
Generalized Linear Models

Deepayan Sarkar

Motivation

• The standard linear model assumes

yi ∼ N(xTi β, σ2)

• In other words, the conditional distribution of Y |X = x

– is a normal distrbution
– with the mean parameter linear in terms involving x, and
– the variance parameter independent of the mean

• Generalized Linear Models (GLMs) allow the response distribution to be non-Normal

• Still retains “linearity” in the sense that the conditional distribution depends on x only through xTi β

Important special case: binary response

• We will first focus on a special case: binary response

• This problem can be viewed from various perspectives

• Example: Cowles dataset from carData package (1421 rows):

– volunteer (response): whether willing to volunteer for psychological research
– neuroticism as measured by a test
– extraversion as measured by a test
– sex: whether male or female

• Interested in ‘predicting’ whether subject is willing to volunteer

Example: Data on volunteering

head(Cowles, 20)

neuroticism extraversion sex volunteer
1 16 13 female no
2 8 14 male no
3 5 16 male no
4 8 20 female no
5 9 19 male no
6 6 15 male no
7 8 10 female no
8 12 11 male no
9 15 16 male no
10 18 7 male no

1

11 12 16 female no
12 9 15 male no
13 13 11 male no
14 9 13 male no
15 12 16 female no
16 11 12 male no
17 5 5 male no
18 12 8 male no
19 9 7 male no
20 4 11 female no

xyplot(volunteer ~ neuroticism + extraversion, Cowles, outer = TRUE, jitter.y = TRUE, xlab = NULL)

bwplot(volunteer ~ neuroticism + extraversion, Cowles, outer = TRUE, xlab = NULL, varwidth = TRUE)

2

bwplot(volunteer:sex ~ neuroticism + extraversion, Cowles, outer = TRUE, xlab = NULL, varwidth = TRUE)

xyplot(neuroticism ~ extraversion | sex, Cowles, groups = volunteer, grid = TRUE, jitter.x = TRUE, jitter.y = TRUE)

Summary

• Dependence of response on predictors does not seem to be very strong

• However, there is some information, and there appears to be some interaction

• To proceed, we need to decide

– How can we predict willingness to volunteer?
– What is a suitable loss function?

3

Possible loss functions

• Loss based on conditional negative log-likelihood

– Needs a model for the conditional distribution of response
– Leads to GLM (logistic regression in this case)

• Misclassfication loss (0 is correctly classified, 1 if misclassfied)

• Even if we use GLM, this is often the loss function we are actually interested in

• We will try some “simple” alternatives before we try logistic regression

Another example: Voting intentions in the 1988 Chilean plebiscite

• Before proceeding, we look at another example where dependence is more clear-cut

• Context: Chile was a military dictatorship under Augusto Pinochet from 1973–1990

• A referendum was held in October 1988 to decide if Chile should

– Continue with Pinochet (Yes; result: 45%)
– Return to democracy (No; result: 55%)

• The Chile data (package carData): National survey conducted 5 months before the referendum

• Response: intended vote (Yes / No / Abstain / Undecided)

• Other variables are sex, age, income, etc., and statusquo which measures support for the status quo.

Example: Voting intentions data

xyplot(vote ~ age + jitter(log(income)) + statusquo, Chile, subset = vote %in% c("Y", "N"),
outer = TRUE, jitter.y = TRUE, scales = list(x = "free"), xlab = NULL)

4

Mis-classification loss: goal is to minimize false classifications

Volunteering data

(x <- xtabs(~ volunteer, data = Cowles))

volunteer
no yes

824 597

min(x) / sum(x) # loss when classifying everything as modal class

[1] 0.4201267

Voting intentions data

Chile <- droplevels(subset(Chile, vote %in% c("Y", "N"))) # remove Abstain / Undecided
(x <- xtabs(~ vote, Chile))

vote
N Y

889 868

min(x) / sum(x) # loss when classifying everything as modal class

[1] 0.4940239

A simple non-parametric classification method: k-NN

• Given x, find k nearest neighbours

• Classify as modal (most common) class among these k observations

• Similar in spirit to LOWESS

library(class)
p <- knn.cv(Cowles[, "extraversion", drop = FALSE], cl = Cowles$volunteer, k = 11)
(x <- xtabs(~ p + Cowles$volunteer))

Cowles$volunteer
p no yes

no 673 429
yes 151 168

1 - sum(diag(x)) / sum(x)

[1] 0.4081633

• Slight improvement over baseline

• More variables not necessarily better (worse than baseline)

p <- knn.cv(Cowles[, c("extraversion", "neuroticism")], cl = Cowles$volunteer, k = 11)
(x <- xtabs(~ p + Cowles$volunteer))

Cowles$volunteer
p no yes

no 628 436
yes 196 161

1 - sum(diag(x)) / sum(x)

[1] 0.4447572

5

• Substantial improvement in voting intentions data

Chile2 <- subset(Chile, !(is.na(statusquo) | is.na(vote)))
p <- knn.cv(Chile2[, "statusquo", drop = FALSE], cl = Chile2$vote, k = 11)
(x <- xtabs(~ p + Chile2$vote))

Chile2$vote
p N Y

N 824 71
Y 64 795

1 - sum(diag(x)) / sum(x)

[1] 0.07696693

• Many other classification approaches available (but not in the scope of this course)

• We want to view this as a regression problem with a binary (0/1) response

A simple option: pretend that linear regression is valid

xyplot(volunteer ~ neuroticism + extraversion, Cowles, outer = TRUE, jitter.y = TRUE, xlab = NULL,
type = c("p", "r", "smooth"), degree = 1, col.line = "black")

xyplot(vote ~ age + jitter(log(income)) + statusquo, Chile,
outer = TRUE, jitter.y = TRUE, scales = list(x = "free"), xlab = NULL,
type = c("p", "r", "smooth"), degree = 1, col.line = "black")

6

Can use linear regression to predict: volunteering

Cowles <- transform(Cowles, dvol = ifelse(volunteer == "no", 0, 1))
fm1 <- lm(dvol ~ extraversion, Cowles)
anova(fm1)

Analysis of Variance Table

Response: dvol
Df Sum Sq Mean Sq F value Pr(>F)

extraversion 1 5.32 5.3171 22.135 2.789e-06 ***
Residuals 1419 340.87 0.2402

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cowles$predvol1 <- as.numeric(predict(fm1) > 0.5)
(x <- xtabs(~ predvol1 + volunteer, Cowles))

volunteer
predvol1 no yes

0 765 526
1 59 71

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.4116819

fm2 <- lm(dvol ~ (neuroticism + extraversion) * sex, Cowles)
anova(fm2)

Analysis of Variance Table

Response: dvol
Df Sum Sq Mean Sq F value Pr(>F)

neuroticism 1 0.06 0.0552 0.2298 0.63172
extraversion 1 5.49 5.4863 22.8623 1.922e-06 ***

7

sex 1 1.07 1.0696 4.4571 0.03493 *
neuroticism:sex 1 0.02 0.0153 0.0640 0.80038
extraversion:sex 1 0.00 0.0006 0.0024 0.96109
Residuals 1415 339.56 0.2400

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cowles$predvol2 <- as.numeric(predict(fm2) > 0.5)
(x <- xtabs(~ predvol2 + volunteer, Cowles))

volunteer
predvol2 no yes

0 745 512
1 79 85

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.4159043

Can use linear regression to predict: voting intentions

Chile <- transform(Chile, dvote = ifelse(vote == "N", 0, 1))
fm3 <- lm(dvote ~ statusquo, Chile, na.action = na.exclude)
anova(fm3)

Analysis of Variance Table

Response: dvote
Df Sum Sq Mean Sq F value Pr(>F)

statusquo 1 320.21 320.21 4745.2 < 2.2e-16 ***
Residuals 1752 118.23 0.07

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Chile$predvote <- as.numeric(predict(fm3) > 0.5)
(x <- xtabs(~ predvote + vote, Chile))

vote
predvote N Y

0 838 82
1 50 784

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.07525656

fm4 <- lm(dvote ~ statusquo + age, Chile, na.action = na.exclude)
anova(fm4)

Analysis of Variance Table

Response: dvote
Df Sum Sq Mean Sq F value Pr(>F)

statusquo 1 320.21 320.21 4747.5401 <2e-16 ***
age 1 0.13 0.13 1.8752 0.1711
Residuals 1751 118.10 0.07

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

8

Chile$predvote <- as.numeric(predict(fm4) > 0.5)
(x <- xtabs(~ predvote + vote, Chile))

vote
predvote N Y

0 839 85
1 49 781

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.07639681

Drawbacks of linear regression

• Model is clearly wrong: expected value should be in [0, 1]

• Expected value of response should be a non-linear function (of parameters)

• Squared error is not a meaningful loss function

• However, maximum likelihood approach is still reasonable

• Natural response distribution is Bernoulli

• Probability of “success” depends on covariates

• Logistic regression assumes that this dependence is through a linear combination xTβ

Model and terminology

• Model:

Y |X = x ∼ Ber(µ(x)) where µ : Rp → [0, 1]

• Linear predictor

η = xTβ

• Link function g(·):

η = g(µ) where g : [0, 1]→ R

• Inverse link function g−1(·) (also called the mean function):

µ = g−1(η) where g−1 : R→ [0, 1]

Likelihood

• Observations (x1, y1), . . . , (xn, yn); linear predictors ηi = xTi β; mean responses µi = g−1(ηi)

• Likelihood

n∏
i=1

[g−1(xTi β)]yi [1− g−1(xTi β)]1−yi =
n∏
i=1

µyii (1− µi)1−yi

• log-likelihood

9

n∑
i=1

[yi logµi + (1− yi) log(1− µi)]

• log-likelihood for the simplest case of one predictor

n∑
i=1

[yi log g−1(α+ βxi) + (1− yi) log(1− g−1(α+ βxi))]

• Will be completely specified once we specify the link function g(·)

• There are often multiple choices, with no reason to specifically prefer one over others

Choice of link function for binary response

• The inverse link function g−1(η) should have the following properties

– Should map R to [0, 1]
– Should be monotone (increasing, without loss of generality)
– Should decrease to 0 as η → −∞, increase to 1 as η → −∞

• These are properties satisfied by cumulative distribution functions

• We are usually interested in smooth functions

• Three particular choices are most commonly used:

– The logistic function µ = eη

1+eη
– The Normal CDF µ = Φ(η)
– The Cauchy CDF

• The logistic function is also a CDF, although the corresponding distribution is not very common

• It is a more “natural” choice in some sense, as we will see later

Common inverse link functions

logistic <- function(x) exp(x) / (1 + exp(x))
eta <- seq(-3, 3, 0.01)
xyplot(logistic(eta) + pnorm(eta) + pcauchy(eta) ~ eta, type = "l", ylab = NULL,

auto.key = list(columns = 3, lines = TRUE, points = FALSE), grid = TRUE)

10

Common link functions

• The corresponding link functions η = g(µ) have standard names

– Logit: η = log µ
1−µ

– Probit: η = Φ−1(µ)

– Cauchit: η = F−1(µ) where F is the Cauchy CDF

• Link functions connect linear predictor η to mean response µ

• Choice of coefficients (e.g., α and β) control location and slope

How can we estimate parameters?

• We can think of this as a general optimization problem

• Can be solved using general numerical optimizer (will see examples)

• However, we study GLMs in detail for a different reason

• For a specific but quite general class of distributions (exponential family)

– There is a simple and elegant way to estimate parameters
– Like M-estimation, this approach is an example of IRLS
– This allows tools developed for linear models to be easily adapted for GLMs

Examples revisited: volunteering data

• Before we study the general approach, let us try numerical optimization

negLogLik.logit <- function(beta)
{

with(Cowles,
{

11

mu <- logistic(beta[1] + beta[2] * extraversion)
-sum(dvol * log(mu) + (1-dvol) * log(1-mu))

})
}
negLogLik.probit <- function(beta)
{

with(Cowles,
{

mu <- pnorm(beta[1] + beta[2] * extraversion)
-sum(dvol * log(mu) + (1-dvol) * log(1-mu))

})
}
opt.logit <- optim(par = c(0, 1), fn = negLogLik.logit)
opt.probit <- optim(par = opt.logit$par, fn = negLogLik.probit)
opt.logit$par

[1] -1.14145947 0.06577276

opt.probit$par

[1] -0.70500897 0.04048727

xyplot(dvol ~ extraversion, Cowles, jitter.x = TRUE, jitter.y = TRUE, ylim = c(-0.2, 1.2)) +
layer(panel.curve(logistic(opt.logit$par[1] + opt.logit$par[2] * x), col = "black")) +
layer(panel.curve(pnorm(opt.probit$par[1] + opt.probit$par[2] * x), col = "red"))

pred.logit <- with(Cowles, logistic(opt.logit$par[1] + opt.logit$par[2] * extraversion) > 0.5)
(x <- xtabs(~ pred.logit + volunteer, Cowles))

volunteer
pred.logit no yes

FALSE 765 526
TRUE 59 71

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.4116819

12

pred.probit <- with(Cowles, logistic(opt.probit$par[1] + opt.probit$par[2] * extraversion) > 0.5)
(x <- xtabs(~ pred.probit + volunteer, Cowles))

volunteer
pred.probit no yes

FALSE 765 526
TRUE 59 71

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.4116819

Examples revisited: voting intentions data

negLogLik.logit <- function(beta)
{

with(Chile,
{

mu <- logistic(beta[1] + beta[2] * statusquo)
-sum(dvote * log(mu) + (1-dvote) * log(1-mu), na.rm = TRUE)

})
}
negLogLik.probit <- function(beta)
{

with(Chile,
{

mu <- pnorm(beta[1] + beta[2] * statusquo)
-sum(dvote * log(mu) + (1-dvote) * log(1-mu), na.rm = TRUE)

})
}
opt.logit <- optim(par = c(0, 1), fn = negLogLik.logit)
opt.probit <- optim(par = opt.logit$par, fn = negLogLik.probit)
opt.logit$par

[1] 0.2153074 3.2054346

opt.probit$par

[1] 0.09379718 1.74529391

xyplot(dvote ~ statusquo, Chile, jitter.y = TRUE, ylim = c(-0.2, 1.2)) +
layer(panel.curve(logistic(opt.logit$par[1] + opt.logit$par[2] * x), col = "black")) +
layer(panel.curve(pnorm(opt.probit$par[1] + opt.probit$par[2] * x), col = "red"))

13

pred.logit <- with(Chile, logistic(opt.logit$par[1] + opt.logit$par[2] * statusquo) > 0.5)
(x <- xtabs(~ pred.logit + vote, Chile))

vote
pred.logit N Y

FALSE 829 76
TRUE 59 790

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.07696693

pred.probit <- with(Chile, logistic(opt.probit$par[1] + opt.probit$par[2] * statusquo) > 0.5)
(x <- xtabs(~ pred.probit + vote, Chile))

vote
pred.probit N Y

FALSE 829 76
TRUE 59 790

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.07696693

Inference: sampling distribution and testing

• Inference approaches usually based on asymptotic properties of MLEs

• In particular, estimates are asymptotically normal, and Wald tests are possible

• Likelihood ratio tests can also be performed to compare models (asymptotically χ2)

The general formulation: Exponential family

• A p.d.f. or p.m.f. of Y that can be written as

14

p(y; θ, ϕ) = exp
[
yθ − b(θ)
a(ϕ) + c(y, ϕ)

]
• where

– a(·), b(·), c(·) are known functions; in most common cases, a(ϕ) = ϕ/a for some known a

– θ is known as the canonical parameter, and is essentially a location parameter

– ϕ is a dispersion parameter (absent in some cases)

• This representation can be made more general, but is sufficient (and more suitable) for our needs

• Advantage: We can use general results for exponential families

• Expectation and variance: it can be shown that

– E(Y) = µ = b′(θ)
– V (Y) = σ2 = b′′(θ)a(ϕ) = a(ϕ)v(µ)

– In the simplified case, V (Y) = ϕv(µ)/a

• In general, variance is function of mean (and possibly a dispersion parameter)

• The function gc(·) such that θ = gc(µ) = b′
−1(µ) is known as the canonical link function

Digression: expectation and variance of exponential family

• Using shorthand notation a ≡ a(ϕ) and c(y) = c(y, ϕ), we note that

p(y) = exp
[
yθ − b(θ)

a
+ c(y)

]
= e−

b(θ)
a exp

[
yθ

a
+ c(y)

]
• Assuming that p(y) is a density (analogous calculations are valid if p(y) is a mass function),

∫
p(y)dy = 1 =⇒ e

b(θ)
a =

∫
exp

[
yθ

a
+ c(y)

]
dy

=⇒ b(θ)
a

= log
∫

exp
[
yθ

a
+ c(y)

]
dy = logQ(θ)

• Thus, we have

b′(θ)
a

= Q′(θ)
Q(θ) and b′′(θ)

a
= Q′′(θ)

Q(θ) −
(
Q′(θ)
Q(θ)

)2

• Now, interchanging
∫
and d

dθ as necessary (Leibniz’s rule), we have

Q′(θ)
Q(θ) =

∫
exp

[
yθ
a + c(y)

]
y
ady∫

exp
[
yθ
a + c(y)

]
dy

=

∫
exp

[
yθ−b(θ)

a + c(y)
]
y
ady∫

exp
[
yθ−b(θ)

a + c(y)
]
dy

= E(Y)
a

Q′′(θ)
Q(θ) =

∫
y
a
d
dθ exp

[
yθ
a + c(y)

]
dy∫

exp
[
yθ
a + c(y)

]
dy

=

∫
exp

[
yθ
a + c(y)

]
y2

a2 dy∫
exp

[
yθ
a + c(y)

]
dy

=

∫
exp

[
yθ−b(θ)

a + c(y)
]
y2

a2 dy∫
exp

[
yθ−b(θ)

a + c(y)
]
dy

= E(Y 2)
a2

15

https://en.wikipedia.org/wiki/Leibniz_integral_rule

• It immediately follows that E(Y) = b′(θ) and V (Y) = a(ϕ)b′′(θ)

Examples of exponential families

Family a(ϕ) b(θ) c(y, ϕ)

Gaussian ϕ θ2/2 − 1
2 [y

2

ϕ + log(2πϕ)]
Binomial
proportion

1/n log(1 + eθ) log
(
n
ny

)
Poisson 1 eθ − log y!
Gamma ϕ − log(−θ) log(y/ϕ)/ϕ2 − log y − log Γ(1/ϕ)
Inverse-
Gaussian

ϕ −
√
−2θ − 1

2 [log(πϕy3) + 1/(ϕy)]

• Exercise: Verify

• What are the corresponding canonical link functions?

GLM with response distribution given by exponential family

• Observations (xi, yi); i = 1, . . . , n

• Basic premise of model: Location parameter µi = E(Y |X = xi) depends on predictors xi
• Variance depends on µi, but apart from that no dependence on predictors

• In other words, dispersion parameter ϕ is a constant nuisance parameter

• Dependence of µi on xi given by a link function g(·) through the relationship

g(µi) = g(b′(θi)) = xTi β = ηi

• In other words, a GLM can be thought of as a linear model for the transformation g(µ) of the mean µ

• If g(·) is chosen to be the canonical link gc(·), then g(µi) = θi = xTi β = ηi

• This choice leads to some simplications

• However, no reason for effects of covariates to be additive on this particular (transformed) scale

Common link functions

Link η = g(µ) µ = g−1(η)
Identity µ η
Log logµ eη

Inverse 1/µ 1/η
Inverse square 1/µ2 1/√η
Square root √

µ η2

Logit log µ
1−µ

eη

1+eη
Probit Φ−1(µ) Φ(η)
Log-log − log(− logµ) e−e

−η

Complementary log-log log(− logµ) 1− e−eη

16

• Last four are for Binomial proportion; last two are asymmetric (Exercise: plot and compare)

Comparison with variable transformation

• GLM assumes that a transformation of the mean is linear in parameters

• This is somewhat similar to transforming the response to achieve linearity in a linear model

• However, in a linear model, transforming the response also changes its distribution / variance

• In contrast, distribution of response and linearizing transformation are kept separate in GLM

• A practical problem: transformation may not be defined for all observations

– Bernoulli response 0 / 1 is mapped to ±∞ by all link functions
– Poisson count of 0 is mapped to −∞ by log link

Maximum likelihood estimation

• Log-likelihood (assuming for the moment that a(ϕ) may depend on i)

`(θ(β), ϕ|y) = logL(θ(β), ϕ|y) =
n∑
i=1

[
yiθi − b(θi)
ai(ϕ) + c(yi, ϕ)

]
=

n∑
i=1

`i

• Suppose link function is g(µi) = ηi = xTi β where µi = b′(θi)

• To obtain score equations / estimating equations, we need to calculate (for i = 1, . . . , n; j = 1, . . . , p)

∂`i
∂βj

= ∂`i
∂θi
× ∂θi
∂µi
× ∂µi
∂ηi
× ∂ηi
∂βj

• Note that b′(θi) = µi, ∂µi∂θi
= b′′(θi) = v(µi), ∂ηi∂µi

= g′(µi), and ∂ηi
∂βj

= xij

• After simplification, we obtain the score equations (one for each βj)

sj(β) = ∂

∂βj
`(θ(β), ϕ|y) =

n∑
i=1

yi − µi
ai(ϕ)v(µi)

× xij
g′(µi)

= 0

• To proceed further, we need to assume the form ai(ϕ) = ϕ/ai, which gives

sj(β) =
n∑
i=1

ai(yi − µi)
v(µi)

× xij
g′(µi)

= 0

• In other words, score equations for β do not depend on the dispersion parameter ϕ

• In practice, ai is constant for most models; for binomial proportion, ϕ = 1 and ai = ni

Maximum likelihood estimation with canonical link

• Further simplification when g(·) is the canonical link gc(·), where ηi = θi

∂`i
∂βj

= ∂`i
∂θi
× ∂ηi
∂βj

= yi − µi
ai(θ)

xij

• Score equations become (when ai(ϕ) = ϕ/ai)

17

n∑
i=1

aiyixij =
n∑
i=1

aiµixij

Analogy with normal equations in linear model

• With A = diag(a1, . . . , an) diagonal matrix of prior weights, these can be written as

XTAµ(β) = XTAy

• In particular, when A = I (for Binomial, use individual Bernoulli trials)

XT (y− µ̂) = 0

• In other words, “residuals” are orthogonal to column space of X

• In the linear model, µ(β) = Xβ, giving the usual normal equations

• In general, the score equations are non-linear in β because µ(β) is non-linear

• This is true whether or not we use the canonical link

• How can we solve them? Need some kind of iterative method

Digression: Newton-Raphson and Fisher scoring

• The Newton-Raphson method is a general numerical algorithm to solve f(x) = 0

• Suppose we have an approximate solution x0

• Locally approximate f(x) by a line (first order Taylor series approximation)

f(x) ≈ f(x0) + f ′(x0)(x− x0)

• A hopefully “closer” solution of f(x) = 0 is the root of this approximation

x1 = x0 −
f(x0)
f ′(x0)

• Treat x1 as an updated estimate and iterate until convergence

x(t+1) = x(t) − f(x(t))
f ′(x(t))

• This usually works as long as we get a good starting estimate x(0) and f is well behaved

• In our case, f is the score function s(β)

• This is actually a set of p separate equations sj(β) = 0 (one for each βj)

• In other words, s(·) is a vector function

s : Rp → Rp

• Fortunately, the algorithm is still valid, giving

18

β̂(t+1) = β̂(t) −
(
H
(
β̂(t)

))−1
s(β̂(t))

• where H
(
β̂(t)

)
is the Jacobian matrix of s(·) or the Hessian of the log-likelihood function at β̂(t)

• The only potential difficulty is in computing H

• In the context of maximum likelihood estimation, H is closely related to Fisher information

• Recall that for a scalar parameter θ,

Eθ(s(θ;X)) = Eθ

[
∂

∂θ
log f(X; θ)

]
=
∫ ∂

∂θf(x; θ)
f(x; θ) f(x; θ) = ∂

∂θ
1 = 0

• Also, under regularity conditions, the variance of the score function (a.k.a. Fisher information) is given
by

I(θ) = Vθ(s(θ;X)) = Eθ

[(
∂

∂θ
log f(X; θ)

)2
]

= −Eθ
[
∂2

∂θ2 log f(X; θ)
]

= −EθH(θ;X)

• In other words, Fisher information is the expected value of the Hessian

• −H(θ;X) is often referred to as the observed information (as it depends on the observations X)

• These results hold for vector-valued parameters as well

• The Newton-Raphson algorithm described above uses the observed information

• If we use Fisher information instead, we get the so-called “Fisher scoring” algorithm

• Before we try to see how this turns out, we look at a more “intuitive” iterative method

Iteratively Reweighted Least Squares for GLM

• Write y = µ+ (y − µ) = µ+ ε. Can we transform both µ and ε to the linear scale?

• η = g(µ) is the “mean” in the linear scale, and a first order Taylor approximation of g around µ gives

g̃(y) = g(µ) + g′(µ)(y − µ)

• Use this to define “error” εi and “response” zi on the linear scale as

zi ≡ g̃(yi) = g(µi) + g′(µi)(yi − µi) = ηi + εi

• It follows that

E(zi) = ηi = xTi β and V (zi) = [g′(µi)]2v(µi)/ai
• This is a weighted linear model that can be fitted using weighted least squares problem. . .

• apart from the slight inconvenience that µi-s depend on the unknown parameter β

However, this immediately suggests the following iterative approach:

1. Start with initial estimates µ̂(0)
i and η̂(0)

i = g(µ̂(0)
i)

2. For each iteration, set

• working response z(t)
i = η̂

(t)
i + g′(µ̂(t)

i)
(
yi − µ̂(t)

i

)

19

• working weights
w

(t)
i = ai[

g′(µ̂(t)
i)
]2
v(µ̂(t)

i)

3. Fit a weighted least squares model for z on X with weights w to obtain β̂(t+1)

4. Define η̂(t+1)
i = xTi β̂

(t+1) and µ̂(t+1)
i = g−1

(
η̂

(t+1)
i

)
5. Repeat steps 2–4 until convergence

• In matrix notation, the iteration can be written as

β̂(t+1) = (XTW (t)X)−1XTW (t)z(t)

= (XTW (t)X)−1XTW (t)
[
Xβ̂(t) + G̃(t) (y− µ̂(t))

]
= β̂(t) + (XTW (t)X)−1XTW (t)G̃(t) (y− µ̂(t))

• Where

– W (t) is a diagonal matrix with elements w(t)
i

– G̃(t) is a diagonal matrix with elements g′(µ̂(t)
i)

• It turns out that this is equivalent to the Fisher scoring algorithm

• Enough to show

(XTW (t)X)−1XTW (t)G̃(t) (y− µ̂(t)) = −
(
EβH

(
β̂(t)

))−1
s(β̂(t))

• Additionally, with the canonical link, this reduces to the Newton-Raphson algorithm

Calculation of Hessian H

• Recall that

∂`i
∂θi

= yi − b′(θi)
ai(ϕ) =⇒ ∂2`i

∂θ2
i

= ∂

∂θi

(
yi − µi
ai(ϕ)

)
= −b

′′(θi)
ai(ϕ) = − v(µi)

ai(ϕ)

• Hjk =
∑
i hijk, where

hijk = ∂2`i
∂βjβk

= ∂

∂βj

[
∂`i
∂βk

]
= ∂

∂βj

[
∂`i
∂θi
× ∂θi
∂µi
× ∂µi
∂ηi
× ∂ηi
∂βk

]
= ∂

∂βj

[
yi − µi
ai(ϕ) ×

∂θi
∂µi
× ∂µi
∂ηi
× xik

]
= xik

[
yi − µi
ai(ϕ)

∂

∂βj

(
∂θi
∂µi
× ∂µi
∂ηi

)
+ ∂

∂βj

(
yi − µi
ai(ϕ)

)
· ∂θi
∂µi
× ∂µi
∂ηi

]
= xik

[
yi − µi
ai(ϕ)

∂

∂βj

(
∂θi
∂µi
× ∂µi
∂ηi

)
− v(µi)
ai(ϕ) ·

(
∂θi
∂µi
× ∂µi
∂ηi

)2
× xij

]

20

Calculation of Hessian H when g(·) is canonical link

• ∂θi
∂µi
× ∂µi

∂ηi
≡ 1

• First term vanishes

• Second term does not involve observations yi
• Observed information equals expected information

• Results in Newton-Raphson iterations

• Hessian is given by

Hjk = −
n∑
i=1

v(µi)
ai(ϕ)xijxik

Calculation of expected Hessian H for general link

• First term vanishes after taking expectation as Eβ(yi − µi) = 0 (second term does not involve y)

• Results in Fisher scoring iterations (Newton-Raphson possible, but not equivalent to IRLS)

• Second term simplifies as before

• Expected Hessian is given by (after assuming ai(ϕ) = ϕ/ai)

EβHjk = −
n∑
i=1

v(µi)
ai(ϕ)

(
1

v(µi)g′(µi)

)2
xijxik = −

n∑
i=1

ai
[g′(µi)]2v(µi)

xijxik

• In other words, Fisher information I = −EβH = XTWX, where W is diagonal with entries

wi = ai
[g′(µi)]2v(µi)

Equivalence of Fisher scoring and IRLS

• Recall: We need to show that

(XTW (t)X)−1XTW (t)G̃(t) (y− µ̂(t)) = −
(
EβH

(
β̂(t)

))−1
s(β̂(t))

• We have just shown that XTW (t)X = −EβH
(
β̂(t)

)
• Remains to show that XTW (t)G̃(t) (y− µ̂(t)) = s(β̂(t))

• Dropping the suffix (t) indicating iteration, the j-th element of the RHS is

s(β) =
n∑
i=1

ai(yi − µi)
v(µi)

· xij
g′(µi)

=
n∑
i=1

xij

[
ai

[g′(µi)]2v(µi)
· g′(µi)

]
(yi − µi)

• It is easy to see that the j-th element of the LHS is the same

21

Initial estimates

• Simple choice: µ̂(0)
i = yi

• This may cause a problem computing η̂(0)
i in some cases

– For Bernoulli response, if µ = y ∈ {0, 1}, logit(µ) = ±∞
– For Poisson response, if µ = y = 0, log(µ) = −∞

• The initial values are not that critical, and can be adjusted to avoid this

• E.g., choose initial µ = 0.5 for Bernoulli, or µ = 1 when y = 0 for Poisson

Estimating the dispersion parameter

• Recall that V (yi) = ϕv(µi)/ai
• This suggests the method of moments estimator

ϕ̂ = 1
n− p

n∑
i=1

ai(yi − µ̂i)2

v(µ̂i)

• This is usually preferred over the MLE of ϕ

Asymptotic sampling distribution of β̂

• Under mild regularity conditions, the MLE β̂ is asymptotically normal

• Variance-covariance matrix is given by inverse of Fisher information

β̂ ∼ AN(β, ϕ I−1
µ) ≡ AN(β, ϕ

(
XTWµX

)−1)

• So Wald tests for linear functions of β can be performed using standard errors based on

V̂ (β̂) = ϕ̂
(
XTWµ̂X

)−1

• For models without a dispersion parameter, these are approximate χ2 or z-tests

• For models with a dispersion parameter, these are approximate F or t-tests

Analysis of deviance

• F -tests to test nested models in linear regression are no longer valid

• Analogous tests can be performed using asymptotic results for likelihood ratio tests

• Recall that the log-likelihood for the model can be written as

`(µ, ϕ|y) = logL(µ, ϕ|y) =
n∑
i=1

[
ai(yiθi − b(θi))

ϕ
+ c(yi, ϕ)

]
• For any fitted model, this can be compared with the “saturated model” µ̂i = yi

• Define deviance (ignoring the dispersion parameter) as twice the difference in log-likelihoods

22

D(y; µ̂) = 2ϕ [`(y, ϕ|y)− `(µ̂, ϕ|y)]

= 2
n∑
i=1

ai [yi(θ(yi)− θ(µ̂i))− (b(θ(yi))− b(θ(µ̂i)))]

• Boundary problems can be resolved on the observation scale

• This is analogous to sum of squared errors in a linear model (exercise: check for Gaussian)

• Forms basis for (asymptotic) χ2 tests for models without a dispersion parameter (Binomial, Poisson)

• Exercise: Compute deviance explicitly for Binomial proportion and Poisson

• The scaled deviance divides by the estimated dispersion parameter

D∗(y; µ̂) = D(y; µ̂)/ϕ̂

• Forms basis for (approximate) F tests for models with a dispersion parameter

• The deviance for a constant mean model (intercept only) is called the null deviance (say D0)

• A GLM analogue of the coefficient of determination R2 for a model with deviance D1 is

R2 = 1− D1

D0

Fitting Generalized Linear Models in R

• GLMs are fit using the function glm(), which has an interface similar to lm()

• In addition to a formula and the data argument, glm() requires a family argument to be specified

• Examples (continuous):

gaussian(link = "identity")
gaussian(link = "log")
gaussian(link = "inverse")

Gamma(link = "inverse")
Gamma(link = "identity")
Gamma(link = "log")

inverse.gaussian(link = "1/mu^2")
inverse.gaussian(link = "inverse")
inverse.gaussian(link = "identity")
inverse.gaussian(link = "log")

• GLMs are fit using the function glm(), which has an interface similar to lm()

• In addition to a formula and the data argument, glm() requires a family argument to be specified

• Examples (discrete):

binomial(link = "logit")
binomial(link = "probit")
binomial(link = "cauchit")
binomial(link = "cloglog")
binomial(link = "log")

23

poisson(link = "log")
poisson(link = "identity")
poisson(link = "sqrt")

• The link function can also be constructed by specifying the functions
– link: g
– linkinv: g−1

– mu.eta: dµ
dη

str(make.link("probit"))

List of 5
$ linkfun :function (mu)
$ linkinv :function (eta)
$ mu.eta :function (eta)
$ valideta:function (eta)
$ name : chr "probit"
- attr(*, "class")= chr "link-glm"

Example: volunteering

fgm1 <- glm(dvol ~ (extraversion + neuroticism) * sex, Cowles, family = binomial("logit"))
summary(fgm1)

Call:
glm(formula = dvol ~ (extraversion + neuroticism) * sex, family = binomial("logit"),

data = Cowles)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.3972 -1.0505 -0.9044 1.2603 1.6909

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.138048 0.329538 -3.453 0.000553 ***
extraversion 0.065547 0.019360 3.386 0.000710 ***
neuroticism 0.008910 0.015348 0.581 0.561539
sexmale -0.191828 0.477453 -0.402 0.687851
extraversion:sexmale 0.001600 0.028627 0.056 0.955419
neuroticism:sexmale -0.005612 0.022827 -0.246 0.805785

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1933.5 on 1420 degrees of freedom
Residual deviance: 1906.0 on 1415 degrees of freedom
AIC: 1918

Number of Fisher Scoring iterations: 4

fgm2 <- glm(dvol ~ extraversion, Cowles, family = binomial("logit"))
anova(fgm2, fgm1, test = "LRT")

24

Analysis of Deviance Table

Model 1: dvol ~ extraversion
Model 2: dvol ~ (extraversion + neuroticism) * sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1419 1911.5
2 1415 1906.0 4 5.4899 0.2406

Example: voting intentions

Chile0 <- na.omit(Chile[, c("dvote", "statusquo", "income", "age", "sex")])
fgm3 <- glm(dvote ~ ., Chile0, family = binomial("cauchit")) # ~ . means all covariates
summary(fgm3)

Call:
glm(formula = dvote ~ ., family = binomial("cauchit"), data = Chile0)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6516 -0.3281 -0.2669 0.2883 2.5213

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.723e-01 6.060e-01 1.109 0.267233
statusquo 6.164e+00 6.231e-01 9.893 < 2e-16 ***
income -1.707e-05 4.540e-06 -3.759 0.000171 ***
age 2.529e-02 1.279e-02 1.978 0.047953 *
sexM -6.480e-01 3.676e-01 -1.763 0.077951 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2368.68 on 1708 degrees of freedom
Residual deviance: 754.18 on 1704 degrees of freedom
AIC: 764.18

Number of Fisher Scoring iterations: 9

anova(fgm3, test = "LRT")

Analysis of Deviance Table

Model: binomial, link: cauchit

Response: dvote

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 1708 2368.68
statusquo 1 1597.76 1707 770.92 < 2.2e-16 ***
income 1 9.69 1706 761.23 0.001852 **
age 1 4.07 1705 757.17 0.043740 *

25

sex 1 2.99 1704 754.18 0.084023 .

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example: Snow geese flock counts

• Background: Aerial surveys to estimate number of snow geese over Hudson Bay, Canada

• Approximate count visually estimated by “experienced person”

• In this experiment, two observers recorded estimates for several flocks

• Actual count was obtained from a photograph taken at the same time

library(alr3)
head(snowgeese)

photo obs1 obs2
1 56 50 40
2 38 25 30
3 25 30 40
4 48 35 45
5 38 25 30
6 22 20 20

Example: Poisson response for snow geese flock counts

fmp1 <- glm(photo ~ obs1, snowgeese, family = poisson("log"))
summary(fmp1)

Call:
glm(formula = photo ~ obs1, family = poisson("log"), data = snowgeese)

Deviance Residuals:
Min 1Q Median 3Q Max

-11.516 -4.602 -1.296 2.939 14.351

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.020e+00 2.098e-02 191.55 <2e-16 ***
obs1 4.759e-03 9.689e-05 49.12 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2939.7 on 44 degrees of freedom
Residual deviance: 1274.9 on 43 degrees of freedom
AIC: 1546.8

Number of Fisher Scoring iterations: 5

fmp2 <- glm(photo ~ obs2, snowgeese, family = poisson("log"))
summary(fmp2)

26

Call:
glm(formula = photo ~ obs2, family = poisson("log"), data = snowgeese)

Deviance Residuals:
Min 1Q Median 3Q Max

-9.4531 -3.4545 -0.4068 1.6597 12.6966

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.823e+00 2.377e-02 160.84 <2e-16 ***
obs2 4.966e-03 9.408e-05 52.78 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2939.73 on 44 degrees of freedom
Residual deviance: 773.67 on 43 degrees of freedom
AIC: 1045.6

Number of Fisher Scoring iterations: 4

xyplot(photo ~ obs2, snowgeese, grid = TRUE, aspect = "iso") +
layer(panel.curve(predict(fmp2, newdata = list(obs2 = x), type = "response")))

fmp3 <- glm(photo ~ obs2, snowgeese, family = poisson("identity"))
summary(fmp3)

Call:
glm(formula = photo ~ obs2, family = poisson("identity"), data = snowgeese)

Deviance Residuals:
Min 1Q Median 3Q Max

27

-5.0628 -1.6622 -0.3158 1.3064 8.6863

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.22312 1.39585 8.04 8.96e-16 ***
obs2 0.82102 0.01948 42.14 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2939.73 on 44 degrees of freedom
Residual deviance: 324.55 on 43 degrees of freedom
AIC: 596.51

Number of Fisher Scoring iterations: 6

xyplot(photo ~ obs2, snowgeese, grid = TRUE, aspect = "iso") +
layer(panel.curve(predict(fmp3, newdata = list(obs2 = x), type = "response")))

Diagnostics for GLMs

• For the most part, based on (final) WLS approximation

• Hat-values: Can be taken from WLS approximation (technically depends on y as well as X)

• Residuals: can be of several types, residuals(object, type = ...) in R

– "response" : yi − µ̂i
– "working" : zi − η̂i (residuals from WLS approximation)
– "deviance" : square root of i-th component of deviance (with appropriate sign)
– "pearson" :

√
ϕ̂(yi−µ̂i)√
V̂ (yi)

• Other diagnostic measures and plots have similar generalizations

28

Quasi-likelihood families

• Binomial and Poisson families have ϕ = 1

• We can still pretend that there is a dispersion parameter ϕ during estimation

• There is no corresponding response distribution or likelihood

• The IRLS procedure still works (and gives identical estimates for β)

• However, estimated ϕ̂ > 1 indicates overdispersion

• Tests can be adjusted accordingly

• This approach is known as quasi-likelihood estimation

Example: Quasi-Poisson model for snow geese counts

fmp4 <- glm(photo ~ obs2, snowgeese, family = quasipoisson("identity"))
summary(fmp4)

Call:
glm(formula = photo ~ obs2, family = quasipoisson("identity"),

data = snowgeese)

Deviance Residuals:
Min 1Q Median 3Q Max

-5.0628 -1.6622 -0.3158 1.3064 8.6863

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.22312 3.93720 2.851 0.00668 **
obs2 0.82102 0.05496 14.939 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 7.956067)

Null deviance: 2939.73 on 44 degrees of freedom
Residual deviance: 324.55 on 43 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6

29

	Motivation
	Important special case: binary response
	Example: Data on volunteering
	Summary
	Possible loss functions
	Another example: Voting intentions in the 1988 Chilean plebiscite
	Example: Voting intentions data
	Mis-classification loss: goal is to minimize false classifications
	A simple non-parametric classification method: k-NN
	A simple option: pretend that linear regression is valid
	Can use linear regression to predict: volunteering
	Can use linear regression to predict: voting intentions
	Drawbacks of linear regression
	Model and terminology
	Likelihood
	Choice of link function for binary response
	Common inverse link functions
	Common link functions
	How can we estimate parameters?
	Examples revisited: volunteering data
	Examples revisited: voting intentions data
	Inference: sampling distribution and testing
	The general formulation: Exponential family
	Digression: expectation and variance of exponential family
	Examples of exponential families
	GLM with response distribution given by exponential family
	Common link functions
	Comparison with variable transformation
	Maximum likelihood estimation
	Maximum likelihood estimation with canonical link
	Analogy with normal equations in linear model
	Digression: Newton-Raphson and Fisher scoring
	Iteratively Reweighted Least Squares for GLM
	Calculation of Hessian H
	Calculation of Hessian H when g(\cdot) is canonical link
	Calculation of expected Hessian H for general link
	Equivalence of Fisher scoring and IRLS
	Initial estimates
	Estimating the dispersion parameter
	Asymptotic sampling distribution of \hat\beta
	Analysis of deviance
	Fitting Generalized Linear Models in R
	Example: volunteering
	Example: voting intentions
	Example: Snow geese flock counts
	Example: Poisson response for snow geese flock counts
	Diagnostics for GLMs
	Quasi-likelihood families
	Example: Quasi-Poisson model for snow geese counts

