887

-0.374

292.9

881.8

290.8

1888

-0.340

293.1

883.6

290.8

1889

-0.223

293.4

885.4

290.9

1890

-0.423

293.7

887.2

291.0

1891

-0.386

294.0

888.9

291.1

1892

-0.481

294.3

890.6

291.2

1893

-0.503

294.6

892.2

291.3

1894

-0.436

294.9

893.9

291.4

1895

-0.418

295.2

895.6

291.4

1896

-0.239

295.5

897.2

291.5

1897

-0.260

295.8

898.9

291.6

1898

-0.402

296.1

900.5

291.7

1899

-0.322

296.4

902.2

291.8

1900

-0.254

296.7

903.8

291.9

1901

-0.317

297.0

905.5

292.0

1902

-0.429

297.3

907.2

292.1

1903

-0.496

297.6

908.8

292.2

1904

-0.539

297.9

910.5

292.3

1905

-0.425

298.2

912.1

292.4

1906

-0.350

298.5

913.8

292.5

1907

-0.518

298.9

915.4

292.6

1908

-0.554

299.2

917.1

292.7

1909

-0.559

299.6

918.8

292.8

1910

-0.544

299.9

920.4

292.9

1911

-0.573

300.2

922.1

293.0

1912

-0.497

300.5

924.9

293.1

1913

-0.486

300.9

927.8

293.2

1914

-0.319

301.2

930.6

293.3

1915

-0.247

301.5

933.5

293.5

1916

-0.434

301.8

936.4

293.6

1917

-0.494

302.2

939.2

293.7

1918

-0.387

302.5

942.8

293.8

1919

-0.332

302.9

946.3

293.9

1920

-0.327

303.2

949.9

294.0

1921

-0.268

303.5

953.5

294.1

1922

-0.378

303.9

957.1

294.2

1923

-0.346

304.2

960.7

294.4

1924

-0.358

304.6

964.2

294.5

1925

-0.274

304.9

967.8

294.6

1926

-0.179

305.2

971.3

294.7

1927

-0.258

305.6

974.9

294.8

1928

-0.254

305.9

978.5

295.0

1929

-0.358

306.2

982.1

295.1

1930

-0.170

306.5

985.7

295.2

1931

-0.138

306.8

989.2

295.3

1932

-0.162

307.1

993.5

295.5

1933

-0.282

307.4

997.7

295.6

1934

-0.161

307.7

1002.0

295.7

1935

-0.184

308.0

1006.2

295.9

1936

-0.149

308.3

1010.4

296.0

1937

-0.041

308.5

1014.7

296.1

1938

0.002

308.8

1018.9

296.3

1939

-0.002

309.1

1023.2

296.4

1940

0.010

309.3

1027.4

296.5

1941

0.063

309.5

1032.2

296.7

1942

-0.020

309.8

1037.9

296.8

1943

-0.019

310.0

1044.4

297.0

1944

0.100

310.2

1051.7

297.1

1945

-0.024

310.5

1059.7

297.2

1946

-0.189

310.8

1068.4

297.4

1947

-0.194

311.0

1077.8

297.5

1948

-0.196

311.3

1087.9

297.7

1949

-0.206

311.7

1098.6

297.8

1950

-0.294

312.0

1109.9

298.0

1951

-0.169

312.4

1121.8

298.1

1952

-0.096

312.8

1134.2

298.3

1953

-0.046

313.2

1147.1

298.4

1954

-0.246

313.6

1160.4

298.6

1955

-0.269

314.1

1174.3

298.7

1956

-0.335

314.6

1188.5

298.9

1957

-0.085

315.1

1203.2

299.0

1958

-0.021

315.2

1218.2

299.2

1959

-0.075

316.0

1233.5

299.4

1960

-0.119

316.9

1249.1

299.5

1961

-0.032

317.6

1265.0

299.7

1962

-0.034

318.5

1281.1

299.8

1963

-0.010

319.0

1297.5

300.0

1964

-0.278

319.6

1314.0

300.2

1965

-0.211

320.0

1330.7

300.3

1966

-0.151

321.4

1347.4

300.5

1967

-0.147

322.2

1364.3

300.7

1968

-0.160

323.0

1381.2

300.8

1969

-0.026

324.6

1398.2

301.0

1970

-0.073

325.7

1415.1

301.2

1971

-0.180

326.3

1432.1

301.4

1972

-0.066

327.5

1448.9

301.5

1973

0.059

329.7

1465.7

301.7

1974

-0.207

330.2

1482.4

301.9

1975

-0.161

331.1

1498.9

302.1

1976

-0.241

332.1

1515.2

302.3

1977

0.004

333.8

1531.3

302.4

1978

-0.061

335.4

1547.1

302.6

1979

0.046

336.8

1562.7

302.8

1980

0.069

338.7

1578.0

300.7

1981

0.110

340.1

1593.0

301.3

1982

0.015

341.4

1607.6

302.7

1983

0.171

343.0

1621.8

303.1

1984

-0.019

344.6

1653.2

303.5

1985

-0.037

346.0

1665.7

304.0

1986

0.034

347.4

1678.3

305.0

1987

0.178

349.2

1690.6

305.7

1988

0.175

351.6

1701.8

306.6

1989

0.109

353.1

1712.6

307.6

1990

0.248

354.3

1722.3

307.6

1991

0.203

355.6

1733.4

308.7

1992

0.071

356.4

1742.2

309.4

1993

0.105

357.1

1744.9

310.0

1994

0.169

358.8

1750.2

310.9

1995

0.269

360.8

1757.2

311.4

1996

0.139

362.6

1760.3

312.2

1997

0.349

363.7

1763.6

313.1

1998

0.529

366.7

1772.9

313.9

1999

0.304

368.3

1781.0

314.7

2000

0.278

369.5

1781.9

315.7

2001

0.407

371.1

1781.0

316.4

2002

0.455

373.2

1782.3

317.1

2003

0.467

375.8

1786.2

317.7

2004

0.444

377.5

1785.5

318.4

2005

0.474

379.8

1784.6

319.1

2006

0.425

381.9

1784.5

320.0

2007

0.397

383.8

1790.4

320.8

2008

0.329

385.6

1797.8

321.7

2009

0.436

387.4

1802.7

322.4

2010

0.470

389.8

1807.7

323.2

2011

0.341

391.6

1813.1

324.2

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 24 / 58

Change in temperature (global average deviation) since 1851

library(lattice)
xyplot(Temp ~ Year, data = globalTemp, grid = TRUE)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 25 / 58

Change in atmospheric carbon dioxide

xyplot(CO2 ~ Year, data = globalTemp, grid = TRUE)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 26 / 58

Does change in CO2 explain temperature rise?

xyplot(Temp ~ CO2, data = globalTemp, grid = TRUE, type = c("p", "r")) # include OLS regression line

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 27 / 58

Fitting the regression model

fm = lm(Temp ~ 1 + CO2, data = globalTemp)
coef(fm) # estimated regression coefficients

(Intercept) CO2
-2.836082117 0.008486628

We can confirm using a general optimizer:

SSE = function(beta)
{

with(globalTemp,
sum((Temp - beta[1] - beta[2] * CO2)^2))

}
optim(c(0, 0), fn = SSE)

$par
[1] -2.836176636 0.008486886

$value
[1] 2.210994

$counts
function gradient

93 NA

$convergence
[1] 0

$message
NULL

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 28 / 58

Fitting the regression model

fm = lm(Temp ~ 1 + CO2, data = globalTemp)
coef(fm) # estimated regression coefficients

(Intercept) CO2
-2.836082117 0.008486628

We can confirm using a general optimizer:

SSE = function(beta)
{

with(globalTemp,
sum((Temp - beta[1] - beta[2] * CO2)^2))

}
optim(c(0, 0), fn = SSE)

$par
[1] -2.836176636 0.008486886

$value
[1] 2.210994

$counts
function gradient

93 NA

$convergence
[1] 0

$message
NULL

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 28 / 58

Fitting the regression model

lm() gives exact solution and more statistically relevant details

summary(fm)

Call:
lm(formula = Temp ~ 1 + CO2, data = globalTemp)

Residuals:
Min 1Q Median 3Q Max

-0.28460 -0.09004 -0.00101 0.08616 0.35926

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.8360821 0.1145766 -24.75 <2e-16
CO2 0.0084866 0.0003602 23.56 <2e-16

Residual standard error: 0.1218 on 149 degrees of freedom
Multiple R-squared: 0.7884, Adjusted R-squared: 0.787
F-statistic: 555.1 on 1 and 149 DF, p-value: < 2.2e-16

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 29 / 58

Changing the model-fitting criteria

Suppose we wanted to minimize sum of absolute errors instead of sum of squares

No closed form solution any more, but general optimizer will still work:

SAE = function(beta)
{

with(globalTemp,
sum(abs(Temp - beta[1] - beta[2] * CO2)))

}
opt = optim(c(0, 0), fn = SAE)
opt

$par
[1] -2.832090898 0.008471257

$value
[1] 14.5602

$counts
function gradient

123 NA

$convergence
[1] 0

$message
NULL

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 30 / 58

Changing the model-fitting criteria

Compare with least squares line

coef(fm) # least squared errors

(Intercept) CO2
-2.836082117 0.008486628

opt$par # least absolute errors

[1] -2.832090898 0.008471257

The two lines are virtually identical in this case

This is not always true

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 31 / 58

Another example: number of phone calls per year in Belgium

data(phones, package = "MASS")
xyplot(calls ~ year, data = phones, grid = TRUE)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 32 / 58

Another example: number of phone calls per year in Belgium

fm2 <- lm(calls ~ year, data = phones)
SAE = function(beta)
{

with(phones,
sum(abs(calls - beta[1] - beta[2] * year)))

}
opt = optim(c(0, 0), fn = SAE)

coef(fm2) # least squared errors

(Intercept) year
-260.059246 5.041478

opt$par # least absolute errors

[1] -66.053297 1.353735

The two lines are quite different

The second line is an example of robust regression

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 33 / 58

Another example: number of phone calls per year in Belgium

fm2 <- lm(calls ~ year, data = phones)
SAE = function(beta)
{

with(phones,
sum(abs(calls - beta[1] - beta[2] * year)))

}
opt = optim(c(0, 0), fn = SAE)

coef(fm2) # least squared errors

(Intercept) year
-260.059246 5.041478

opt$par # least absolute errors

[1] -66.053297 1.353735

The two lines are quite different

The second line is an example of robust regression

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 33 / 58

Another example: number of phone calls per year in Belgium

xyplot(calls ~ year, data = phones, grid = TRUE,
panel = function(x, y, ...) {

panel.xyplot(x, y, ...)
panel.abline(fm2, col = "red") # least squared errors
panel.abline(opt$par, col = "blue") # least absolute errors

})

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 34 / 58

Summary

Conventional statistical learning focuses on problems that can be “solved” analytically

Numerical solutions are also valid solutions. . . but potentially difficult to obtain

R makes it easy to obtain numerical solutions and compare with traditional solutions

We will come back to this idea when we next discuss the origins of R

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 35 / 58

Summary

Conventional statistical learning focuses on problems that can be “solved” analytically

Numerical solutions are also valid solutions. . . but potentially difficult to obtain

R makes it easy to obtain numerical solutions and compare with traditional solutions

We will come back to this idea when we next discuss the origins of R

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 35 / 58

A very brief history of R

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 36 / 58

What is R?

From its own website:
R is a free software environment for statistical computing and graphics.

It is a GNU project which is similar to the S language and environment which
was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies)
by John Chambers and colleagues. R can be considered as a different
implementation of S.

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 37 / 58

What is R?

From its own website:
R is a free software environment for statistical computing and graphics.
It is a GNU project which is similar to the S language and environment which
was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies)
by John Chambers and colleagues. R can be considered as a different
implementation of S.

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 37 / 58

The origins of S

Developed at Bell Labs (statistics research department) 1970s onwards

Primary goals
Interactivity: Exploratory Data Analysis vs batch mode

Flexibility: Novel vs routine methodology

Practical: For actual use, not (just) academic research

John Chambers received the prestigious ACM Software System Award in 1998
For The S system, which has forever altered how people analyze, visualize, and
manipulate data.

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 38 / 58

The origins of S

Developed at Bell Labs (statistics research department) 1970s onwards

Primary goals
Interactivity: Exploratory Data Analysis vs batch mode

Flexibility: Novel vs routine methodology

Practical: For actual use, not (just) academic research

John Chambers received the prestigious ACM Software System Award in 1998
For The S system, which has forever altered how people analyze, visualize, and
manipulate data.

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 38 / 58

The origins of R

Early 1990s: Started as teaching tool by Robert Gentleman & Ross Ihaka at the
University of Auckland

1995: Convinced by Martin Mächler to release as Free Software (GPL)

2000: Version 1.0 released

Has since far surpassed S in popularity

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 39 / 58

Number of R packages on CRAN

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 40 / 58

Why the success? The user’s perspective

R is designed for data analysis
Basic data structures are vectors
Large collection of statistical functions
Advanced statistical graphics capabilities

The vast majority of R users use it as a statistical toolbox

R “base” comes with a large suite of statistical modeling and graphics functions

If these are not enough, more than 10000 add-on packages are available

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 41 / 58

The developer’s perspective

Easy dissemination of research (through add-on packages)
Rapid prototyping
Interfaces to external software

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 42 / 58

Rapid prototyping

John Chambers, Programming with Data:
S is a programming language and environment for all kinds of computing
involving data. It has a simple goal: To turn ideas into software, quickly and
faithfully.

A silly example: generate Fibonacci sequence

fibonacci <- function(n) {
if (n < 2)

x <- seq(length = n) - 1
else {

x <- c(0, 1)
while (length(x) < n) {

x <- c(x, sum(tail(x, 2)))
}

}
x

}
fib10 <- fibonacci(10)
fib10

[1] 0 1 1 2 3 5 8 13 21 34

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 43 / 58

Rapid prototyping

John Chambers, Programming with Data:
S is a programming language and environment for all kinds of computing
involving data. It has a simple goal: To turn ideas into software, quickly and
faithfully.

A silly example: generate Fibonacci sequence

fibonacci <- function(n) {
if (n < 2)

x <- seq(length = n) - 1
else {

x <- c(0, 1)
while (length(x) < n) {

x <- c(x, sum(tail(x, 2)))
}

}
x

}
fib10 <- fibonacci(10)
fib10

[1] 0 1 1 2 3 5 8 13 21 34
Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 43 / 58

Also easy to call C for efficiency

File fib.c:

#include <Rdefines.h>

SEXP fibonacci_c(SEXP nr)
{

int i, n = INTEGER_VALUE(nr);
SEXP ans = PROTECT(NEW_INTEGER(n));
int *x = INTEGER_POINTER(ans);
x[0] = 0; x[1] = 1;
for (i = 2; i < n; i++) x[i] = x[i-1] + x[i-2];
UNPROTECT(1);
return ans;

}

Compile into shared library:

$ R CMD SHLIB fib.c

Load into R and call:

dyn.load("fib.so")
cfib10 = .Call("fibonacci_c", as.integer(10))
cfib10

[1] 0 1 1 2 3 5 8 13 21 34
Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 44 / 58

Even easier to call C++ with Rcpp package

File fib.cpp:

#include <Rcpp.h>
using namespace Rcpp;

// [[Rcpp::export]]
NumericVector fibonacci_cpp(int n)
{

NumericVector x(n);
x[0] = 0; x[1] = 1;
for (int i = 2; i < n; i++) x[i] = x[i-1] + x[i-2];
return x;

}

Compile and call:

Rcpp::sourceCpp("fib.cpp")
fibonacci_cpp(10)

[1] 0 1 1 2 3 5 8 13 21 34

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 45 / 58

Rapid prototyping: flexibility and extensibility

Powerful built-in tools

Programming language

Compiled code for efficiency

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 46 / 58

Another strength: Interfaces

Not all useful software developed by R community

Core open source philosophy: code re-use

Creating interfaces with external software is relatively easy

Example: Keras / TensorFlow

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 47 / 58

Keras

Deep learning framework based on TensorFlow

R interface through package keras

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 48 / 58

https://blog.rstudio.com/2017/09/05/keras-for-r/

Example: classify handwritten digits

library(keras)
mnist <- dataset_mnist()
x_train <- mnist$train$x # each sample is a 28x28 grayscale image
y_train <- mnist$train$y # correct classification (0,1,2,...,9)
x_test <- mnist$test$x
y_test <- mnist$test$y

xtrain.100 <- as.data.frame.table(x_train[1:100,,])
levelplot(Freq ~ Var3 + Var2 | Var1, data = xtrain.100, strip = FALSE, scales = list(draw = FALSE),

ylim = c(28, 1), colorkey = FALSE, col.regions = rev(grey.colors(20)), xlab = NULL, ylab = NULL, aspect = 1)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 49 / 58

Example: classify handwritten digits

library(keras)
mnist <- dataset_mnist()
x_train <- mnist$train$x # each sample is a 28x28 grayscale image
y_train <- mnist$train$y # correct classification (0,1,2,...,9)
x_test <- mnist$test$x
y_test <- mnist$test$y

xtrain.100 <- as.data.frame.table(x_train[1:100,,])
levelplot(Freq ~ Var3 + Var2 | Var1, data = xtrain.100, strip = FALSE, scales = list(draw = FALSE),

ylim = c(28, 1), colorkey = FALSE, col.regions = rev(grey.colors(20)), xlab = NULL, ylab = NULL, aspect = 1)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 49 / 58

Transform data

Reshape data (to vector) and rescale

reshape each 28x28 image matrix to 784-vector
dim(x_train) <- c(nrow(x_train), 784)
dim(x_test) <- c(nrow(x_test), 784)

rescale grayscale values (0-225) to (0,1)
x_train <- x_train / 255
x_test <- x_test / 255

y_train <- to_categorical(y_train, 10)
y_test <- to_categorical(y_test, 10)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 50 / 58

Define model

A Keras model is a way to organize layers
Define a sequential model (a linear stack of layers)

model <- keras_model_sequential()
layer_dense(model, units = 256, activation = "relu", input_shape = c(784))
layer_dropout(model, rate = 0.4)
layer_dense(model, units = 128, activation = "relu")
layer_dropout(model, rate = 0.3)
layer_dense(model, units = 10, activation = "softmax")
summary(model)

__
Layer (type) Output Shape Param #
==
dense_1 (Dense) (None, 256) 200960
__
dropout_1 (Dropout) (None, 256) 0
__
dense_2 (Dense) (None, 128) 32896
__
dropout_2 (Dropout) (None, 128) 0
__
dense_3 (Dense) (None, 10) 1290
==
Total params: 235,146
Trainable params: 235,146
Non-trainable params: 0
__

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 51 / 58

Compile and train model

compile(model,
loss = "categorical_crossentropy",
optimizer = optimizer_rmsprop(),
metrics = c("accuracy"))

history <- fit(model,
x_train, y_train,
epochs = 30, batch_size = 128,
validation_split = 0.2)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 52 / 58

Evaluate model

p <- plot(history)
p

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 53 / 58

Results on test data

pred_class <- predict_classes(model, x_test)
pred_class[1:20]

[1] 7 2 1 0 4 1 4 9 5 9 0 6 9 0 1 5 9 7 3 4

y_test[1:20,]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 0 0 0 1 0 0
[2,] 0 0 1 0 0 0 0 0 0 0
[3,] 0 1 0 0 0 0 0 0 0 0
[4,] 1 0 0 0 0 0 0 0 0 0
[5,] 0 0 0 0 1 0 0 0 0 0
[6,] 0 1 0 0 0 0 0 0 0 0
[7,] 0 0 0 0 1 0 0 0 0 0
[8,] 0 0 0 0 0 0 0 0 0 1
[9,] 0 0 0 0 0 1 0 0 0 0

[10,] 0 0 0 0 0 0 0 0 0 1
[11,] 1 0 0 0 0 0 0 0 0 0
[12,] 0 0 0 0 0 0 1 0 0 0
[13,] 0 0 0 0 0 0 0 0 0 1
[14,] 1 0 0 0 0 0 0 0 0 0
[15,] 0 1 0 0 0 0 0 0 0 0
[16,] 0 0 0 0 0 1 0 0 0 0
[17,] 0 0 0 0 0 0 0 0 0 1
[18,] 0 0 0 0 0 0 0 1 0 0
[19,] 0 0 0 1 0 0 0 0 0 0
[20,] 0 0 0 0 1 0 0 0 0 0

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 54 / 58

Misclassification rate in test data

ctab <- table(pred_class, apply(y_test, 1, which.max)-1)
ctab

pred_class 0 1 2 3 4 5 6 7 8 9
0 971 0 2 0 0 2 4 3 4 5
1 1 1126 2 0 1 0 3 3 3 2
2 2 3 1020 4 4 0 0 8 3 1
3 0 0 0 987 0 2 1 1 5 5
4 0 0 1 0 957 0 3 0 1 9
5 2 1 0 9 0 877 3 0 5 4
6 2 2 0 0 5 5 943 0 1 0
7 1 0 4 6 2 1 0 1009 3 4
8 1 3 3 2 1 4 1 1 947 2
9 0 0 0 2 12 1 0 3 2 977

sum(diag(ctab)) / sum(ctab)

[1] 0.9814

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 55 / 58

Another interface: plotly

Plotly: a Javascript library for visualization

R interface provided by the plotly R package

library(plotly)
ggplotly(p)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 56 / 58

More HTML-based applications

DataTable (plug-in for jQuery) - example earlier
HTML widgets
Shiny Apps

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 57 / 58

https://datatables.net/
http://www.htmlwidgets.org/
https://shiny.rstudio.com/

Parting comments: reproducible documents

Creating reports / presentations with numerical analysis is usually a two-step process:
Do the analysis using a computational software
Write report in a word processor, copy-pasting results

R makes it very convenient to write “literate documents” that contain both analsyis
code and report text

Basic idea:
Start with source text file containing code+text
Transform file by running code and embedding results
Produces another text file (LaTeX, HTML, markdown)
Processed further using standard tools

Example: this presentation is created from this source file (R Markdown) using knitr
and pandoc

As the source format is markdown, output could also be PDF instead of HTML

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment 58 / 58

roverview.rmd
https://yihui.name/knitr/
http://pandoc.org/

	A very brief history of R

