
AN INTRODUCTION TO R

DEEPAYAN SARKAR

In this tutorial session, we will learn about one of the strongest features of R, its graphics facilities. There
are two distinct graphics systems built into R, referred to as traditional and grid graphics. Other packages
provide further functionality. We will first discuss traditional graphics.

Traditional R graphics

R’s graphics system is actually fairly complicated, with many features that are rarely used. Instead of
going into details immediately, we will learn about R graphics by looking at some examples.

Plotting functions in R can be divided into three basic groups: High-level plotting functions create a new
plot on the graphics device, possibly with axes, labels, titles and so on. Low-level plotting functions add
more information to an existing plot, such as extra points, lines and labels. Interactive graphics functions
allow you interactively add information to, or extract information from, an existing plot, using a pointing
device such as a mouse. In addition, R maintains a list of graphical parameters that affect the result of
various plot functions.

The plot() function. The Generic plot() function can deal with the task of plotting several types of R
objects. The most common use is to plot single or paired numeric vectors.

> x <- runif(100, min = 1, max = 5)

> y <- x^2 + runif(100)

> plot(x, main = "Plot of x against index 1, 2, ..., length(x)")

0 20 40 60 80 100

1
2

3
4

5

Plot of x against index 1, 2, ..., length(x)

Index

x

> plot(x, y, main = "Bivariate 'scatter plot' of y vs x")

Date: November 2015.

1

2 DEEPAYAN SARKAR

1 2 3 4 5

5
10

15
20

25
Bivariate 'scatter plot' of y vs x

x

y

We can also create a single list object with components x and y, and plot it directly. This technique is used
in many R functions.

> z1 <- list(x = x, y = y)

> plot(z1)

1 2 3 4 5

5
10

15
20

25

z1$x

z1
$y

AN INTRODUCTION TO R 3

Many variations on the basic plot are possible.

> plot(z1, type = "l")

1 2 3 4 5

5
10

15
20

25

z1$x

z1
$y

As the points are not in any particular order, this is all jumbled up. To plot the points in increasing order
of x, we can use

> ord <- order(x)

> z2 <- list(x = x[ord], y = y[ord])

> plot(z2, type = "l") # lines

1 2 3 4 5

5
10

15
20

25

z2$x

z2
$y

> plot(z2, type = "o") # points and lines overlayed

4 DEEPAYAN SARKAR

1 2 3 4 5

5
10

15
20

25

z2$x

z2
$y

> plot(z2, type = "s") # steps

1 2 3 4 5

5
10

15
20

25

z2$x

z2
$y

AN INTRODUCTION TO R 5

> plot(z2, type = "h") # histogram-like

1 2 3 4 5

5
10

20

z2$x

z2
$y

A special value of type is type="n" which sets up the appropriate axis limits but does not actually plot
anything. This is useful for subsequently adding pieces to the plot. In the following example, we add a
reference grid and a curve representing the dependence of y on x before plotting the points.

> plot(z2, type = "n")

> grid(lty = 1, lwd = 2)

> curve(x^2, col = "blue", add = TRUE)

> curve(x^2 + 1, col = "blue", add = TRUE)

> points(z2, pch = 16)

1 2 3 4 5

5
10

20

z2$x

z2
$y

Axis limits are automatically determined to encompass the range of all the data, but can be overridden by
specifying arguments xlim and ylim.

6 DEEPAYAN SARKAR

It is common to use log-scales on one or both axes.

1 2 3 4 5

5
10

15
20

25

plot(z2, log = "x")

z2$x

z2
$y

1 2 3 4 5

2
5

10
20

plot(z2, log = "xy")

z2$x
z2

$y

Graphical parameters. There are several standard graphical parameters that can be controlled by extra
arguments to plot functions. These include color (argument col), plotting character (pch), size factor or
character expansion (cex), line type (lty), and line width (lwd). These parameters usually operate in a
vectorized manner. Examples:

> plot(z2, type = "o", col = 'red', pch = 16, cex = 2)

> plot(z2, col = c('red', 'blue'), pch = "+", cex = 2)

Exercise 1. Usage of these graphical parameters are described in these two help pages: ?plot.default

and ?par. Read them and modify the previous commands to obtain different colors, plotting characters, line
types, etc.

The ?par help page is quite extensive and contains a lot of information. Skip the irrelevant entries on the
first reading, but you should read it in more detail later to learn more about the available features.

Colors. There are several ways to specify color in R. They can be specified as a descriptive name ("red",
"grey", etc. The full list of available names is produced by

> colors()

A few of these colors can be set as a “palette” and their elements specified by integer codes.

> palette() ## default palette

[1] "black" "red" "green3" "blue" "cyan" "magenta" "yellow"

[8] "gray"

> palette(sample(colors(), 10)) ## change palette

> plot(runif(50), col = rep(1:10, each = 5), pch = 16, cex = 2)

AN INTRODUCTION TO R 7

0 10 20 30 40 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Index

ru
ni

f(
50

)

Other functions that can be used to specify colors are gray() (for gray-levels) and rgb() (arbitrary colors
as RGB triplets).

Other useful arguments that almost all high-level plot functions have are xlab, ylab, main, and sub. These
are all used to annotate the plot by adding labels, titles, and sub-titles. They can also be added after a plot
has been created using the title() function.

Non-default plot methods. So far, we have only used the default plot method. There are several other
plot types which can be produced by the plot() function, depending on what object is being plotted.

> ## create a grouping variable of length 100

> a <- factor(sample(1:5, 100, replace = TRUE), levels = 1:5)

> a

[1] 5 5 1 1 4 1 1 4 3 4 5 2 5 1 3 3 4 5 3 2 1 4 3 1 1 4 2 2 1 2 1 2 1 1 5 5 2

[38] 1 4 3 1 1 5 2 2 5 5 2 3 1 1 1 3 1 1 5 4 2 4 3 3 1 4 4 5 2 4 3 2 5 2 5 1 3

[75] 4 2 2 4 3 4 4 5 2 1 2 3 5 2 4 1 5 4 3 3 4 4 5 1 3 3

Levels: 1 2 3 4 5

> levels(a) <- LETTERS[1:5]

> a

[1] E E A A D A A D C D E B E A C C D E C B A D C A A D B B A B A B A A E E B

[38] A D C A A E B B E E B C A A A C A A E D B D C C A D D E B D C B E B E A C

[75] D B B D C D D E B A B C E B D A E D C C D D E A C C

Levels: A B C D E

> plot(a)

8 DEEPAYAN SARKAR

A B C D E

0
5

10
15

20
25

Formula methods. An important theme in R is the use of a formula language for expressing various
relationships. It is used most commonly for statistical modeling, but is also widely used for graphics. In the
following example, the variable on the horizontal axis is categorical, so the resulting plot is a
box-and-whisker plot. If both variables had been numeric, the result would have been a scatterplot.

> plot(y ~ a)

A B C D E

5
10

20

a

y

See ?formula for a formal description of formula objects; we will see more of them later.

Data frames. The plot() method for“data.frame”objects produces a scatterplot matrix, a matrix of all
pairwise bivariate scatterplots.

> plot(iris)

AN INTRODUCTION TO R 9

Sepal.Length

2.
0

2.
5

3.
0

3.
5

4.
0

0.
5

1.
0

1.
5

2.
0

2.
5

4.5 5.5 6.5 7.5

2.0 3.0 4.0

Sepal.Width

Petal.Length

1 2 3 4 5 6 7

0.5 1.5 2.5

Petal.Width

4.
5

5.
5

6.
5

7.
5

1
2

3
4

5
6

7

1.0 1.5 2.0 2.5 3.0

1.
0

1.
5

2.
0

2.
5

3.
0

Species

> plot(iris[1:4], col = as.numeric(iris$Species)) # color by Species

10 DEEPAYAN SARKAR

Sepal.Length

2.
0

2.
5

3.
0

3.
5

4.
0

4.5 5.5 6.5 7.5

0.
5

1.
0

1.
5

2.
0

2.
5

2.0 2.5 3.0 3.5 4.0

Sepal.Width

Petal.Length

1 2 3 4 5 6 7

0.5 1.0 1.5 2.0 2.5

4.
5

5.
5

6.
5

7.
5

1
2

3
4

5
6

7

Petal.Width

AN INTRODUCTION TO R 11

Functions. Functions of one variable can be plotted using the plot.function() method.

> plot(sin, from = -2 * pi, to = 2 * pi)

−6 −4 −2 0 2 4 6

−
1.

0
0.

0
1.

0

x

si
n

> damped.sin <- function(x) sin(5 * x) * exp(-x^2) ## New function

> plot(damped.sin, from = -pi, to = pi)

−3 −2 −1 0 1 2 3

−
0.

5
0.

5

x

da
m

pe
d.

si
n

Other common high-level graphics functions. So far, we have only discussed the catch-all generic
plot() function, but there are many high-level functions for specific types of displays. We have already
seen the output produced by some of them, as they are used by the plot() generic when appropriate.

Exercise 2. Use the following functions to reproduce the corresponding plots shown above. Feel free to look
at documentation and examples if necessary.

• pairs(): scatterplot matrix
• barplot(): bar plots
• boxplot()’: box-and-whisker plots
• curve(): function plots

Bar plots. barplot() can be used to explicitly produce bar plots.

> data(VADeaths)

> barplot(VADeaths, beside = TRUE,

col = c("lightblue", "mistyrose", "lightcyan", "lavender", "cornsilk"),

12 DEEPAYAN SARKAR

legend.text = rownames(VADeaths), ylim = c(0, 80))

> title(main = "Death Rates in Virginia", font.main = 4)

Rural Male Rural Female Urban Male Urban Female

50−54
55−59
60−64
65−69
70−74

0
20

40
60

80

Death Rates in Virginia

Exercise 3. Modify the call above to improve legend positioning, so that it does not overlap the bars.

The return value of barplot() can be useful, and plotting can be suppressed if one is only interested in the
return value.

> barplot(VADeaths, plot = FALSE)

[1] 0.7 1.9 3.1 4.3

> barplot(VADeaths, plot = FALSE, beside = TRUE)

[,1] [,2] [,3] [,4]

[1,] 1.5 7.5 13.5 19.5

[2,] 2.5 8.5 14.5 20.5

[3,] 3.5 9.5 15.5 21.5

[4,] 4.5 10.5 16.5 22.5

[5,] 5.5 11.5 17.5 23.5

Box and whisker plots and histograms. The same is true for boxplot(), which produces box-and-whisker
plots, and hist(), which produces histograms.

> bxp.stats <- with(airquality, boxplot(Ozone ~ factor(Month)))

> bxp.stats

$stats

[,1] [,2] [,3] [,4] [,5]

[1,] 1 12 7 9 7

[2,] 11 20 35 28 16

[3,] 18 23 60 52 23

[4,] 32 37 80 84 36

[5,] 45 39 135 168 47

attr(,"class")

5

"integer"

AN INTRODUCTION TO R 13

$n

[1] 26 9 26 26 29

$conf

[,1] [,2] [,3] [,4] [,5]

[1,] 11.49287 14.04667 46.05614 34.64764 17.13203

[2,] 24.50713 31.95333 73.94386 69.35236 28.86797

$out

[1] 115 71 96 78 73 91

$group

[1] 1 2 5 5 5 5

$names

[1] "5" "6" "7" "8" "9"

5 6 7 8 9

0
50

10
0

15
0

factor(Month)

O
zo

ne

> h <- hist(airquality$Ozone)

> str(h)

List of 6

$ breaks : num [1:10] 0 20 40 60 80 100 120 140 160 180

$ counts : int [1:9] 37 34 14 15 9 4 2 0 1

$ density : num [1:9] 0.01595 0.01466 0.00603 0.00647 0.00388 ...

$ mids : num [1:9] 10 30 50 70 90 110 130 150 170

$ xname : chr "airquality$Ozone"

$ equidist: logi TRUE

- attr(*, "class")= chr "histogram"

14 DEEPAYAN SARKAR

Histogram of airquality$Ozone

airquality$Ozone

F
re

qu
en

cy

0 50 100 150

0
10

20
30

Low level functions. High-level graphics functions produce basic versions of common statistical graphs,
but often we want to fine-tune them in different ways to get something more relevant to our purposes. The
standard practice in traditional R graphics is to incrementally add components to an existing graph. The
functions to do this are called low-level functions — distinguished by the fact that they don’t create new
plots themselves. In particular, they use the co-ordinate system from the existing graph. The most
commonly used ones are lines(), points(), and text().

A common use of this feature is to add a representation of some statistical model fit using the data. For
example, the following shows a LOWESS curve (a non-parametric regression method).

> plot(x, y)

> lws.fit <- lowess(x, y)

> str(lws.fit)

List of 2

$ x: num [1:100] 1.01 1.1 1.18 1.21 1.36 ...

$ y: num [1:100] 0.485 0.876 1.185 1.314 1.954 ...

> lines(lws.fit, col = "black")

AN INTRODUCTION TO R 15

1 2 3 4 5

5
10

15
20

25

x

y

Recall that plot() can be used to plot a list with components x and y. The same is true for lines() etc.
We have used the fact that lowess() returns a list suitable for this purpose.

A simpler and more common example is to fit and plot a linear regression to the data (which is of course
not appropriate in this case).

> plot(x, y)

> abline(lm(y ~ x))

1 2 3 4 5

5
10

15
20

25

x

y

We will learn about lm() in another tutorial. abline() can also draw various kinds of pre-defined (as
opposed to data-dependent) straight lines, and curve() (already seen earlier) can draw mathematical
curves.

16 DEEPAYAN SARKAR

Shading and Polygons. Arbitrary geometric shapes can be drawn and shaded using polygon(). For
example, the following code draws the histogram from a normal random sample, adds the standard normal
density curve and shades the area under the normal curve between 1 and 4.

> nrm <- rnorm(1000) ## simulation from standard normal

> hist(nrm, freq = FALSE)

> curve(dnorm, add = TRUE)

> ## shade area between 1 and 4

> tt <- seq(from = 1, to = 4, length = 30)

> dtt <- dnorm(tt)

> polygon(x = c(1, tt, 4), y = c(0, dtt, 0), col = "gray")

Histogram of nrm

nrm

D
en

si
ty

−4 −3 −2 −1 0 1 2 3

0.
0

0.
1

0.
2

0.
3

0.
4

Interacting with plots. Standard R graphics has some very basic support for interaction, mainly
through the functions locator() and identify().

> plot(x, y)

> ## left-click to select points, right-click to stop

> identify(x, y)

> ## click on 5 points to make a polygon out of them

> polygon(locator(5))

There are interfaces to external software with better interaction facilities.

AN INTRODUCTION TO R 17

Visualizing three-dimensional (matrix) data. Traditional R graphics has some functions to visualize
three-dimensional surfaces represented in the form of a matrix.

> str(volcano) ## heights of a volcano in New Zealand

num [1:87, 1:61] 100 101 102 103 104 105 105 106 107 108 ...

> par(mfrow = c(1, 2)) ## multiple plots in a page

> image(volcano)

> contour(volcano)

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
4

0.
8

 100

 100

 110
 110

 110

 110

 120

 130
 140

 150

 160

 160

 170

 180

 190

0.0 0.2 0.4 0.6 0.8 1.0
0.

0
0.

4
0.

8

> ## Perspective Plots

> persp(volcano, theta = 30, phi = 30, expand = 0.5)

volcano

Y
Z

18 DEEPAYAN SARKAR

Further exploration. For further study, consult the various help pages in the graphics package; see

> library(help = graphics)

Weaknesses of traditional graphics. The traditional graphics model is considerably limited by its
design. A basic assumption in the approach is that there will be a single figure area in the center with a
single coordinate system, and margins will be used for axis annotation and labels. Not all graphical designs
fit into this paradigm.

One example is a graphical design known as “small multiples” or “conditioned plots”, where one page
contains multiple plots grouped by some categorical variable. Here is a very poor attempt to implement
such a design using traditional graphics.

> par(mfrow = c(2, 3))

> s <- with(airquality,

split(Ozone, factor(Month, levels = 1:12, labels = month.name)))

> s <- s[sapply(s, length) > 0]

> str(s)

List of 5

$ May : int [1:31] 41 36 12 18 NA 28 23 19 8 NA ...

$ June : int [1:30] NA NA NA NA NA NA 29 NA 71 39 ...

$ July : int [1:31] 135 49 32 NA 64 40 77 97 97 85 ...

$ August : int [1:31] 39 9 16 78 35 66 122 89 110 NA ...

$ September: int [1:30] 96 78 73 91 47 32 20 23 21 24 ...

> invisible(lapply(s, hist, freq = FALSE))

Histogram of X[[i]]

X[[i]]

D
en

si
ty

0 20 40 60 80 100 120

0.
00

0
0.

01
5

0.
03

0

Histogram of X[[i]]

X[[i]]

D
en

si
ty

10 20 30 40 50 60 70 80

0.
00

0
0.

02
0

Histogram of X[[i]]

X[[i]]

D
en

si
ty

0 20 40 60 80 120

0.
00

0
0.

00
8

Histogram of X[[i]]

X[[i]]

D
en

si
ty

0 50 100 150

0.
00

0
0.

00
8

Histogram of X[[i]]

X[[i]]

D
en

si
ty

0 20 40 60 80 100

0.
00

0
0.

01
5

Exercise 4. Reproduce the following plot, which is a modification of the previous plot, but with the same
axis limits in each sub-plot, better labels, and more efficient use of available space. For the last requirement,
you will need to use a par() setting we have not yet encountered.

AN INTRODUCTION TO R 19

May

Ozone

0 50 100 150

0.
00

0
0.

01
0

0.
02

0
0.

03
0

June

Ozone
D

en
si

ty

0 50 100 150

0.
00

0
0.

01
0

0.
02

0
0.

03
0

July

Ozone

D
en

si
ty

0 50 100 150

0.
00

0
0.

01
0

0.
02

0
0.

03
0

August

0 50 100 150

0.
00

0
0.

01
0

0.
02

0
0.

03
0

September
D

en
si

ty

0 50 100 150

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Do not worry if you cannot get everything right; the main point of this exercise is to show that
implementing such designs is difficult with traditional graphics. In the next tutorial we will learn about a
different high-level graphics system called lattice. Try the following code to get a preview of the kind of
plots lattice can produce.

> library(lattice)

> airquality$fmonth <- factor(airquality$Month, levels = 1:12, labels = month.name)

> histogram(~Ozone | fmonth, data = airquality)

Exercise 5. Histograms are “density estimators”, in the sense that they estimate the unknown probability
density of the variable being plotted. A more sophisticated and computer-intensive method for the same
purpose is Kernel density estimation, which can be performed using the density() function; for example,
try plot(density(airquality£Ozone, na.rm = TRUE)). Your exercise is to plot superposed density
estimates of Ozone by month, to produce a plot similar to the following. Your first step could be to compute
the per-group densities using dlist <- lapply(s, density, na.rm = TRUE)

20 DEEPAYAN SARKAR

−50 0 50 100 150 200

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Ozone concentration

D
en

si
ty

May
June
July
August
September

Grid graphics

Grid graphics is a more flexible low-level graphics toolbox. It does not provide high-level functions itself,
but other packages use it to provide them; most notably the lattice and ggplot2 packages. The only real
drawback of grid is that it is slower than traditional graphics, and not all traditional plots have a
replacement using Grid graphics.
We will not go into the details of grid, as it is a considerable topic. Instead, we will just give a glimpse of
its flexibility using a practical example. Our goal is to implement an enhanced scatter plot with the
following features:

• Regular scatter plot showing bivariate relation
• “Rug” on left/bottom showing marginal scatter
• Density estimate on right/top

This is a simple design, but difficult with standard graphics.

1 2 3 4 5

40

50

60

70

80

90

100

T
im

e
to

 n
ex

t e
ru

pt
io

n

Eruption time (minutes)

Old faithful eruptions

AN INTRODUCTION TO R 21

Viewports. Viewports are a central concept in Grid graphics. They are essentially rectangular subregions
of the plotting area. They can be nested within other viewports, forming a tree of viewports. The initial
blank graphics area is the ROOT viewport. New viewports can be defined relative to parent either by
positioning, or in terms of a layout.

Viewports are created by the viewport() function, and made active by pushViewport(). upViewport()
goes up along the viewport tree.

> grid.rect(gp = gpar(fill = 'lightgrey'))

> pushViewport(viewport(x = 0.25, y = 0.3, width = 0.1, height = 0.5))

> grid.rect(gp = gpar(fill = 'yellow'))

When creating a viewport, we can specify a native coordinate system for it.

> grid.rect(gp = gpar(fill = 'lightgrey'))

> pushViewport(viewport(x = 0.5, y = 0.5,

width = 0.75, height = 0.75,

xscale = c(-3.5, 3.5),

yscale = c(0, 10)))

> grid.xaxis()

> grid.yaxis()

−3 −2 −1 0 1 2 3

0

2

4

6

8

10

Units. Another fundamental concept is that of units of length. Grid can specify lengths in various ways.

22 DEEPAYAN SARKAR

"native" Native coordinates
"npc" Normalized Parent Coordinates
"snpc" ‘Square’ NPC
"inches", "cm", absolute lengths
"points", etc.
"char" Character size (depends on font details)
"lines" Height of a lines of text
"strwidth", Width or height of a string
"strheight"

"grobwidth", Width or height of
"grobheight" a ‘grid object’ (details later)

Primitives. Low-level functions in traditional graphics have analogs in grid. There are two versions of
each function, one that produces output, and one that produces an object without actually plotting it.
These objects can be queried to determine their height and width, so that appropriate space can be
allocated for them.

Type Function producing Function producing
output object

Points grid.points pointsGrob

Lines grid.lines linesGrob

Text grid.text textGrob

Rectangles grid.rect rectGrob

Circles grid.circle circleGrob

Polygons grid.polygon polygonGrob

Segments grid.segments segmentsGrob

X-axis grid.xaxis xaxisGrob

Y-axis grid.yaxis yaxisGrob

Arrows grid.arrows arrowsGrob

First attempt. The data we have plotted is from the faithful dataset, which contains eruption times and
inter-eruption intervals lengths for the famous Old Faithful geyser in the USA. We first perform some
relevant computations.

> str(faithful)

'data.frame': 272 obs. of 2 variables:

$ eruptions: num 3.6 1.8 3.33 2.28 4.53 ...

$ waiting : num 79 54 74 62 85 55 88 85 51 85 ...

> x <- faithful$eruptions

> y <- jitter(faithful$waiting)

> xrng <- range(x)

> yrng <- range(y)

> xlim <- xrng + 0.05 * c(-2, 1) * diff(xrng)

> ylim <- yrng + 0.05 * c(-2, 1) * diff(yrng)

> xdens <- density(x)

> ydens <- density(y)

> xdens.max <- max(xdens$y)

> ydens.max <- max(ydens$y)

>

We can now use these to make a first attempt at our desired plot.

> pushViewport(viewport(x = 0.45, y = 0.45, width = 0.7, height = 0.7,

xscale = xlim, yscale = ylim))

> grid.points(x, y, default.units = "native")

AN INTRODUCTION TO R 23

> grid.rect()

> grid.xaxis()

> grid.yaxis()

> grid.segments(x0 = unit(x, "native"), y0 = unit(0, "npc"),

x1 = unit(x, "native"), y1 = unit(0.03, "npc"))

> grid.segments(x0 = unit(0, "npc"), y0 = unit(y, "native"),

x1 = unit(0.03, "npc"), y1 = unit(y, "native"))

2 3 4 5

40

50

60

70

80

90

To this, we can add the densities by creating two new viewports and plotting the densities inside.

> upViewport(1)

> pushViewport(viewport(x = 0.45, y = 0.90, width = 0.7, height = 0.17,

xscale = xlim, yscale = c(0, xdens.max),

clip = "on"))

> grid.polygon(x = xdens$x, y = xdens$y, default.units = "native",

gp = gpar(fill = "lightgrey", col = "transparent"))

> upViewport(1)

> pushViewport(viewport(x = 0.90, y = 0.45, width = 0.17, height = 0.7,

xscale = c(0, ydens.max), yscale = ylim,

clip = "on"))

> grid.polygon(x = ydens$y, y = ydens$x, default.units = "native",

gp = gpar(fill = "lightgrey", col = "transparent"))

> upViewport(1)

24 DEEPAYAN SARKAR

2 3 4 5

40

50

60

70

80

90

There are several problems with this approach. It is not easily generalizable to other datasets. We would
also prefer to leave space for labels only if they are present. The way around the first problem is to write a
more general function. For the second problem, we must use an alternate method of specifying viewports
using layouts, where a parent viewport is divided into rows and columns with more flexible specification of
heights and widths.

A detailed discussion of this approach would take too long. If you are interested, look at the file
"esplot.R". Grid itself has many more features, see package documentation for details.

	Traditional R graphics
	The plot() function
	Graphical parameters
	Non-default plot methods
	Formula methods
	Data frames
	Functions
	Other common high-level graphics functions
	Low level functions
	Shading and Polygons
	Interacting with plots
	Visualizing three-dimensional (matrix) data
	Further exploration
	Weaknesses of traditional graphics

	Grid graphics
	Viewports
	Units
	Primitives
	First attempt

