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Deepayan Sarkar

What is collinearity?

• Exact dependence between columns of X make coefficients non-estimable

• Collinearity refers to the situation where some columns are almost dependent

• Why is this a problem?

• Individual coefficient estimates β̂j become unstable (high variance)

• Standard errors are large, tests have low power

• On the other hand, ŷ = Hy is not particularly affected

Detecting collinearity

• Collinearity in pairs of variables are easily seen in scatter plots

• However, higher dimensional collinearity may not be readily apparent

• Example:

n <- 100
z1 <- rnorm(n)
z2 <- rnorm(n)
x1 <- z1 + z2 + 0.1 * rnorm(n)
x2 <- z1 - 2 * z2 + 0.1 * rnorm(n)
x3 <- 2 * z1 - z2 + 0.1 * rnorm(n)
y <- x1 + 2 * x2 + 2 * rnorm(n) # x3 has coefficient 0
d3 <- data.frame(y, x1, x2, x3)
cor(d3)

y x1 x2 x3
y 1.00000000 -0.05350867 0.8930301 0.8498399
x1 -0.05350867 1.00000000 -0.2750082 0.3047524
x2 0.89303013 -0.27500823 1.0000000 0.8287638
x3 0.84983991 0.30475236 0.8287638 1.0000000

splom(d3)
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• In this case, a 3-D plot is sufficient (but not enough for higher-dimensional collinearity)

library(rgl); with(d3, plot3d(x1, x2, x3, type = "s", col = "red", size = 1))

• Pairwise scatter plots do not indicate unusual dependence

• However, each X∗j is highly dependent on others

summary(lm(x1 ~ x2 + x3, d3))$r.squared

[1] 0.9816998

summary(lm(x2 ~ x1 + x3, d3))$r.squared

[1] 0.9936826

summary(lm(x3 ~ x1 + x2, d3))$r.squared

[1] 0.9938004

Impact of collinearity

• This results in increased uncertainty in coefficient estimates

summary(fm3 <- lm(y ~ x1 + x2 + x3, d3))

Call:
lm(formula = y ~ x1 + x2 + x3, data = d3)

Residuals:
Min 1Q Median 3Q Max

-4.5620 -1.3326 -0.0007 1.6717 4.5924

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.04719 0.20629 0.229 0.8195
x1 1.09743 1.12399 0.976 0.3313
x2 2.38916 1.12119 2.131 0.0357 *
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x3 -0.33411 1.12900 -0.296 0.7679
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.042 on 96 degrees of freedom
Multiple R-squared: 0.8376, Adjusted R-squared: 0.8325
F-statistic: 165 on 3 and 96 DF, p-value: < 2.2e-16

• Even though overall regression is highly significant, individual predictors are (marginally) not

• The situation changes dramatically if any one of the predictors is dropped

summary(lm(y ~ x2 + x3, d3)) # incorrect model, but still high R^2

Call:
lm(formula = y ~ x2 + x3, data = d3)

Residuals:
Min 1Q Median 3Q Max

-4.8389 -1.3677 0.0208 1.7567 4.4134

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.07408 0.20439 0.362 0.718
x2 1.30556 0.15921 8.200 1.01e-12 ***
x3 0.75725 0.15882 4.768 6.54e-06 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.041 on 97 degrees of freedom
Multiple R-squared: 0.836, Adjusted R-squared: 0.8326
F-statistic: 247.1 on 2 and 97 DF, p-value: < 2.2e-16

• The correct model (dropping x3, whose true coefficient is 0) performs equally well (not better)

summary(fm2 <- lm(y ~ x1 + x2, d3)) # correct model, will use later

Call:
lm(formula = y ~ x1 + x2, data = d3)

Residuals:
Min 1Q Median 3Q Max

-4.6542 -1.3492 0.0212 1.7051 4.5374

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.05486 0.20369 0.269 0.788
x1 0.76811 0.15740 4.880 4.16e-06 ***
x2 2.05850 0.09225 22.314 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.032 on 97 degrees of freedom
Multiple R-squared: 0.8374, Adjusted R-squared: 0.8341
F-statistic: 249.8 on 2 and 97 DF, p-value: < 2.2e-16
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• The difference is reflected in the estimated variance-covariance matrix of β̂

cov2cor(vcov(fm3))[-1, -1] # exclude intercept

x1 x2 x3
x1 1.0000000 0.9898617 -0.9900518
x2 0.9898617 1.0000000 -0.9965770
x3 -0.9900518 -0.9965770 1.0000000

cov2cor(vcov(fm2))[-1, -1] # exclude intercept

x1 x2
x1 1.0000000 0.2750082
x2 0.2750082 1.0000000

• The situation is more clearly seen in the confidence ellipsoids for β̂

C3 <- chol(vcov(fm3)[2:3, 2:3]) # only x1 and x2
C2 <- chol(vcov(fm2)[2:3, 2:3])
tt <- seq(0, 1, length.out = 101)
circle <- rbind(2 * cos(2 * pi * tt), sin(2 * pi * tt))
E3 <- coef(fm3)[2:3] + 2 * t(C3) %*% circle
E2 <- coef(fm2)[2:3] + 2 * t(C2) %*% circle
E <- as.data.frame(rbind(t(E2), t(E3))); E$model <- rep(c("fm2", "fm3"), each = 101)

xyplot(x2 ~ x1, data = E, groups = model, abline = list(v = 1, h = 2, col = "grey"), type = "l",
aspect = "iso", auto.key = list(lines = TRUE, points = FALSE, space = "right"))

• Many different (β1, β2, β3) combinations give essentially equivalent fit

Variance inflation factor

• It can be shown that the sampling variance of β̂j is

V (β̂j) = σ2(XT X)−1
jj = 1

1−R2
j

× σ2

(n− 1)s2
j

• where

– s2
j = 1

n−1
∑

i(Xij − X̄j)2 (sample variance of X∗j)
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– R2
j is the multiple correlation coefficient of X∗j on the remaining columns of X

• The Variance Inflation Factor (VIF) is defined as

V IFj = 1
1−R2

j

• V IFj directly reflects the effect of collinearity on the precision of β̂j

• Length of the confidence interval for β̂j is proportional to
√
V (β̂j), so more useful to compare

√
V IFj

library(car)
sqrt(vif(fm3))

x1 x2 x3
7.392177 12.581416 12.700439

sqrt(vif(fm2))

x1 x2
1.040104 1.040104

• For a more intuitive justification, recall partial regression of

– residuals from regression of y on X(−j), and
– residuals from regression of X∗j on X(−j)

• β̂j from this partial regression is the same as β̂j from the full model

• In presence of collinearity, residuals from regression of X∗j on X(−j) will have very low variability

sd(d3$x3)

[1] 2.308524

sd(x3.12 <- residuals(lm(x3 ~ x1 + x2, d3)))

[1] 0.1817672

xyplot(y ~ x3 + x3.12, data = d3, outer = TRUE, grid = TRUE, xlab = NULL, type = c("p", "r"))

• Resulting β̂j is highly unstable
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Coping with collinearity

• There is no real solution if we want to estimate individual coefficients

• Recall interpretation of βj : increase in E(y) for unit increase in xj keeping other covariates fixed

• For collinear data, this cannot be reliably estimated

• However, there are several approaches to “stabilize” the model

Approaches to deal with collinearity

• Variable selection:

– Use criteria such as AIC and BIC in conjunction with stepwise / all-subset search
– As discussed earlier, this is usually a misguided approach
– In presence of collinearity, choice of model very sensitive to random error

• Respecify model: perhaps combine some predictors

• Principal component analysis (PCA):

– An automated version of model respecification
– Linearly transform covariates to make them orthogonal
– Reduce dimension of covariate space by dropping “unimportant” variables

• Penalized regression:

– Add some sort of penalty for “unlikely” estimates of β (e.g., many large components)
– This is essentially a Bayesian approach
– Results in biased estimates, but usually much more stable
– For certain kinds of penalties, also works well as a variable selection mechanism

Standardization

• We will briefly discuss principal components and penalized regression

• Both these approaches have a practical drawback: they are not invariant to variable rescaling

• Recall that for linear regression, location-scale changes of covariates does not change fitted model

• This is no longer true if we used PCA or penalized regression

• There is no real solution to this problem: usual practice is to standardize all covariates

• Specifically, subtract mean, divide by standard deviation (so covariates have mean 0, variance 1)

• For prediction, the same scaling must be applied to new observations

• Can use R function scale() which also returns mean and SD for subsequent use

• More details later as necessary

Principal components

• Will be studies in more details in Multivariate Analysis course

• In what follows, the intercept is not considered as a covariate

• Let zj denote the j-th covariate (column on X) after standardization
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• This means that the length of each zj is ‖zj‖ =
√∑

i z
2
ij = n− 1

• This is not necessary for PCA, but is usually not meaningful

• Consider the matrix Z = [z1 z2 · · · zk]

• Suppose the rank of Z is p; for our purposes, p = k

• Our goal is to find W = [w1 w2 · · · wp] = ZA such that

– C(W) = C(Z)

– Columns of W are mutually orthogonal

– The first principal component w1 has the largest variance among linear combinations of columns
of Z

– The second principal component w2 has the largest variance among linear combinations of columns
of Z that are orthogonal to w1

– . . . and so on

• More precisely, we only consider normalized linear combinations Za such that ‖a‖2 = aT a = 1

• Otherwise, the variance of Za can be made arbitrarily large

• Note that by construction any linear combination of z1, z2, . . . , zk has mean 0

• The variance of any such w = Za is given by

s2(a) = 1
n− 1wT w = 1

n− 1aT ZT Za = aT Ra

• where R = 1
n−1ZT Z is the correlation matrix of the original predictors X

• We can maximize s2(a) subject to the constraint aT a = 1 using a Lagrange multiplier:

F = aT Ra − λ(aT a − 1)

• Differentiating w.r.t. a and λ and equating to 0, we get

∂F

∂a = 2Ra − 2λa = 0 =⇒ Ra = λa

∂F

∂λ
= −(aT a − 1) = 0 =⇒ aT a = 1

• In other words, potential solutions are the normalized eigenvectors of R

• Which of these k solutions maximizes s2(a)?

• For any solution a, the variance s2(a) = aT Ra = λaT a = λ

• So the first principal component is given by the eigenvector a1 corresponding to the largest eigenvalue
λ1

• Let the eigenvalues in decreasing order be λ1 ≥ λ2 ≥ · · · ≥ λk

• Not surprisingly, the principal components are given by the corresponding eigenvectors a1,a2, . . . ,ak

• The desired transformation matrix A is given by A = [a1 a2 · · · ak]

• As the eigenvectors are normalized, AT A = I

• The variance-covariance matrix of the principal components W is

7



1
n− 1WT W = 1

n− 1AT ZT ZA = AT RA = AT AΛ = Λ

• Here Λ is the diagonal matrix with entries λ1, λ2, . . . , λk

• A general indicator of the degree of collinearity present in the covariates is the condition number

K ≡
√
λ1

λk

• Large condition number indicates that small changes in data can cause large changes in β̂

• In theory, using (all) principal components as covariates leads to the same fit (i.e., same H, ŷ, etc.)

• To “stabilize” collinearity, we can instead regress on the first few principal components

Principal components in R

pr <- prcomp(~ x1 + x2 + x3, data = d3, scale. = TRUE)
pr

Standard deviations (1, .., p=3):
[1] 1.35254256 1.08071572 0.05178952

Rotation (n x k) = (3 x 3):
PC1 PC2 PC3

x1 -0.02887707 -0.9244271 0.3802640
x2 -0.70174549 0.2896624 0.6508832
x3 -0.71184225 -0.2480529 -0.6570771

head(pr$x)

PC1 PC2 PC3
1 1.1023871 -0.0005434015 0.072144023
2 0.1583731 -1.9368798962 -0.023836194
3 -0.8266643 -0.1014248304 -0.088178195
4 0.3620938 0.6099882730 -0.020273616
5 1.2346433 0.2956850245 -0.023914456
6 1.7477325 1.2684577099 -0.002962102

d3 <- cbind(d3, pr$x)

Principal components in R: scree plot

plot(pr)
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Principal components in R: biplot

biplot(pr)

Principal components are orthogonal

Principal component regression

summary(fm.pc3 <- lm(y ~ PC1 + PC2 + PC3, data = d3))

Call:
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lm(formula = y ~ PC1 + PC2 + PC3, data = d3)

Residuals:
Min 1Q Median 3Q Max

-4.5620 -1.3326 -0.0007 1.6717 4.5924

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.04883 0.20419 0.239 0.811
PC1 -3.35460 0.15173 -22.110 <2e-16 ***
PC2 0.41578 0.18989 2.190 0.031 *
PC3 4.65106 3.96249 1.174 0.243
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.042 on 96 degrees of freedom
Multiple R-squared: 0.8376, Adjusted R-squared: 0.8325
F-statistic: 165 on 3 and 96 DF, p-value: < 2.2e-16

zapsmall(vcov(fm.pc3))

(Intercept) PC1 PC2 PC3
(Intercept) 0.041692 0.000000 0.000000 0.00000
PC1 0.000000 0.023021 0.000000 0.00000
PC2 0.000000 0.000000 0.036058 0.00000
PC3 0.000000 0.000000 0.000000 15.70134

summary(fm.pc2 <- lm(y ~ PC1 + PC2, data = d3))

Call:
lm(formula = y ~ PC1 + PC2, data = d3)

Residuals:
Min 1Q Median 3Q Max

-4.9339 -1.3878 0.0018 1.7533 4.3695

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.04883 0.20458 0.239 0.8118
PC1 -3.35460 0.15202 -22.067 <2e-16 ***
PC2 0.41578 0.19026 2.185 0.0313 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.046 on 97 degrees of freedom
Multiple R-squared: 0.8352, Adjusted R-squared: 0.8318
F-statistic: 245.9 on 2 and 97 DF, p-value: < 2.2e-16

zapsmall(vcov(fm.pc2))

(Intercept) PC1 PC2
(Intercept) 0.04185465 0.00000000 0.00000000
PC1 0.00000000 0.02311036 0.00000000
PC2 0.00000000 0.00000000 0.03619809
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Statistical interpretation of Principal Component regression

• PCA rotates (through A) and scales (through Λ) Z to make columns orthonormal

• Resulting variables may be thought of as “latent variables” controlling observed covariates

• Principal components with higher variability lead to smaller sampling variance of coefficients

• Orthogonality means that estimated coefficients are uncorrelated

• Unfortunately, no longer possible to interpret effect of individual covariates

• Confidence ellipsoids are essentially identical (except for different residual d.f.)

C3 <- chol(vcov(fm.pc3)[2:3, 2:3]) # only PC1 and PC2
C2 <- chol(vcov(fm.pc2)[2:3, 2:3])
tt <- seq(0, 1, length.out = 101)
circle <- rbind(2 * cos(2 * pi * tt), sin(2 * pi * tt))
E3 <- coef(fm.pc3)[2:3] + 2 * t(C3) %*% circle
E2 <- coef(fm.pc2)[2:3] + 2 * t(C2) %*% circle
E.pc <- as.data.frame(rbind(t(E2), t(E3))); E.pc$model <- rep(c("fm.pc2", "fm.pc3"), each = 101)

Confidence ellipsoids in principal component regression

xyplot(PC2 ~ PC1, data = E.pc, groups = model, abline = list(v = 1, h = 2, col = "grey"), type = "l",
aspect = "iso", auto.key = list(lines = TRUE, points = FALSE, space = "right"))

Example: Canadian Women’s Labour-Force Participation

data(Bfox, package = "carData")
xyplot(ts(Bfox, start = 1946), aspect = "xy", layout = c(0, 6))
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Bfox["1973", "tfr"] <- 1931
splom(Bfox)

Bfox$year <- as.numeric(rownames(Bfox))
summary(fm.bfox <- lm(partic ~ ., data = Bfox))

Call:
lm(formula = partic ~ ., data = Bfox)

Residuals:
Min 1Q Median 3Q Max

-0.83213 -0.33438 -0.01621 0.36769 1.05048

Coefficients:
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Estimate Std. Error t value Pr(>|t|)
(Intercept) 8.142e+00 2.129e+02 0.038 0.96982
tfr -1.949e-06 5.011e-04 -0.004 0.99693
menwage -2.919e-02 1.502e-01 -0.194 0.84766
womwage 1.984e-02 1.744e-01 0.114 0.91041
debt 6.397e-02 1.850e-02 3.459 0.00213 **
parttime 6.566e-01 8.205e-02 8.002 4.27e-08 ***
year 4.452e-03 1.107e-01 0.040 0.96827
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5381 on 23 degrees of freedom
Multiple R-squared: 0.9935, Adjusted R-squared: 0.9918
F-statistic: 587.3 on 6 and 23 DF, p-value: < 2.2e-16

sqrt(vif(fm.bfox))

tfr menwage womwage debt parttime year
3.891829 10.673117 8.205214 11.474235 2.748158 9.755120

pr.bfox <- prcomp(~ . - partic, data = Bfox, scale. = TRUE)
pr.bfox

Standard deviations (1, .., p=6):
[1] 2.35180659 0.57341995 0.33183302 0.13614037 0.08403192 0.06698201

Rotation (n x k) = (6 x 6):
PC1 PC2 PC3 PC4 PC5 PC6

tfr -0.3849387 -0.6675739 0.54244962 0.2518053 0.19660094 0.09928673
menwage 0.4158879 -0.3420846 -0.02228191 0.1571042 -0.70548213 0.43258778
womwage 0.4195650 -0.1523080 -0.26579808 0.7291795 0.27909187 -0.34716538
debt 0.4220132 -0.1591200 -0.09747758 -0.2757411 0.61883636 0.57279338
parttime 0.3945669 0.4692796 0.77462008 0.1520461 0.02516761 0.01748999
year 0.4111526 -0.4105886 0.15831978 -0.5301495 -0.04646405 -0.59505293

• All variables contribute roughly equally to first PC

• Note non-linear pattern (PCA only accounts for linear relationships)
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• First PC explains bulk of the variability (92%)

Bfox <- cbind(Bfox, pr.bfox$x)
summary(lm(partic ~ PC1 + PC2 + PC3 + PC4 + PC5 + PC6, data = Bfox))

Call:
lm(formula = partic ~ PC1 + PC2 + PC3 + PC4 + PC5 + PC6, data = Bfox)

Residuals:
Min 1Q Median 3Q Max

-0.83213 -0.33438 -0.01621 0.36769 1.05048

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 29.99667 0.09823 305.356 < 2e-16 ***
PC1 2.50998 0.04248 59.080 < 2e-16 ***
PC2 0.44179 0.17424 2.535 0.018485 *
PC3 1.30075 0.30110 4.320 0.000254 ***
PC4 -0.74497 0.73391 -1.015 0.320632
PC5 2.67915 1.18900 2.253 0.034079 *
PC6 2.16416 1.49166 1.451 0.160326
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5381 on 23 degrees of freedom
Multiple R-squared: 0.9935, Adjusted R-squared: 0.9918
F-statistic: 587.3 on 6 and 23 DF, p-value: < 2.2e-16

14


	What is collinearity?
	Detecting collinearity
	Impact of collinearity
	Variance inflation factor
	Coping with collinearity
	Approaches to deal with collinearity
	Standardization
	Principal components
	Principal components in R
	Principal components in R: scree plot
	Principal components in R: biplot
	Principal components are orthogonal
	Principal component regression
	Statistical interpretation of Principal Component regression
	Confidence ellipsoids in principal component regression
	Example: Canadian Women's Labour-Force Participation

