An overview of the R programming environment

Deepayan Sarkar

Indian Statistical Institute, Delhi

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Software for Statistics

o Computing software is essential for modern statistics
o Large datasets
o Visualization
o Simulation

o Iterative methods

@ Many softwares are available

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

https://en.wikipedia.org/wiki/Free_software_movement
https://en.wikipedia.org/wiki/The_Open_Source_Definition

Software for Statistics

o Computing software is essential for modern statistics
o Large datasets
o Visualization
o Simulation
o lterative methods
@ Many softwares are available
o We will learn about R
o Available as Free / Open Source Software
o Very popular (both academia and industry)

o Easy to try out on your own

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

https://en.wikipedia.org/wiki/Free_software_movement
https://en.wikipedia.org/wiki/The_Open_Source_Definition

Outline

Installing R
@ Some examples

o A little bit of history

Some thoughts on why R has been successful

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Installing R

@ R is most commonly used as a REPL (Read-Eval-Print-Loop)

@ This is essentially the model used by a calculator:
o Waits for user input
o Evaluates and prints result

o Waits for more input

An overview of the R programming environment

Deepayan Sarkar (ISI Delhi)

https://en.wikipedia.org/wiki/Read-eval-print_loop

Installing R

@ R is most commonly used as a REPL (Read-Eval-Print-Loop)
@ This is essentially the model used by a calculator:

o Waits for user input

o Evaluates and prints result

o Waits for more input

There are several different interfaces to do this

R itself works on many platforms (Windows, Mac, UNIX, Linux)

@ Some interfaces are platform-specific, some work on most

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

https://en.wikipedia.org/wiki/Read-eval-print_loop

Installing R

@ R is most commonly used as a REPL (Read-Eval-Print-Loop)
@ This is essentially the model used by a calculator:

o Waits for user input

o Evaluates and prints result

o Waits for more input

There are several different interfaces to do this

R itself works on many platforms (Windows, Mac, UNIX, Linux)
@ Some interfaces are platform-specific, some work on most

@ R and the interface may need to be installed separately

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

https://en.wikipedia.org/wiki/Read-eval-print_loop

Installing R

@ Go to https://cran.r-project.org/ (or choose a mirror first)

@ Follow instructions depending on your platform (probably Windows)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

https://cran.r-project.org/
https://cran.r-project.org/mirrors.html
https://www.rstudio.com/
https://ess.r-project.org/
https://www.gnu.org/software/emacs/
https://vigou3.github.io/emacs-modified-windows/

Installing R

@ Go to https://cran.r-project.org/ (or choose a mirror first)
@ Follow instructions depending on your platform (probably Windows)

o This will install R, as well as a default graphical interface on Windows and Mac

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

https://cran.r-project.org/
https://cran.r-project.org/mirrors.html
https://www.rstudio.com/
https://ess.r-project.org/
https://www.gnu.org/software/emacs/
https://vigou3.github.io/emacs-modified-windows/

Installing R

Go to https://cran.r-project.org/ (or choose a mirror first)

Follow instructions depending on your platform (probably Windows)

This will install R, as well as a default graphical interface on Windows and Mac

@ | will recommend a different interface called R Studio that needs to be installed
separately

o | personally use yet another interface called ESS which works with a general purpose
editor called Emacs (download link for Windows)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

https://cran.r-project.org/
https://cran.r-project.org/mirrors.html
https://www.rstudio.com/
https://ess.r-project.org/
https://www.gnu.org/software/emacs/
https://vigou3.github.io/emacs-modified-windows/

o Once installed, you can start the appropriate interface (or R directly) to get something
like this:

R Under development (unstable) (2018-05-05 r74699) -- "Unsuffered Consequen
Copyright (C) 2018 The R Foundation for Statistical Computing
Platform: x86_64-pc-linux-gnu (64-bit)

R is free software and comes with ABSOLUTELY NO WARRANTY.
You are welcome to redistribute it under certain conditions.
Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.
Type 'contributors()' for more information and
'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or
'help.start()' for an HTML browser interface to help.
Type 'q()' to quit R.

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

re we start, an experim

eepayan Sarkar (IS De An overview of the R programming environment

e we start, an experi

Color combination: Is it white & gold or blue & black 7 Let's count!

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Question: What proportion of population sees white & gold?

@ Statistics uses data to make inferences
e Model:
o Let p be the probability of seeing white & gold

o Assume that individuals are independent

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Question: What proportion of population sees white & gold?

@ Statistics uses data to make inferences
@ Model:
o Let p be the probability of seeing white & gold
o Assume that individuals are independent
o Data:
o Suppose X out of NV sampled individuals see white & gold; e.g., N = 44, X = 26.
o According to model, X ~ Bin(N,p)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Question: What proportion of population sees white & gold?

Statistics uses data to make inferences
@ Model:
o Let p be the probability of seeing white & gold
o Assume that individuals are independent
o Data:
o Suppose X out of NV sampled individuals see white & gold; e.g., N = 44, X = 26.
o According to model, X ~ Bin(N,p)
@ “Obvious” estimate of p = X/N = 26/44 = 0.5909

@ But how is this estimate derived?

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Generally useful method: maximum likelihood

o Likelihood function: probability of observed data as function of p

10 = POE=20) = (30)0~)™ 2.0 0.1

@ Intuition: p that gives higher L(p) is more “likely” to be correct

@ Maximum likelihood estimate p = arg max L(p)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Generally useful method: maximum likelihood

Likelihood function: probability of observed data as function of p

44

L(p) = P(X = 26) = (26

)p26(1 —p)*% pe(0,1)

Intuition: p that gives higher L(p) is more “likely” to be correct
Maximum likelihood estimate p = arg max L(p)

By differentiating
log L(p) = ¢+ 261logp + 18log(1 — p)
we get

d 26 18 26
ap 8 () P 0= 26(1-p)-18p=0 = p=

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

How could we do this numerically?

@ Pretend for the moment that we did not know how to do this.
@ How could we arrive at the same solution numerically?

@ Basic idea: Compute L(p) for various values of p and find minimum.

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

How could we do this numerically?

Pretend for the moment that we did not know how to do this.

@ How could we arrive at the same solution numerically?
@ Basic idea: Compute L(p) for various values of p and find minimum.

To do this in R, the most important thing to understand is that R works like a
calculator:

o The user types in an expression, R calculates the answer

o The expression can involve numbers, variables, and functions

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

How could we do this numerically?

@ Pretend for the moment that we did not know how to do this.
@ How could we arrive at the same solution numerically?
@ Basic idea: Compute L(p) for various values of p and find minimum.

@ To do this in R, the most important thing to understand is that R works like a
calculator:

o The user types in an expression, R calculates the answer

o The expression can involve numbers, variables, and functions

o For example:

N = 44
x = 26
p=20.5

choose(N, x) * p™x * (1-p)~ (N-x)
[1] 0.05852204

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

“Vectorized” computations

@ One distinguishing feature of R is that it operates on “vectors”

pvec = seq(0, 1, by = 0.01)

pvec

©O© NS N O

W~

o o N

[N

=

By
~ O O O O O

O O O O o
w

O NS NN O

AN O© oW

O O O O o

©O© NN O
o

6

Lvec = choose(N, x) * pvec'x *

Lvec

[1] 0.000000e+00
[9] 6.936811e-18
[17] 9.052864e-11
[25] 5.659476e-07
[33] 1.354251e-04
[41] 4.708923e-03
[49] 4.101773e-02
[57] 1.116031e-01
[65] 9.699819e-02

40 a—0
Deepayan Sarkar (ISI Delhi

.591575e-41
.218119e-16
.5295630e-10
.288790e-06
.308597e-04
.612349e-03
.943113e-02
.169009e-01
.742011e-02

© N oo
SN !
ocoooo
© N ON O
® oL O D
ooooo
© N O wo
© WO

1-pvec) ~(N-x)

.802734e-33
.545270e-15
.254220e-09
.806191e-06
.827207e-04
.095461e-03
.852204e-02
.202969e-01
7.716176e-02

= 01O WD~ =

DO OO

= O O O O

N wo
IR N
oo oo
N w o
0 g N ©
oo oo

o
o

.512457e-28
.506153e-14
.101694e-09
.860149e-06
.178014e-04
.226215e-02
.807589e-02
.215909e-01

o—() QR e 2
An overview of the R programming environment

.665536e-02

~N O W=
O O W o
O O O O
W 01 W =

Ok Nk Ok P RN

SN bA e
O O O O
© G W
= 00 O N
O O O O

.223726e-25
.180429e-13
.244626e-08
.176882e-05
.721737e-04
.621039e-02
.781593e-02
.206845e-01
.630807e-02

>R 00ONEFENWNO

.13
.36
.59
.82

.09
.70
.52
.27
.49
.10
.74
.17
.64

Plotting is very easy

plot(x = pvec, y = Lvec, type = "1")

Lvec
0.06
1

0.00
I

pvec

n Sarkar (ISI Delhi) An overview of the R programming envi

Functions

Functions can be used to encapsulate repetitive computations

Like mathematical functions, R function also take arguments as input and “returns”
an output

L = function(p) choose(N, x) * p"x * (1-p)~(N-x)
L(0.5)

[1] 0.05852204
L(x/N)
[1] 0.1216

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Functions can be plotted directly

plot(L, from = 0, to = 1)

0.12
I

0.08
1

0.02
I

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

...and they can be numerically “optimized”

optimize(L, interval = c(0, 1), maximum = TRUE)
$maximum
[1] 0.5909084
$objective
[1] 0.1216
o Compare with
x /N
[1] 0.5909091

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

A more complicated example

@ Suppose X1, X, ..., X,y ~ Bin(N,p), and are independent
o Instead of observing each X;, we only get to know M = max(X1, Xo, ..., X,)

@ What is the maximum likelihood estimate of p? (N and n are known, M =m is
observed)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

A more complicated example

To compute likelihood, we need p.m.f. of M :

PM<m)=P(X1<m,..,. X, <m)= li <];/')pz(1 p)(NI)‘|

=0

and
PM=m)=P(M<m)—P(M<m-1)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

A more complicated example

To compute likelihood, we need p.m.f. of M :

PM<m)=P(X1<m,..,. X, <m)= li <];/')pz(1 p)(NI)‘|

=0

and

PM=m)=P(M<m)—P(M<m-1)
In R,
n = 10
N = 50
M = 30
F <- function(p, m)
{

x = seq(0, m)
(sum(choose(N, x) * p"x * (1-p)~(N-x)))"n

[
]

function(p)

F(p, M) - F(p, M-1)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Maximum Likelihood estimate

0.10 0.15
1 I

sapply(pp, L)

0.05
!

0.00
I

optimize(L, interval = c(0, 1), maximum = TRUE)
$maximum

[1] 0.4996703

$objective
[1] 0.1981222

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

“The Dress" revisited

@ What factors determine perceived color? (From 23andme.com)

Age and Sex Effect on #TheDress

" Male
u Female

(20 30] (30,40] (40, 50] (50,60] (60,65] (65,70] (70,99]
Age

% people seeing #WhiteAndGold
- %] [F - ()] [=2] -~ o
(=] (=] (=] (=] (=] [=] (=] [=]
X B R A R B R R

o
ES

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

https://blog.23andme.com/23andme-research/genetics-and-that-striped-dress/

Simulation: birthday problem

@ R can be used to simulate random events
@ Example: how likely is a common birthday in a group of 20 people?

N = 20
days = sample(365, N, rep = TRUE)
days

[1] 112 320 19 42 66 41 73 182 314 266 154 313 351 276 218 359 257 24
length(unique(days))
[11 19

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Law of Large Numbers

o With enough replications, sample proportion should converge to probability

haveCommon = function()

{
days = sample(365, N, rep = TRUE)
length(unique(days)) < N

}

haveCommon ()
[1] FALSE
haveCommon ()
[1] FALSE
haveCommon ()
[1] TRUE
haveCommon ()

[1] TRUE

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Law of Large Numbers

@ With enough replications, sample proportion should converge to probability
@ Do this sytematically:
replicate (100, haveCommon())

[1] FALSE FALSE FALSE TRUE FALSE FALSE TRUE TRUE TRUE FALSE TRUE FAL
[20] TRUE FALSE TRUE TRUE TRUE FALSE FALSE TRUE FALSE FALSE FALSE TR
[39] TRUE FALSE FALSE TRUE TRUE FALSE TRUE FALSE FALSE TRUE TRUE FAL
[68] TRUE FALSE TRUE FALSE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FAL
[77] FALSE TRUE TRUE FALSE FALSE FALSE TRUE FALSE TRUE FALSE FALSE FAL
[96] FALSE TRUE FALSE FALSE FALSE

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Law of Large Numbers

@ With enough replications, sample proportion should converge to probability

plot(cumsum(replicate (1000, haveCommon())) / 1:1000, type = "1")
lines(cumsum(replicate (1000, haveCommon())) / 1:1000, col = "red")
lines(cumsum(replicate (1000, haveCommon())) / 1:1000, col = "blue")

04

1:1000

0.3
1

1000, haveC

0.2
I

0.1

0 200 400 600 800 1000

Index

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

A more serious example: climate change

Year
Temp
COo2
CH4

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

nge in temperature (global average deviation) since 1851

library(lattice)
xyplot(Temp ~ Year, data = globalTemp, grid = TRUE)

o

0.4

0.2

0.0 1 o af °

Temp

-0.24

-0.4 4 o

-0.6

: !
1950 2000
Year

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Change in atmospheric carbon dioxide

xyplot (CO2 ~ Year, data = globalTemp, grid = TRUE)
380
360
Y
Q 3404
(@]
320
s
“\f},ﬁ”}
H(‘JI(}H,,,,
W%M‘»‘JM‘»H‘HHHUH
N ﬂ‘ﬂUUU\'LUI)'»Z’u X
(X Z,ﬂ,ﬂ,ﬂi 15
oooooonot e o
1900 1950 L

Year

Deepayan Sarkar (ISI Delhi)

An overview of the R programmi

Does change in CO5 explain temperature rise?

xyplot(Temp ~ CO02, data

globalTemp, grid = TRUE, type

C("p", "I‘")) # in

0.4

0.2

-0.29

-0.4

-0.6

T T
340 360

CO2

T
320

T
380

Deepayan Sarkar (ISI Delhi)

An overview of the R programming environment

Fitting the regression model

fm = Im(Temp ~ 1 + C02, data = globalTemp)
coef (fm) # estimated regression coefficients

(Intercept) co2
-2.836082117 0.008486628

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Fitting the regression model

fm = Im(Temp ~ 1 + C02, data = globalTemp)
coef (fm) # estimated regression coefficients

(Intercept) co2
-2.836082117 0.008486628

We can confirm using a general optimizer:

SSE = function(beta)
{
with(globalTemp,
sum((Temp - betal[l] - beta[2] * C02)°2))
}
optim(c(0, 0), fn = SSE)

$par
[1] -2.836176636 0.008486886

$value
[1] 2.210994

$counts
function gradient

Q AA
Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Fitting the regression model

@ 1m() gives exact solution and more statistically relevant details

summary (fm)

Call:
Im(formula = Temp ~ 1 + C02, data = globalTemp)

Residuals:
Min 1Q Median 3Q Max
-0.28460 -0.09004 -0.00101 0.08616 0.35926

Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -2.8360821 0.1145766 -24.75 <2e-16
co2 0.0084866 0.0003602 23.56 <2e-16

Residual standard error: 0.1218 on 149 degrees of freedom
Multiple R-squared: 0.7884, Adjusted R-squared: 0.787
F-statistic: 555.1 on 1 and 149 DF, p-value: < 2.2e-16

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Changing the model-fitting criteria

@ Suppose we wanted to minimize sum of absolute errors instead of sum of squares
@ No closed form solution any more, but general optimizer will still work:

SAE = function(beta)

{
with(globalTemp,
sum(abs (Temp - betal[1] - betal[2] * C02)))
}
opt = optim(c(0, 0), fn = SAE)
opt
$par

[1] -2.832090898 0.008471257

$value

[1] 14.5602

$counts

function gradient
123 NA

$convergence

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Changing the model-fitting criteria

@ Compare with least squares line
coef(fm) # least squared errors

(Intercept) €02
-2.836082117 0.008486628

opt$par # least absolute errors
[1] -2.832090898 0.008471257
@ The two lines are virtually identical in this case

@ This is not always true

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Another example: number of phone calls per year in Belgium

data(phones, package = "MASS")
xyplot(calls ~ year, data = phones, grid = TRUE)

200 r

150 - F

calls

100 r

50 4 r

50 55 60 65 70
year

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Another example: number of phone calls per year in Belgium

fm2 <- 1m(calls ~ year, data = phones)
SAE = function(beta)
{
with(phones,
sum(abs(calls - betal[1] - beta[2] * year)))
}
opt = optim(c(0, 0), fn = SAE)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Another example: number of phone calls per year in Belgium

fm2 <- 1m(calls ~ year, data = phones)
SAE = function(beta)
{
with(phones,
sum(abs(calls - betal[1] - beta[2] * year)))
}
opt = optim(c(0, 0), fn = SAE)

coef (fm2) # least squared errors

(Intercept) year
-260.059246 5.041478

opt$par # least absolute errors
[1] -66.053297 1.353735
@ The two lines are quite different

@ The second line is an example of robust regression

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Another example: number of phone calls per year in Belgium

xyplot(calls ~ year, data =
panel = function(x, vy,
panel.xyplot(x, vy,

)

phones, grid = TRUE,
oo f

panel.abline(fm2, col = "red") # least squared errors
panel.abline(opt$par, col = "blue") # least absolute errors

b

200 A r

150 1 B H

calls
\
\
\
\
\
\

100 4 P L

year

Deepayan Sarkar (ISI Delhi)

An overview of the R programming environment

Summary

o Conventional statistical learning focuses on problems that can be “solved” analytically

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Conventional statistical learning focuses on problems that can be “solved” analytically
@ Numerical solutions are also valid solutions. .. but potentially difficult to obtain

@ R makes it easy to obtain numerical solutions and compare with traditional solutions

We will come back to this idea when we next discuss the origins of R

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

A very brief history of R

Deepayan Sarkar (ISI Delhi) An overview of the R programmi

What is R?

From its own website:
R is a free software environment for statistical computing and graphics.

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

From its own website:
R is a free software environment for statistical computing and graphics.
It is a GNU project which is similar to the S language and environment which
was developed at Bell Laboratories (formerly AT&T, now Lucent Technologies)
by John Chambers and colleagues. R can be considered as a different
implementation of S.

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

The origins of S

@ Developed at Bell Labs (statistics research department) 1970s onwards

@ Primary goals
o Interactivity: Exploratory Data Analysis vs batch mode
o Flexibility: Novel vs routine methodology

o Practical: For actual use, not (just) academic research

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

The origins of S

@ Developed at Bell Labs (statistics research department) 1970s onwards

@ Primary goals
o Interactivity: Exploratory Data Analysis vs batch mode
o Flexibility: Novel vs routine methodology

o Practical: For actual use, not (just) academic research

John Chambers received the prestigious ACM Software System Award in 1998

For The S system, which has forever altered how people analyze, visualize, and
manipulate data.

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

The origins of R

o Early 1990s: Started as teaching tool by Robert Gentleman & Ross Ihaka at the
University of Auckland

@ 1995: Convinced by Martin Méchler to release as Free Software (GPL)
@ 2000: Version 1.0 released

Has since far surpassed S in popularity

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Number of R packages on CRAN

12000 ot

10000 =

8000 -

[ele)

pkgs

6000 - r

4000 - = H

2000 -

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Why the success? The user's perspective

@ R is designed for data analysis

o Basic data structures are vectors
o Large collection of statistical functions
o Advanced statistical graphics capabilities

@ The vast majority of R users use it as a statistical toolbox
@ R “base” comes with a large suite of statistical modeling and graphics functions

o If these are not enough, more than 10000 add-on packages are available

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

The developer's perspective

o Easy dissemination of research (through add-on packages)
@ Rapid prototyping
o Interfaces to external software

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Rapid prototyping

John Chambers, Programming with Data:

S is a programming language and environment for all kinds of computing
involving data. It has a simple goal: To turn ideas into software, quickly and
faithfully.

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Rapid prototyping

John Chambers, Programming with Data:

S is a programming language and environment for all kinds of computing
involving data. It has a simple goal: To turn ideas into software, quickly and
faithfully.

A silly example: generate Fibonacci sequence

fibonacci <- function(n) {

if (n < 2)

x <- seq(length = n) - 1
else {

x <- c(0, 1)

while (length(x) < n) {
x <- c(x, sum(tail(x, 2)))
}
}
X
}
fib10 <- fibonacci(10)
fib10

[1] 0 1 1 2 3 5 8 13 21 34

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Also easy to call C for efficiency

File fib.c:

#include <Rdefines.h>

SEXP fibonacci_c(SEXP nr)

{
int i, n = INTEGER_VALUE(nr);
SEXP ans = PROTECT(NEW_INTEGER(n));
int *x = INTEGER_POINTER(ans);
x[0] = 0; x[1] = 1;
for (i = 2; i < n; i++) x[i] = x[i-1] + x[i-2];
UNPROTECT (1) ;
return ans;
}

Compile into shared library:
$ R CMD SHLIB fib.c
Load into R and call:

dyn.load("fib.so")
cfib10 = .Call("fibonacci_c", as.integer(10))
cfibl0

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Even easier to call C++ with Rcpp package

File £ib. cpp:

#include <Rcpp.h>
using namespace Rcpp;

// [[Repp: :export]]
NumericVector fibonacci_cpp(int n)

{
NumericVector x(n);
x[0] = 0; x[1] = 1;
for (int i = 2; i < n; i++) x[i] = x[i-1] + x[i-2];
return x;
}

Compile and call:

Rcpp: :sourceCpp("fib.cpp")
fibonacci_cpp(10)

[1] 0 1 1 2 3 5 81321 34

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Rapid prototyping: flexibility and extensibility

@ Powerful built-in tools
o Programming language

o Compiled code for efficiency

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Another strength: Interfaces

o Not all useful software developed by R community

o Core open source philosophy: code re-use

Creating interfaces with external software is relatively easy

Example: Keras / TensorFlow

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Keras

@ Deep learning framework based on TensorFlow

@ R interface through package keras

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

https://blog.rstudio.com/2017/09/05/keras-for-r/

Example: classify handwritten digits

library(keras)

mnist <- dataset_mnist()

x_train <- mnist$train$x # each sample is a 28228 grayscale image
y_train <- mnist$train$y # correct classification (0,1,2,...,9)
x_test <- mnist$testdx

y_test <- mnist$test$y

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Example: classify handwritten digits

library(keras)

mnist <- dataset_mnist()

x_train <- mnist$train$x # each sample is a 28228 grayscale image
y_train <- mnist$train$y # correct classification (0,1,2,...,9)
x_test <- mnist$testdx

y_test <- mnist$test$y

xtrain.100 <- as.data.frame.table(x_train[1:100,,])
levelplot(Freq ~ Var3 + Var2 | Varl, data = xtrain.100, strip = FALSE, scal
ylim = c(28, 1), colorkey = FALSE, col.regions = rev(grey.colors(

SO /g2 V3 #3373 F6lsMa|7//4
2413273 P 6205603 0187939354.\3
30|12/ #1780 9 4 /18 #6864 56100817)63
0121/1)17181803&6789 046246570783/

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Transform data

@ Reshape data (to vector) and rescale

reshape each 28z28 image matrix to 784-vector
dim(x_train) <- c(arow(x_train), 784)
dim(x_test) <- c(arow(x_test), 784)

rescale grayscale wvalues (0-225) to (0,1)
X_train <- x_train / 255
x_test <- x_test / 255

y_train <- to_categorical(y_train, 10)
y_test <- to_categorical(y_test, 10)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Define model

o A Keras model is a way to organize layers
o Define a sequential model (a linear stack of layers)

model <- keras_model_sequential()

layer_dense(model, units = 256, activation = "relu", input_shape = c(784))
layer_dropout (model, rate = 0.4)

layer_dense(model, units = 128, activation = "relu")

layer_dropout (model, rate = 0.3)

layer_dense(model, units = 10, activation = "softmax")

summary (model)

Layer (type) Output Shape
dense_1 (Dense) (None, 256)
dropout_1 (Dropout) (None, 256)

dense_2 (Dense) (None, 128)

An overview of the R programming environment

Compile and train model

compile(model,
loss = '"categorical_crossentropy",
optimizer = optimizer_rmsprop(),
metrics = c("accuracy"))
history <- fit(model,
X_train, y_train,
epochs = 30, batch_size = 128,
validation_split = 0.2)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Evaluate model

p <- plot(history)

04

05+

N\

8

02- o

01 . - - "

IEScs S D
& - 4 data
=~ trainin
089+ °
A ey - valdation
= —
o o 5

096- -
8 o093
8

050-

087- .

o 5 10 15 20 B B
epoch

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Results on test data

pred_class <- predict_classes(model, x_test)
pred_class[1:20]

[11 72104149590690159734
y_test[1:20,]

[,11 [,2] (,3] [,4]1 (,8] [,6]1 [,71 [,8] [,9] [,10]
[1,] 0 0 0 0 0 0 0 1 0
[2,]
[3,]
[4,]
[5,]
[6,]
[7,1
[8,]
[9,]
[10,]
[11,]
[12,]
[13,]
[14,]
[15,]

P O OFr OO0OO0OO0OO0OOr OoOOo
O O O OO O0OO0OO0OmFr OO O
O OO O O OO O0OO OO O O =
O OO O O OO0 O OO O OoOOo
O OO OO O0OO0OHFr O OOoOOo
O OO OO OO O0OO0OO0oOOoOOo
OO P, OO O OO0 O0OO0oOOoOOo
O OO O OO OO0 O0OOoO oo
O OO O OO0 O0OO OO O OO o
OO OOFrP,rOFr OOOOOoOOoOOo

o
[
o
o
o
o

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Misclassification rate in test data

ctab <- table(pred_class, apply(y_test, 1, which.max)-1)
ctab

pred_class 0 1 2 3 4 5 6 7 8 9
0 971 0 2 0 0 2 4 3 4 5
1 1 1126 2 0 1 0 3 3 3 2
2 2 3 1020 4 4 0 0 8 3 1
3 0 0 0 987 0 2 1 1 5 5
4 0 0 1 0 957 0 3 0 1 9
5 2 1 0 9 0 877 3 0 5 4
6 2 2 0 0 5 5 943 0 1 0
7 1 0 4 6 2 1 0 1009 3 4
8 1 3 3 2 1 4 1 1 947 2
9 0 0 0 2 12 1 0 3 2 977

sum(diag(ctab)) / sum(ctab)
[1] 0.9814

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

Another interface: plotly

@ Plotly: a Javascript library for visualization
@ R interface provided by the plotly R package

library(plotly)
ggplotly(p)

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

More HTML-based applications

o DataTable (plug-in for jQuery) - example earlier
o HTML widgets
@ Shiny Apps

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

https://datatables.net/
http://www.htmlwidgets.org/
https://shiny.rstudio.com/

Parting comments: reproducible documents

o Creating reports / presentations with numerical analysis is usually a two-step process:

o Do the analysis using a computational software
o Write report in a word processor, copy-pasting results

@ R makes it very convenient to write “literate documents” that contain both analsyis
code and report text

@ Basic idea:

o Start with source text file containing code+text

e Transform file by running code and embedding results
o Produces another text file (LaTeX, HTML, markdown)
o Processed further using standard tools

o Example: this presentation is created from this source file (R Markdown) using knitr
and pandoc

@ As the source format is markdown, output could also be PDF instead of HTML

Deepayan Sarkar (ISI Delhi) An overview of the R programming environment

roverview.rmd
https://yihui.name/knitr/
http://pandoc.org/

	A very brief history of R

