Collinearity: Impact and Possible Remedies

Deepayan Sarkar

What is collinearity?

- Exact dependence between columns of \mathbf{X} make coefficients non-estimable
- Collinearity refers to the situation where some columns are almost dependent
- Why is this a problem?
- Individual coefficient estimates $\hat{\beta}_{j}$ become unstable (high variance)
- Standard errors are large, tests have low power
- On the other hand, $\hat{\mathbf{y}}=\mathbf{H y}$ is not particularly affected

Detecting collinearity

- Collinearity in pairs of variables are easily seen in scatter plots
- However, higher dimensional collinearity may not be readily apparent
- Example:
n <- 100
z1 <- rnorm(n)
z2 <- rnorm(n)
$\mathrm{x} 1<-\mathrm{z} 1+\mathrm{z} 2+0.1 * \operatorname{rnorm}(\mathrm{n})$
$\mathrm{x} 2<-\mathrm{z} 1-2 * \mathrm{z} 2+0.1 * \operatorname{rnorm}(\mathrm{n})$
$\mathrm{x} 3<-2$ * $\mathrm{z} 1-\mathrm{z} 2+0.1$ * $\operatorname{rnorm}(\mathrm{n})$
$\mathrm{y}<-\mathrm{x} 1+2$ * $\mathrm{x} 2+2$ * $\operatorname{rnorm}(\mathrm{n})$ \# x3 has coefficient 0
d3 <- data.frame(y, x1, x2, x3)
cor (d3)

	y	$x 1$	$x 2$	$x 3$
y	1.00000000	-0.05350867	0.8930301	0.8498399
x1	-0.05350867	1.00000000	-0.2750082	0.3047524
x2	0.89303013	-0.27500823	1.0000000	0.8287638
x3	0.84983991	0.30475236	0.8287638	1.0000000
	splom(d3)			

- In this case, a 3-D plot is sufficient (but not enough for higher-dimensional collinearity) library(rgl); with(d3, plot3d(x1, x2, x3, type = "s", col = "red", size = 1))
- Pairwise scatter plots do not indicate unusual dependence
- However, each $X_{* j}$ is highly dependent on others
summary (lm(x1 ~ x2 + x3, d3)) \$r.squared
[1] 0.9816998
summary (lm(x2 ~ x1 + x3, d3)) \$r.squared
[1] 0.9936826
summary (lm(x3 ~ x1 + x2, d3)) \$r.squared
[1] 0.9938004

Impact of collinearity

- This results in increased uncertainty in coefficient estimates
summary (fm3 <- lm (y ~ x1 + x2 + x3, d3))

Call:
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2+\mathrm{x} 3$, data $=\mathrm{d} 3)$
Residuals:

Min	$1 Q$	Median	$3 Q$	Max
-4.5620	-1.3326	-0.0007	1.6717	4.5924

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$		
(Intercept)	0.04719	0.20629	0.229	0.8195
x1	1.09743	1.12399	0.976	0.3313
x2	2.38916	1.12119	2.131	$0.0357 *$

$x 3$	-0.33411	1.12900	-0.296	0.7679

Signif. codes: $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.042 on 96 degrees of freedom Multiple R-squared: 0.8376, Adjusted R-squared: 0.8325 F-statistic: 165 on 3 and 96 DF, p-value: < $2.2 \mathrm{e}-16$

- Even though overall regression is highly significant, individual predictors are (marginally) not
- The situation changes dramatically if any one of the predictors is dropped

```
summary(lm(y ~ x2 + x3, d3)) # incorrect model, but still high R^2
```

Call:
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x} 2+\mathrm{x} 3$, data $=\mathrm{d} 3$)
Residuals:

Min	$1 Q$	Median	3Q	Max
-4.8389	-1.3677	0.0208	1.7567	4.4134

Coefficients:

	Estimate	Std. Error t value $\operatorname{Pr}(>\|\mathrm{t}\|)$			
(Intercept)	0.07408	0.20439	0.362	0.718	
x2	1.30556	0.15921	8.200	$1.01 \mathrm{e}-12$	$* * *$
x3	0.75725	0.15882	4.768	$6.54 \mathrm{e}-06$	***

--
Signif. codes: $0{ }^{\prime * * * '} 0.001{ }^{\prime * * '} 0.01 '^{\prime \prime} 0.05 '^{\prime} 0.1 '^{\prime} 1$

Residual standard error: 2.041 on 97 degrees of freedom Multiple R-squared: 0.836 , Adjusted R-squared: 0.8326 F-statistic: 247.1 on 2 and 97 DF, p-value: < $2.2 \mathrm{e}-16$

- The correct model (dropping x3, whose true coefficient is 0) performs equally well (not better)

```
summary(fm2 <- lm(y ~ x1 + x2, d3)) # correct model, will use later
```

Call:
$\operatorname{lm}($ formula $=\mathrm{y} \sim \mathrm{x} 1+\mathrm{x} 2$, data $=\mathrm{d} 3$)
Residuals:

Min	1Q	Median	3Q	Max
-4.6542	-1.3492	0.0212	1.7051	4.5374

Coefficients:

| | Estimate | Std. Error | t value $\operatorname{Pr}(>\|t\|)$ | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| (Intercept) | 0.05486 | 0.20369 | 0.269 | 0.788 |
| x1 | 0.76811 | 0.15740 | 4.880 | $4.16 \mathrm{e}-06{ }^{* * *}$ |
| x2 | 2.05850 | 0.09225 | 22.314 | $<2 \mathrm{e}-16 * * *$ |

Signif. codes: $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.032 on 97 degrees of freedom Multiple R-squared: 0.8374, Adjusted R-squared: 0.8341 F-statistic: 249.8 on 2 and 97 DF, p-value: < $2.2 \mathrm{e}-16$

- The difference is reflected in the estimated variance-covariance matrix of $\hat{\beta}$

```
cov2cor(vcov(fm3))[-1, -1] # exclude intercept
\begin{tabular}{lrrr} 
& x 1 & x 2 & x 3 \\
x1 & 1.0000000 & 0.9898617 & -0.9900518 \\
x2 & 0.9898617 & 1.0000000 & -0.9965770 \\
x3 & -0.9900518 & -0.9965770 & 1.0000000
\end{tabular}
cov2cor(vcov(fm2))[-1, -1] # exclude intercept
    x1 x2
x1 1.0000000 0.2750082
x2 0.2750082 1.0000000
```

- The situation is more clearly seen in the confidence ellipsoids for $\hat{\beta}$

```
C3 <- chol(vcov(fm3)[2:3, 2:3]) # only x1 and x2
C2 <- chol(vcov(fm2)[2:3, 2:3])
tt <- seq(0, 1, length.out = 101)
circle <- rbind(2 * cos(2 * pi * tt), sin(2 * pi * tt))
E3 <- coef(fm3)[2:3] + 2 * t(C3) %*% circle
E2 <- coef(fm2)[2:3] + 2 * t(C2) %*% circle
E <- as.data.frame(rbind(t(E2), t(E3))); E$model <- rep(c("fm2", "fm3"), each = 101)
xyplot(x2 ~ x1, data = E, groups = model, abline = list(v = 1, h = 2, col = "grey"), type = "l",
    aspect = "iso", auto.key = list(lines = TRUE, points = FALSE, space = "right"))
```


- Many different $\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ combinations give essentially equivalent fit

Variance inflation factor

- It can be shown that the sampling variance of $\hat{\beta}_{j}$ is

$$
V\left(\hat{\beta}_{j}\right)=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)_{j j}^{-1}=\frac{1}{1-R_{j}^{2}} \times \frac{\sigma^{2}}{(n-1) s_{j}^{2}}
$$

- where
$-s_{j}^{2}=\frac{1}{n-1} \sum_{i}\left(X_{i j}-\bar{X}_{j}\right)^{2}\left(\right.$ sample variance of $\left.X_{* j}\right)$
- R_{j}^{2} is the multiple correlation coefficient of $X_{* j}$ on the remaining columns of \mathbf{X}
- The Variance Inflation Factor (VIF) is defined as

$$
V I F_{j}=\frac{1}{1-R_{j}^{2}}
$$

- $V I F_{j}$ directly reflects the effect of collinearity on the precision of $\hat{\beta}_{j}$
- Length of the confidence interval for $\hat{\beta}_{j}$ is proportional to $\sqrt{V\left(\hat{\beta}_{j}\right)}$, so more useful to compare $\sqrt{V I F_{j}}$

```
library(car)
sqrt(vif(fm3))
    x1 x2 x3
    7.392177 12.581416 12.700439
sqrt(vif(fm2))
    x1 x2
1.040104 1.040104
```

- For a more intuitive justification, recall partial regression of
- residuals from regression of \mathbf{y} on $\mathbf{X}_{(-j)}$, and
- residuals from regression of $\mathbf{X}_{* j}$ on $\mathbf{X}_{(-j)}$
- $\hat{\beta}_{j}$ from this partial regression is the same as $\hat{\beta}_{j}$ from the full model
- In presence of collinearity, residuals from regression of $\mathbf{X}_{* j}$ on $\mathbf{X}_{(-j)}$ will have very low variability sd (d3\$x3)
[1] 2.308524
$\operatorname{sd}(x 3.12<-\quad$ residuals $(\operatorname{lm}(x 3 \sim x 1+x 2, d 3)))$
[1] 0.1817672
xyplot(y ~ x3 + x3.12, data = d3, outer = TRUE, grid = TRUE, xlab = NULL, type = c("p", "r"))

- Resulting $\hat{\beta}_{j}$ is highly unstable

Coping with collinearity

- There is no real solution if we want to estimate individual coefficients
- Recall interpretation of β_{j} : increase in $E(y)$ for unit increase in x_{j} keeping other covariates fixed
- For collinear data, this cannot be reliably estimated
- However, there are several approaches to "stabilize" the model

Approaches to deal with collinearity

- Variable selection:
- Use criteria such as AIC and BIC in conjunction with stepwise / all-subset search
- As discussed earlier, this is usually a misguided approach
- In presence of collinearity, choice of model very sensitive to random error
- Respecify model: perhaps combine some predictors
- Principal component analysis (PCA):
- An automated version of model respecification
- Linearly transform covariates to make them orthogonal
- Reduce dimension of covariate space by dropping "unimportant" variables
- Penalized regression:
- Add some sort of penalty for "unlikely" estimates of β (e.g., many large components)
- This is essentially a Bayesian approach
- Results in biased estimates, but usually much more stable
- For certain kinds of penalties, also works well as a variable selection mechanism

Standardization

- We will briefly discuss principal components and penalized regression
- Both these approaches have a practical drawback: they are not invariant to variable rescaling
- Recall that for linear regression, location-scale changes of covariates does not change fitted model
- This is no longer true if we used PCA or penalized regression
- There is no real solution to this problem: usual practice is to standardize all covariates
- Specifically, subtract mean, divide by standard deviation (so covariates have mean 0 , variance 1)
- For prediction, the same scaling must be applied to new observations
- Can use R function scale() which also returns mean and SD for subsequent use
- More details later as necessary

Principal components

- Will be studies in more details in Multivariate Analysis course
- In what follows, the intercept is not considered as a covariate
- Let \mathbf{z}_{j} denote the j-th covariate (column on \mathbf{X}) after standardization
- This means that the length of each \mathbf{z}_{j} is $\left\|\mathbf{z}_{j}\right\|=\sqrt{\sum_{i} z_{i j}^{2}}=n-1$
- This is not necessary for PCA, but is usually not meaningful
- Consider the matrix $\mathbf{Z}=\left[\mathbf{z}_{1} \mathbf{z}_{2} \cdots \mathbf{z}_{k}\right]$
- Suppose the rank of \mathbf{Z} is p; for our purposes, $p=k$
- Our goal is to find $\mathbf{W}=\left[\mathbf{w}_{1} \mathbf{w}_{2} \cdots \mathbf{w}_{p}\right]=\mathbf{Z A}$ such that
$-\mathcal{C}(\mathbf{W})=\mathcal{C}(\mathbf{Z})$
- Columns of \mathbf{W} are mutually orthogonal
- The first principal component \mathbf{w}_{1} has the largest variance among linear combinations of columns of \mathbf{Z}
- The second principal component \mathbf{w}_{2} has the largest variance among linear combinations of columns of \mathbf{Z} that are orthogonal to \mathbf{w}_{1}
- ... and so on
- More precisely, we only consider normalized linear combinations Za such that $\|\mathbf{a}\|^{2}=\mathbf{a}^{T} \mathbf{a}=1$
- Otherwise, the variance of Za can be made arbitrarily large
- Note that by construction any linear combination of $\mathbf{z}_{1}, \mathbf{z}_{2}, \ldots, \mathbf{z}_{k}$ has mean 0
- The variance of any such $\mathbf{w}=\mathbf{Z a}$ is given by

$$
s^{2}(\mathbf{a})=\frac{1}{n-1} \mathbf{w}^{T} \mathbf{w}=\frac{1}{n-1} \mathbf{a}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{a}=\mathbf{a}^{T} \mathbf{R} \mathbf{a}
$$

- where $\mathbf{R}=\frac{1}{n-1} \mathbf{Z}^{T} \mathbf{Z}$ is the correlation matrix of the original predictors \mathbf{X}
- We can maximize $s^{2}(\mathbf{a})$ subject to the constraint $\mathbf{a}^{T} \mathbf{a}=1$ using a Lagrange multiplier:

$$
F=\mathbf{a}^{T} \mathbf{R} \mathbf{a}-\lambda\left(\mathbf{a}^{T} \mathbf{a}-1\right)
$$

- Differentiating w.r.t. a and λ and equating to 0 , we get

$$
\begin{aligned}
\frac{\partial F}{\partial \mathbf{a}}=2 \mathbf{R a}-2 \lambda \mathbf{a}=0 \quad & \Longrightarrow \quad \mathbf{R a}=\lambda \mathbf{a} \\
\frac{\partial F}{\partial \lambda}=-\left(\mathbf{a}^{T} \mathbf{a}-1\right)=0 \quad & \Longrightarrow \quad \mathbf{a}^{T} \mathbf{a}=1
\end{aligned}
$$

- In other words, potential solutions are the normalized eigenvectors of \mathbf{R}
- Which of these k solutions maximizes $s^{2}(\mathbf{a})$?
- For any solution \mathbf{a}, the variance $s^{2}(\mathbf{a})=\mathbf{a}^{T} \mathbf{R a}=\lambda \mathbf{a}^{T} \mathbf{a}=\lambda$
- So the first principal component is given by the eigenvector \mathbf{a}_{1} corresponding to the largest eigenvalue λ_{1}
- Let the eigenvalues in decreasing order be $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{k}$
- Not surprisingly, the principal components are given by the corresponding eigenvectors $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{k}$
- The desired transformation matrix \mathbf{A} is given by $\mathbf{A}=\left[\begin{array}{llll}\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{k}\end{array}\right]$
- As the eigenvectors are normalized, $\mathbf{A}^{T} \mathbf{A}=\mathbf{I}$
- The variance-covariance matrix of the principal components \mathbf{W} is

$$
\frac{1}{n-1} \mathbf{W}^{T} \mathbf{W}=\frac{1}{n-1} \mathbf{A}^{T} \mathbf{Z}^{T} \mathbf{Z} \mathbf{A}=\mathbf{A}^{T} \mathbf{R} \mathbf{A}=\mathbf{A}^{T} \mathbf{A} \boldsymbol{\Lambda}=\boldsymbol{\Lambda}
$$

- Here $\boldsymbol{\Lambda}$ is the diagonal matrix with entries $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{k}$
- A general indicator of the degree of collinearity present in the covariates is the condition number

$$
K \equiv \sqrt{\frac{\lambda_{1}}{\lambda_{k}}}
$$

- Large condition number indicates that small changes in data can cause large changes in $\hat{\beta}$
- In theory, using (all) principal components as covariates leads to the same fit (i.e., same $\mathbf{H}, \hat{\mathbf{y}}$, etc.)
- To "stabilize" collinearity, we can instead regress on the first few principal components

Principal components in R

```
pr <- prcomp(~ x1 + x2 + x3, data = d3, scale. = TRUE)
pr
Standard deviations (1, .., p=3):
[1] 1.35254256 1.08071572 0.05178952
Rotation (n x k) = (3 x 3):
    PC1 PC2 PC3
x1 -0.02887707 -0.9244271 0.3802640
x2 -0.70174549 0.2896624 0.6508832
x3 -0.71184225-0.2480529 -0.6570771
head(pr$x)
\begin{tabular}{lrrr} 
& PC 1 & PC 2 & PC3 \\
1 & 1.1023871 & -0.0005434015 & 0.072144023 \\
2 & 0.1583731 & -1.9368798962 & -0.023836194 \\
3 & -0.8266643 & -0.1014248304 & -0.088178195 \\
4 & 0.3620938 & 0.6099882730 & -0.020273616 \\
5 & 1.2346433 & 0.2956850245 & -0.023914456 \\
6 & 1.7477325 & 1.2684577099 & -0.002962102
\end{tabular}
d3 <- cbind(d3, pr$x)
```


Principal components in R: scree plot

plot(pr)

Principal components in R: biplot biplot(pr)

Principal components are orthogonal
Principal component regression

```
summary(fm.pc3 <- lm(y ~ PC1 + PC2 + PC3, data = d3))
```

Call:

```
lm(formula = y ~ PC1 + PC2 + PC3, data = d3)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-4.5620 & -1.3326 & -0.0007 & 1.6717 & 4.5924
\end{tabular}
Coefficients:
\begin{tabular}{lrrrrr} 
& Estimate & Std. Error t value \(\operatorname{Pr}(>|\mathrm{t}|)\) \\
(Intercept) & 0.04883 & 0.20419 & 0.239 & 0.811 \\
PC1 & -3.35460 & 0.15173 & -22.110 & \(<2 \mathrm{e}-16{ }^{* * *}\) \\
PC2 & 0.41578 & 0.18989 & 2.190 & \(0.031 \quad *\) \\
PC3 & 4.65106 & 3.96249 & 1.174 & 0.243
\end{tabular}
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.042 on 96 degrees of freedom
Multiple R-squared: 0.8376, Adjusted R-squared: 0.8325
F-statistic: }165\mathrm{ on 3 and 96 DF, p-value: < 2.2e-16
zapsmall(vcov(fm.pc3))
\begin{tabular}{lrrrr} 
& (Intercept) & PC1 & PC2 & PC3 \\
(Intercept) & 0.041692 & 0.000000 & 0.000000 & 0.00000 \\
PC1 & 0.000000 & 0.023021 & 0.000000 & 0.00000 \\
PC2 & 0.000000 & 0.000000 & 0.036058 & 0.00000 \\
PC3 & 0.000000 & 0.000000 & 0.000000 & 15.70134 \\
summary (fm.pc2 \(<-\operatorname{lm}(y \sim P C 1+P C 2\), data \(=\) & \(d 3))\)
\end{tabular}
Call:
lm(formula = y ~ PC1 + PC2, data = d3)
Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-4.9339 & -1.3878 & 0.0018 & 1.7533 & 4.3695
\end{tabular}
Coefficients:
    Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.04883 0.20458 0.239 0.8118
PC1 -3.35460 0.15202 -22.067 <2e-16 ***
PC2 0.41578 0.19026 2.185 0.0313 *
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 2.046 on 97 degrees of freedom
Multiple R-squared: 0.8352, Adjusted R-squared: 0.8318
F-statistic: 245.9 on 2 and 97 DF, p-value: < 2.2e-16
zapsmall(vcov(fm.pc2))
    (Intercept) PC1 PC2
(Intercept) 0.04185465 0.00000000 0.00000000
PC1 0.00000000 0.02311036 0.00000000
PC2 0.00000000 0.00000000 0.03619809
```


Statistical interpretation of Principal Component regression

- PCA rotates (through \mathbf{A}) and scales (through $\boldsymbol{\Lambda}) \mathbf{Z}$ to make columns orthonormal
- Resulting variables may be thought of as "latent variables" controlling observed covariates
- Principal components with higher variability lead to smaller sampling variance of coefficients
- Orthogonality means that estimated coefficients are uncorrelated
- Unfortunately, no longer possible to interpret effect of individual covariates
- Confidence ellipsoids are essentially identical (except for different residual d.f.)

```
C3 <- chol(vcov(fm.pc3)[2:3, 2:3]) # only PC1 and PC2
C2 <- chol(vcov(fm.pc2)[2:3, 2:3])
tt <- seq(0, 1, length.out = 101)
circle <- rbind(2 * cos(2 * pi * tt), sin(2 * pi * tt))
E3 <- coef(fm.pc3)[2:3] + 2 * t(C3) %*% circle
E2 <- coef(fm.pc2)[2:3] + 2 * t(C2) %*% circle
E.pc <- as.data.frame(rbind(t(E2), t(E3))); E.pc$model <- rep(c("fm.pc2", "fm.pc3"), each = 101)
```


Confidence ellipsoids in principal component regression

```
xyplot(PC2 ~ PC1, data = E.pc, groups = model, abline = list(v = 1, h = 2, col = "grey"), type = "l",
    aspect = "iso", auto.key = list(lines = TRUE, points = FALSE, space = "right"))
```


Example: Canadian Women's Labour-Force Participation

```
data(Bfox, package = "carData")
xyplot(ts(Bfox, start = 1946), aspect = "xy", layout = c(0, 6))
```


Bfox["1973", "tfr"] <- 1931
splom(Bfox)

Bfox\$year <- as.numeric (rownames(Bfox))
summary (fm.bfox <- lm(partic ~ ., data = Bfox))

Call:
lm(formula = partic ~ ., data = Bfox)

Residuals:

Min	1Q	Median	3Q	Max
-0.83213	-0.33438	-0.01621	0.36769	1.05048

Coefficients:

- All variables contribute roughly equally to first PC
- Note non-linear pattern (PCA only accounts for linear relationships)

- First PC explains bulk of the variability (92%)

Bfox <- cbind(Bfox, pr.bfox\$x)
summary (lm(partic ~ PC1 + PC2 + PC3 + PC4 + PC5 + PC6, data = Bfox))

Call:
lm (formula $=$ partic $\sim \mathrm{PC} 1+\mathrm{PC} 2+\mathrm{PC} 3+\mathrm{PC} 4+\mathrm{PC} 5+\mathrm{PC} 6$, data $=\mathrm{Bfox})$

Residuals:

Min	1Q	Median	3Q	Max
-0.83213	-0.33438	-0.01621	0.36769	1.05048

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$

(Intercept)	29.99667	0.09823	305.356	$<2 \mathrm{e}-16$	*
PC1	2.50998	0.04248	59.080	< 2e-16	***
PC2	0.44179	0.17424	2.535	0.018485	*
PC3	1.30075	0.30110	4.320	0.000254	***
PC4	-0.74497	0.73391	-1.015	0.320632	
PC5	2.67915	1.18900	2.253	0.034079	*
PC6	2.16416	1.49166	1.451	0.160326	

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.5381 on 23 degrees of freedom
Multiple R-squared: 0.9935, Adjusted R-squared: 0.9918
F-statistic: 587.3 on 6 and $23 \mathrm{DF}, \mathrm{p}$-value: $<2.2 \mathrm{e}-16$

