Generalized Linear Models

Deepayan Sarkar

Motivation

- The standard linear model assumes

$$
y_{i} \sim N\left(\mathbf{x}_{i}^{T} \beta, \sigma^{2}\right)
$$

- In other words, the conditional distribution of $Y \mid \mathbf{X}=\mathbf{x}$
- is a normal distrbution
- with the mean parameter linear in terms involving x, and
- the variance parameter independent of the mean
- Generalized Linear Models (GLMs) allow the response distribution to be non-Normal
- Still retains "linearity" in the sense that the conditional distribution depends on x only through $\mathbf{x}_{i}^{T} \beta$

Important special case: binary response

- We will first focus on a special case: binary response
- This problem can be viewed from various perspectives
- Example: Cowles dataset from carData package (1421 rows):
- volunteer (response): whether willing to volunteer for psychological research
- neuroticism as measured by a test
- extraversion as measured by a test
- sex: whether male or female
- Interested in 'predicting' whether subject is willing to volunteer

Example: Data on volunteering

	neuroticism	extraversion		volunteer
1	16	13	female	no
2	8	14	male	no
3	5	16	male	no
4	8	20	female	no
5	9	19	male	no
6	6	15	male	no
7	8	10	female	no
8	12	11	male	no
9	15	16	male	no
10	18	7	male	no

11	12	16 female	no
12	9	15 male	no
13	13	11 male	no
14	9	13 male	no
15	12	16 female	no
16	11	12 male	no
17	5	5 male	no
18	12	8 male	no
19	9	7 male	no
20	4	11 female	no

xyplot(volunteer ~ neuroticism + extraversion, Cowles, outer = TRUE, jitter. $\mathrm{y}=\mathrm{TRUE}, \mathrm{xlab}=$ NULL)

bwplot(volunteer \sim neuroticism + extraversion, Cowles, outer $=$ TRUE, xlab $=$ NULL, varwidth $=$ TRUE)


```
bwplot(volunteer:sex ~ neuroticism + extraversion, Cowles, outer = TRUE, xlab = NULL, varwidth = TRUE)
```


Summary

- Dependence of response on predictors does not seem to be very strong
- However, there is some information, and there appears to be some interaction
- To proceed, we need to decide
- How can we predict willingness to volunteer?
- What is a suitable loss function?

Possible loss functions

- Loss based on conditional negative log-likelihood
- Needs a model for the conditional distribution of response
- Leads to GLM (logistic regression in this case)
- Misclassfication loss (0 is correctly classified, 1 if misclassfied)
- Even if we use GLM, this is often the loss function we are actually interested in
- We will try some "simple" alternatives before we try logistic regression

Another example: Voting intentions in the 1988 Chilean plebiscite

- Before proceeding, we look at another example where dependence is more clear-cut
- Context: Chile was a military dictatorship under Augusto Pinochet from 1973-1990
- A referendum was held in October 1988 to decide if Chile should
- Continue with Pinochet (Yes; result: 45\%)
- Return to democracy (No; result: 55\%)
- The Chile data (package carData): National survey conducted 5 months before the referendum
- Response: intended vote (Yes / No / Abstain / Undecided)
- Other variables are sex, age, income, etc., and statusquo which measures support for the status quo.

Example: Voting intentions data

```
xyplot(vote ~ age + jitter(log(income)) + statusquo, Chile, subset = vote %in% c("Y", "N"),
```

 outer \(=\) TRUE, jitter. \(\mathrm{y}=\) TRUE, \(s c a l e s=\) list \((x=\) "free"), xlab = NULL)

Mis-classification loss: goal is to minimize false classifications

Volunteering data

```
(x <- xtabs(~ volunteer, data = Cowles))
volunteer
    no yes
824597
min(x) / sum(x) # loss when classifying everything as modal class
```

[1] 0.4201267

Voting intentions data

```
Chile <- droplevels(subset(Chile, vote %in% c("Y", "N"))) # remove Abstain / Undecided
(x <- xtabs(~ vote, Chile))
vote
    N Y
889868
min(x) / sum(x) # loss when classifying everything as modal class
```

[1] 0.4940239

A simple non-parametric classification method: k-NN

- Given x, find k nearest neighbours
- Classify as modal (most common) class among these k observations
- Similar in spirit to LOWESS

```
library(class)
p <- knn.cv(Cowles[, "extraversion", drop = FALSE], cl = Cowles$volunteer, k = 11)
(x <- xtabs(~ p + Cowles$volunteer))
    Cowles$volunteer
p no yes
    no 673429
    yes 151 168
1 - sum(diag(x)) / sum(x)
```

[1] 0.4081633

- Slight improvement over baseline
- More variables not necessarily better (worse than baseline)

```
p <- knn.cv(Cowles[, c("extraversion", "neuroticism")], cl = Cowles$volunteer, k = 11)
(x <- xtabs(~ p + Cowles$volunteer))
    Cowles$volunteer
p no yes
    no 628436
    yes 196 161
1 - sum(diag(x)) / sum(x)
```

[1] 0.4447572

- Substantial improvement in voting intentions data

```
Chile2 <- subset(Chile, !(is.na(statusquo) | is.na(vote)))
p <- knn.cv(Chile2[, "statusquo", drop = FALSE], cl = Chile2$vote, k = 11)
(x <- xtabs(~ p + Chile2$vote))
    Chile2$vote
p N Y
    N 824 71
    Y 64 795
1 - sum(diag(x)) / sum(x)
```

[1] 0.07696693

- Many other classification approaches available (but not in the scope of this course)
- We want to view this as a regression problem with a binary ($0 / 1$) response

A simple option: pretend that linear regression is valid

```
xyplot(volunteer ~ neuroticism + extraversion, Cowles, outer = TRUE, jitter.y = TRUE, xlab = NULL,
```



```
xyplot(vote ~ age + jitter(log(income)) + statusquo, Chile,
    outer = TRUE, jitter.y = TRUE, scales = list(x = "free"), xlab = NULL,
    type = c("p", "r", "smooth"), degree = 1, col.line = "black")
```


Can use linear regression to predict: volunteering

```
Cowles <- transform(Cowles, dvol = ifelse(volunteer == "no", 0, 1))
fm1 <- lm(dvol ~ extraversion, Cowles)
anova(fm1)
Analysis of Variance Table
Response: dvol
Df Sum Sq Mean Sq F value }\operatorname{Pr}(>F
extraversion 1 5.32 5.3171 22.135 2.789e-06 ***
Residuals 1419 340.87 0.2402
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cowles$predvol1 <- as.numeric(predict(fm1) > 0.5)
(x <- xtabs(~ predvol1 + volunteer, Cowles))
    volunteer
predvol1 no yes
    0765 526
    1 59 71
1 - sum(diag(x)) / sum(x) # misclassification rate
[1] 0.4116819
fm2 <- lm(dvol ~ (neuroticism + extraversion) * sex, Cowles)
anova(fm2)
Analysis of Variance Table
Response: dvol
            Df Sum Sq Mean Sq F value Pr (>F)
neuroticism 1 0.06 0.0552 0.2298
extraversion 1 5.49 5.4863 22.8623 1.922e-06 ***
```

```
sex 1 1.07 1.0696 4.4571 0.03493 *
neuroticism:sex 1
extraversion:sex 1 0.00 0.0006 0.0024 0.96109
Residuals }1415339.56 0.240
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Cowles$predvol2 <- as.numeric(predict(fm2) > 0.5)
(x <- xtabs(~ predvol2 + volunteer, Cowles))
            volunteer
predvol2 no yes
    0745512
    1 79 85
1 - sum(diag(x)) / sum(x) # misclassification rate
[1] 0.4159043
```


Can use linear regression to predict: voting intentions

```
Chile <- transform(Chile, dvote = ifelse(vote == "N", 0, 1))
fm3 <- lm(dvote ~ statusquo, Chile, na.action = na.exclude)
anova(fm3)
Analysis of Variance Table
Response: dvote
            Df Sum Sq Mean Sq F value Pr(>F)
statusquo 1 320.21 320.21 4745.2 < 2.2e-16 ***
Residuals 1752 118.23 0.07
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Chile$predvote <- as.numeric(predict(fm3) > 0.5)
(x <- xtabs(~ predvote + vote, Chile))
        vote
predvote N Y
    0838 82
    1 50784
1 - sum(diag(x)) / sum(x) # misclassification rate
[1] 0.07525656
fm4 <- lm(dvote ~ statusquo + age, Chile, na.action = na.exclude)
anova(fm4)
Analysis of Variance Table
Response: dvote
    Df Sum Sq Mean Sq F value Pr(>F)
statusquo 1 320.21 320.21 4747.5401 <2e-16 ***
age 1
Residuals 1751 118.10 0.07
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

```
Chile$predvote <- as.numeric(predict(fm4) > 0.5)
(x <- xtabs(~ predvote + vote, Chile))
        vote
predvote N Y
    0839 85
    149781
1 - sum(diag(x)) / sum(x) # misclassification rate
[1] 0.07639681
```


Drawbacks of linear regression

- Model is clearly wrong: expected value should be in $[0,1]$
- Expected value of response should be a non-linear function (of parameters)
- Squared error is not a meaningful loss function
- However, maximum likelihood approach is still reasonable
- Natural response distribution is Bernoulli
- Probability of "success" depends on covariates
- Logistic regression assumes that this dependence is through a linear combination $\mathbf{x}^{T} \beta$

Model and terminology

- Model:

$$
Y \mid X=x \sim \operatorname{Ber}(\mu(x)) \text { where } \mu: \mathbb{R}^{p} \rightarrow[0,1]
$$

- Linear predictor

$$
\eta=x^{T} \beta
$$

- Link function $g(\cdot)$:

$$
\eta=g(\mu) \text { where } g:[0,1] \rightarrow \mathbb{R}
$$

- Inverse link function $g^{-1}(\cdot)$ (also called the mean function):

$$
\mu=g^{-1}(\eta) \text { where } g^{-1}: \mathbb{R} \rightarrow[0,1]
$$

Likelihood

- Observations $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$; linear predictors $\eta_{i}=x_{i}^{T} \beta$; mean responses $\mu_{i}=g^{-1}\left(\eta_{i}\right)$
- Likelihood

$$
\prod_{i=1}^{n}\left[g^{-1}\left(x_{i}^{T} \beta\right)\right]^{y_{i}}\left[1-g^{-1}\left(x_{i}^{T} \beta\right)\right]^{1-y_{i}}=\prod_{i=1}^{n} \mu_{i}^{y_{i}}\left(1-\mu_{i}\right)^{1-y_{i}}
$$

- log-likelihood

$$
\sum_{i=1}^{n}\left[y_{i} \log \mu_{i}+\left(1-y_{i}\right) \log \left(1-\mu_{i}\right)\right]
$$

- \log-likelihood for the simplest case of one predictor

$$
\sum_{i=1}^{n}\left[y_{i} \log g^{-1}\left(\alpha+\beta x_{i}\right)+\left(1-y_{i}\right) \log \left(1-g^{-1}\left(\alpha+\beta x_{i}\right)\right)\right]
$$

- Will be completely specified once we specify the link function $g(\cdot)$
- There are often multiple choices, with no reason to specifically prefer one over others

Choice of link function for binary response

- The inverse link function $g^{-1}(\eta)$ should have the following properties
- Should map \mathbb{R} to $[0,1]$
- Should be monotone (increasing, without loss of generality)
- Should decrease to 0 as $\eta \rightarrow-\infty$, increase to 1 as $\eta \rightarrow-\infty$
- These are properties satisfied by cumulative distribution functions
- We are usually interested in smooth functions
- Three particular choices are most commonly used:
- The logistic function $\mu=\frac{e^{\eta}}{1+e^{\eta}}$
- The Normal CDF $\mu=\Phi(\eta)$
- The Cauchy CDF
- The logistic function is also a CDF, although the corresponding distribution is not very common
- It is a more "natural" choice in some sense, as we will see later

Common inverse link functions

```
logistic <- function(x) exp(x) / (1 + exp(x))
eta <- seq(-3, 3, 0.01)
xyplot(logistic(eta) + pnorm(eta) + pcauchy(eta) ~ eta, type = "l", ylab = NULL,
    auto.key = list(columns = 3, lines = TRUE, points = FALSE), grid = TRUE)
```


Common link functions

- The corresponding link functions $\eta=g(\mu)$ have standard names
- Logit: $\eta=\log \frac{\mu}{1-\mu}$
- Probit: $\eta=\Phi^{-1}(\mu)$
- Cauchit: $\eta=F^{-1}(\mu)$ where F is the Cauchy CDF
- Link functions connect linear predictor η to mean response μ
- Choice of coefficients (e.g., α and β) control location and slope

How can we estimate parameters?

- We can think of this as a general optimization problem
- Can be solved using general numerical optimizer (will see examples)
- However, we study GLMs in detail for a different reason
- For a specific but quite general class of distributions (exponential family)
- There is a simple and elegant way to estimate parameters
- Like M-estimation, this approach is an example of IRLS
- This allows tools developed for linear models to be easily adapted for GLMs

Examples revisited: volunteering data

- Before we study the general approach, let us try numerical optimization

```
negLogLik.logit <- function(beta)
{
    with(Cowles,
        {
```

```
        mu <- logistic(beta[1] + beta[2] * extraversion)
        -sum(dvol * log(mu) + (1-dvol) * log(1-mu))
    })
}
negLogLik.probit <- function(beta)
{
    with(Cowles,
        {
            mu <- pnorm(beta[1] + beta[2] * extraversion)
            -sum(dvol * log(mu) + (1-dvol) * log(1-mu))
        })
}
opt.logit <- optim(par = c(0, 1), fn = negLogLik.logit)
opt.probit <- optim(par = opt.logit$par, fn = negLogLik.probit)
opt.logit$par
[1] -1.14145947 0.06577276
opt.probit$par
```

[1] -0.70500897 0.04048727
xyplot(dvol ~ extraversion, Cowles, jitter. $x=$ TRUE, jitter.y = TRUE, ylim = $c(-0.2,1.2)$) +
layer(panel.curve(logistic(opt.logit\$par[1] + opt.logit\$par[2] * x), col = "black")) +
layer(panel.curve(pnorm(opt.probit\$par[1] + opt.probit\$par[2] * x), col = "red"))


```
pred.logit <- with(Cowles, logistic(opt.logit$par[1] + opt.logit$par[2] * extraversion) > 0.5)
(x <- xtabs(~ pred.logit + volunteer, Cowles))
    volunteer
pred.logit no yes
    FALSE 765 526
    TRUE 59 71
1 - sum(diag(x)) / sum(x) # misclassification rate
[1] 0.4116819
```

```
pred.probit <- with(Cowles, logistic(opt.probit$par[1] + opt.probit$par[2] * extraversion) > 0.5)
(x <- xtabs(~ pred.probit + volunteer, Cowles))
    volunteer
pred.probit no yes
    FALSE 765 526
    TRUE 59 71
1 - sum(diag(x)) / sum(x) # misclassification rate
```

[1] 0.4116819

Examples revisited: voting intentions data

```
negLogLik.logit <- function(beta)
{
    with(Chile,
            {
                mu <- logistic(beta[1] + beta[2] * statusquo)
                -sum(dvote * log(mu) + (1-dvote) * log(1-mu), na.rm = TRUE)
            })
}
negLogLik.probit <- function(beta)
{
    with(Chile,
            {
                mu <- pnorm(beta[1] + beta[2] * statusquo)
                -sum(dvote * log(mu) + (1-dvote) * log(1-mu), na.rm = TRUE)
            })
}
opt.logit <- optim(par = c(0, 1), fn = negLogLik.logit)
opt.probit <- optim(par = opt.logit$par, fn = negLogLik.probit)
opt.logit$par
[1] 0.2153074 3.2054346
opt.probit$par
```

[1] 0.093797181 .74529391
xyplot(dvote ~ statusquo, Chile, jitter.y = TRUE, ylim = c(-0.2, 1.2)) +
layer (panel.curve(logistic(opt.logit\$par[1] + opt.logit\$par[2] * x), col = "black")) +
 layer(panel.curve (pnorm(opt.probit\$par[1] + opt.probit\$par[2] * x), col = "red"))

pred.logit <- with(Chile, logistic(opt.logit$par[1] + opt.logit$par[2] * statusquo) > 0.5)
pred.logit <- with(Chile, logistic(opt.logit$par[1] + opt.logit\$par[2] * statusquo) > 0.5)
(x <- xtabs(~ pred.logit + vote, Chile))
(x <- xtabs(~ pred.logit + vote, Chile))
vote
vote
pred.logit N Y
pred.logit N Y
FALSE 829 76
FALSE 829 76
TRUE 59 790
TRUE 59 790
1 - sum(diag(x)) / sum(x) \# misclassification rate
1 - sum(diag(x)) / sum(x) \# misclassification rate
[1] 0.07696693
pred.probit <- with(Chile, logistic(opt.probit\$par[1] + opt.probit\$par[2] * statusquo) > 0.5)
(x <- xtabs(~ pred.probit + vote, Chile))
vote
pred.probit N Y
FALSE 82976
TRUE 59790
1 - $\operatorname{sum}(\operatorname{diag}(x)) / \operatorname{sum}(x)$ \# misclassification rate
[1] 0.07696693

Inference: sampling distribution and testing

- Inference approaches usually based on asymptotic properties of MLEs
- In particular, estimates are asymptotically normal, and Wald tests are possible
- Likelihood ratio tests can also be performed to compare models (asymptotically χ^{2})

The general formulation: Exponential family

- A p.d.f. or p.m.f. of Y that can be written as

$$
p(y ; \theta, \varphi)=\exp \left[\frac{y \theta-b(\theta)}{a(\varphi)}+c(y, \varphi)\right]
$$

- where
$-a(\cdot), b(\cdot), c(\cdot)$ are known functions; in most common cases, $a(\varphi)=\varphi / a$ for some known a
- θ is known as the canonical parameter, and is essentially a location parameter
- φ is a dispersion parameter (absent in some cases)
- This representation can be made more general, but is sufficient (and more suitable) for our needs
- Advantage: We can use general results for exponential families
- Expectation and variance: it can be shown that
$-E(Y)=\mu=b^{\prime}(\theta)$
$-V(Y)=\sigma^{2}=b^{\prime \prime}(\theta) a(\varphi)=a(\varphi) v(\mu)$
- In the simplified case, $V(Y)=\varphi v(\mu) / a$
- In general, variance is function of mean (and possibly a dispersion parameter)
- The function $g_{c}(\cdot)$ such that $\theta=g_{c}(\mu)=b^{\prime-1}(\mu)$ is known as the canonical link function

Digression: expectation and variance of exponential family

- Using shorthand notation $a \equiv a(\varphi)$ and $c(y)=c(y, \varphi)$, we note that

$$
p(y)=\exp \left[\frac{y \theta-b(\theta)}{a}+c(y)\right]=e^{-\frac{b(\theta)}{a}} \exp \left[\frac{y \theta}{a}+c(y)\right]
$$

- Assuming that $p(y)$ is a density (analogous calculations are valid if $p(y)$ is a mass function),

$$
\begin{aligned}
\int p(y) d y=1 & \Longrightarrow e^{\frac{b(\theta)}{a}}=\int \exp \left[\frac{y \theta}{a}+c(y)\right] d y \\
& \Longrightarrow \quad \frac{b(\theta)}{a}=\log \int \exp \left[\frac{y \theta}{a}+c(y)\right] d y=\log Q(\theta)
\end{aligned}
$$

- Thus, we have

$$
\frac{b^{\prime}(\theta)}{a}=\frac{Q^{\prime}(\theta)}{Q(\theta)} \quad \text { and } \quad \frac{b^{\prime \prime}(\theta)}{a}=\frac{Q^{\prime \prime}(\theta)}{Q(\theta)}-\left(\frac{Q^{\prime}(\theta)}{Q(\theta)}\right)^{2}
$$

- Now, interchanging \int and $\frac{d}{d \theta}$ as necessary (Leibniz's rule), we have

$$
\begin{aligned}
\frac{Q^{\prime}(\theta)}{Q(\theta)} & =\frac{\int \exp \left[\frac{y \theta}{a}+c(y)\right] \frac{y}{a} d y}{\int \exp \left[\frac{y \theta}{a}+c(y)\right] d y}=\frac{\int \exp \left[\frac{y \theta-b(\theta)}{a}+c(y)\right] \frac{y}{a} d y}{\int \exp \left[\frac{y \theta-b(\theta)}{a}+c(y)\right] d y}=\frac{E(Y)}{a} \\
\frac{Q^{\prime \prime}(\theta)}{Q(\theta)} & =\frac{\int \frac{y}{a} \frac{d}{d \theta} \exp \left[\frac{y \theta}{a}+c(y)\right] d y}{\int \exp \left[\frac{y \theta}{a}+c(y)\right] d y} \\
& =\frac{\int \exp \left[\frac{y \theta}{a}+c(y)\right] \frac{y^{2}}{a^{2}} d y}{\int \exp \left[\frac{y \theta}{a}+c(y)\right] d y}=\frac{\int \exp \left[\frac{y \theta-b(\theta)}{a}+c(y)\right] \frac{y^{2}}{a^{2}} d y}{\int \exp \left[\frac{y \theta-b(\theta)}{a}+c(y)\right] d y}=\frac{E\left(Y^{2}\right)}{a^{2}}
\end{aligned}
$$

- It immediately follows that $E(Y)=b^{\prime}(\theta)$ and $V(Y)=a(\varphi) b^{\prime \prime}(\theta)$

Examples of exponential families

Family	$a(\varphi)$	$b(\theta)$	$c(y, \varphi)$
Gaussian	φ	$\theta^{2} / 2$	$-\frac{1}{2}\left[\frac{y^{2}}{\varphi}+\log (2 \pi \varphi)\right]$
Binomial	$1 / n$	$\log \left(1+e^{\theta}\right)$	$\log \binom{n}{n y}$
proportion		e^{θ}	$-\log y!$
Poisson	1	$-\log (-\theta)$	$\log (y / \varphi) / \varphi^{2}-\log y-\log \Gamma(1 / \varphi)$
Gamma	φ	$-\sqrt{-2 \theta}$	$-\frac{1}{2}\left[\log \left(\pi \varphi y^{3}\right)+1 /(\varphi y)\right]$
Inverse-	φ		
Gaussian			

- Exercise: Verify
- What are the corresponding canonical link functions?

GLM with response distribution given by exponential family

- Observations $\left(x_{i}, y_{i}\right) ; i=1, \ldots, n$
- Basic premise of model: Location parameter $\mu_{i}=E\left(Y \mid X=x_{i}\right)$ depends on predictors x_{i}
- Variance depends on μ_{i}, but apart from that no dependence on predictors
- In other words, dispersion parameter φ is a constant nuisance parameter
- Dependence of μ_{i} on x_{i} given by a link function $g(\cdot)$ through the relationship

$$
g\left(\mu_{i}\right)=g\left(b^{\prime}\left(\theta_{i}\right)\right)=x_{i}^{T} \beta=\eta_{i}
$$

- In other words, a GLM can be thought of as a linear model for the transformation $g(\mu)$ of the mean μ
- If $g(\cdot)$ is chosen to be the canonical link $g_{c}(\cdot)$, then $g\left(\mu_{i}\right)=\theta_{i}=x_{i}^{T} \beta=\eta_{i}$
- This choice leads to some simplications
- However, no reason for effects of covariates to be additive on this particular (transformed) scale

Common link functions

Link	$\eta=g(\mu)$	$\mu=g^{-1}(\eta)$
Identity	μ	η
Log	$\log \mu$	e^{η}
Inverse	$1 / \mu$	$1 / \eta$
Inverse square	$1 / \mu^{2}$	$1 / \sqrt{\eta}$
Square root	$\sqrt{\mu}$	η^{2}
Logit	$\log \frac{\mu}{1-\mu}$	$\frac{e^{\eta}}{1+e^{\eta}}$
Probit	$\Phi^{-1}(\mu)$	$\Phi(\eta)$
Log-log	$-\log (-\log \mu)$	$e^{-e^{-\eta}}$
Complementary $\log -\log$	$\log (-\log \mu)$	$1-e^{-e^{\eta}}$

- Last four are for Binomial proportion; last two are asymmetric (Exercise: plot and compare)

Comparison with variable transformation

- GLM assumes that a transformation of the mean is linear in parameters
- This is somewhat similar to transforming the response to achieve linearity in a linear model
- However, in a linear model, transforming the response also changes its distribution / variance
- In contrast, distribution of response and linearizing transformation are kept separate in GLM
- A practical problem: transformation may not be defined for all observations
- Bernoulli response $0 / 1$ is mapped to $\pm \infty$ by all link functions
- Poisson count of 0 is mapped to $-\infty$ by log link

Maximum likelihood estimation

- Log-likelihood (assuming for the moment that $a(\varphi)$ may depend on i)

$$
\ell(\theta(\beta), \varphi \mid y)=\log L(\theta(\beta), \varphi \mid y)=\sum_{i=1}^{n}\left[\frac{y_{i} \theta_{i}-b\left(\theta_{i}\right)}{a_{i}(\varphi)}+c\left(y_{i}, \varphi\right)\right]=\sum_{i=1}^{n} \ell_{i}
$$

- Suppose link function is $g\left(\mu_{i}\right)=\eta_{i}=x_{i}^{T} \beta$ where $\mu_{i}=b^{\prime}\left(\theta_{i}\right)$
- To obtain score equations / estimating equations, we need to calculate (for $i=1, \ldots, n ; j=1, \ldots, p$)

$$
\frac{\partial \ell_{i}}{\partial \beta_{j}}=\frac{\partial \ell_{i}}{\partial \theta_{i}} \times \frac{\partial \theta_{i}}{\partial \mu_{i}} \times \frac{\partial \mu_{i}}{\partial \eta_{i}} \times \frac{\partial \eta_{i}}{\partial \beta_{j}}
$$

- Note that $b^{\prime}\left(\theta_{i}\right)=\mu_{i}, \frac{\partial \mu_{i}}{\partial \theta_{i}}=b^{\prime \prime}\left(\theta_{i}\right)=v\left(\mu_{i}\right), \frac{\partial \eta_{i}}{\partial \mu_{i}}=g^{\prime}\left(\mu_{i}\right)$, and $\frac{\partial \eta_{i}}{\partial \beta_{j}}=x_{i j}$
- After simplification, we obtain the score equations (one for each β_{j})

$$
s_{j}(\beta)=\frac{\partial}{\partial \beta_{j}} \ell(\theta(\beta), \varphi \mid y)=\sum_{i=1}^{n} \frac{y_{i}-\mu_{i}}{a_{i}(\varphi) v\left(\mu_{i}\right)} \times \frac{x_{i j}}{g^{\prime}\left(\mu_{i}\right)}=0
$$

- To proceed further, we need to assume the form $a_{i}(\varphi)=\varphi / a_{i}$, which gives

$$
s_{j}(\beta)=\sum_{i=1}^{n} \frac{a_{i}\left(y_{i}-\mu_{i}\right)}{v\left(\mu_{i}\right)} \times \frac{x_{i j}}{g^{\prime}\left(\mu_{i}\right)}=0
$$

- In other words, score equations for β do not depend on the dispersion parameter φ
- In practice, a_{i} is constant for most models; for binomial proportion, $\varphi=1$ and $a_{i}=n_{i}$

Maximum likelihood estimation with canonical link

- Further simplification when $g(\cdot)$ is the canonical link $g_{c}(\cdot)$, where $\eta_{i}=\theta_{i}$

$$
\frac{\partial \ell_{i}}{\partial \beta_{j}}=\frac{\partial \ell_{i}}{\partial \theta_{i}} \times \frac{\partial \eta_{i}}{\partial \beta_{j}}=\frac{y_{i}-\mu_{i}}{a_{i}(\theta)} x_{i j}
$$

- Score equations become (when $\left.a_{i}(\varphi)=\varphi / a_{i}\right)$

$$
\sum_{i=1}^{n} a_{i} y_{i} x_{i j}=\sum_{i=1}^{n} a_{i} \mu_{i} x_{i j}
$$

Analogy with normal equations in linear model

- With $\mathbf{A}=\operatorname{diag}\left(a_{1}, \ldots, a_{n}\right)$ diagonal matrix of prior weights, these can be written as

$$
\mathbf{X}^{T} \mathbf{A} \mu(\beta)=\mathbf{X}^{T} \mathbf{A} \mathbf{y}
$$

- In particular, when $\mathbf{A}=\mathbf{I}$ (for Binomial, use individual Bernoulli trials)

$$
\mathbf{X}^{T}(\mathbf{y}-\hat{\mu})=\mathbf{0}
$$

- In other words, "residuals" are orthogonal to column space of \mathbf{X}
- In the linear model, $\mu(\beta)=\mathbf{X} \beta$, giving the usual normal equations
- In general, the score equations are non-linear in β because $\mu(\beta)$ is non-linear
- This is true whether or not we use the canonical link
- How can we solve them? Need some kind of iterative method

Digression: Newton-Raphson and Fisher scoring

- The Newton-Raphson method is a general numerical algorithm to solve $f(x)=0$
- Suppose we have an approximate solution x_{0}
- Locally approximate $f(x)$ by a line (first order Taylor series approximation)

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)
$$

- A hopefully "closer" solution of $f(x)=0$ is the root of this approximation

$$
x_{1}=x_{0}-\frac{f\left(x_{0}\right)}{f^{\prime}\left(x_{0}\right)}
$$

- Treat x_{1} as an updated estimate and iterate until convergence

$$
x^{(t+1)}=x^{(t)}-\frac{f\left(x^{(t)}\right)}{f^{\prime}\left(x^{(t)}\right)}
$$

- This usually works as long as we get a good starting estimate $x^{(0)}$ and f is well behaved
- In our case, f is the score function $s(\beta)$
- This is actually a set of p separate equations $s_{j}(\beta)=0$ (one for each β_{j})
- In other words, $s(\cdot)$ is a vector function

$$
s: \mathbb{R}^{p} \rightarrow \mathbb{R}^{p}
$$

- Fortunately, the algorithm is still valid, giving

$$
\hat{\beta}^{(t+1)}=\hat{\beta}^{(t)}-\left(H\left(\hat{\beta}^{(t)}\right)\right)^{-1} s\left(\hat{\beta}^{(t)}\right)
$$

- where $H\left(\hat{\beta}^{(t)}\right)$ is the Jacobian matrix of $s(\cdot)$ or the Hessian of the log-likelihood function at $\hat{\beta}^{(t)}$
- The only potential difficulty is in computing H
- In the context of maximum likelihood estimation, H is closely related to Fisher information
- Recall that for a scalar parameter θ,

$$
E_{\theta}(s(\theta ; X))=E_{\theta}\left[\frac{\partial}{\partial \theta} \log f(X ; \theta)\right]=\int \frac{\frac{\partial}{\partial \theta} f(x ; \theta)}{f(x ; \theta)} f(x ; \theta)=\frac{\partial}{\partial \theta} 1=0
$$

- Also, under regularity conditions, the variance of the score function (a.k.a. Fisher information) is given by

$$
I(\theta)=V_{\theta}(s(\theta ; X))=E_{\theta}\left[\left(\frac{\partial}{\partial \theta} \log f(X ; \theta)\right)^{2}\right]=-E_{\theta}\left[\frac{\partial^{2}}{\partial \theta^{2}} \log f(X ; \theta)\right]=-E_{\theta} H(\theta ; X)
$$

- In other words, Fisher information is the expected value of the Hessian
- $-H(\theta ; X)$ is often referred to as the observed information (as it depends on the observations X)
- These results hold for vector-valued parameters as well
- The Newton-Raphson algorithm described above uses the observed information
- If we use Fisher information instead, we get the so-called "Fisher scoring" algorithm
- Before we try to see how this turns out, we look at a more "intuitive" iterative method

Iteratively Reweighted Least Squares for GLM

- Write $y=\mu+(y-\mu)=\mu+\epsilon$. Can we transform both μ and ϵ to the linear scale?
- $\eta=g(\mu)$ is the "mean" in the linear scale, and a first order Taylor approximation of g around μ gives

$$
\tilde{g}(y)=g(\mu)+g^{\prime}(\mu)(y-\mu)
$$

- Use this to define "error" ε_{i} and "response" z_{i} on the linear scale as

$$
z_{i} \equiv \tilde{g}\left(y_{i}\right)=g\left(\mu_{i}\right)+g^{\prime}\left(\mu_{i}\right)\left(y_{i}-\mu_{i}\right)=\eta_{i}+\varepsilon_{i}
$$

- It follows that

$$
E\left(z_{i}\right)=\eta_{i}=x_{i}^{T} \beta \quad \text { and } \quad V\left(z_{i}\right)=\left[g^{\prime}\left(\mu_{i}\right)\right]^{2} v\left(\mu_{i}\right) / a_{i}
$$

- This is a weighted linear model that can be fitted using weighted least squares problem...
- apart from the slight inconvenience that μ_{i}-S depend on the unknown parameter β

However, this immediately suggests the following iterative approach:

1. Start with initial estimates $\hat{\mu}_{i}^{(0)}$ and $\hat{\eta}_{i}^{(0)}=g\left(\hat{\mu}_{i}^{(0)}\right)$
2. For each iteration, set

- working response $z_{i}^{(t)}=\hat{\eta}_{i}^{(t)}+g^{\prime}\left(\hat{\mu}_{i}^{(t)}\right)\left(y_{i}-\hat{\mu}_{i}^{(t)}\right)$
- working weights

$$
w_{i}^{(t)}=\frac{a_{i}}{\left[g^{\prime}\left(\hat{\mu}_{i}^{(t)}\right)\right]^{2} v\left(\hat{\mu}_{i}^{(t)}\right)}
$$

3. Fit a weighted least squares model for \mathbf{z} on X with weights \mathbf{w} to obtain $\hat{\beta}^{(t+1)}$
4. Define $\hat{\eta}_{i}^{(t+1)}=x_{i}^{T} \hat{\beta}^{(t+1)}$ and $\hat{\mu}_{i}^{(t+1)}=g^{-1}\left(\hat{\eta}_{i}^{(t+1)}\right)$
5. Repeat steps 2-4 until convergence

- In matrix notation, the iteration can be written as

$$
\begin{aligned}
\hat{\beta}^{(t+1)} & =\left(X^{T} W^{(t)} X\right)^{-1} X^{T} W^{(t)} \mathbf{z}^{(t)} \\
& =\left(X^{T} W^{(t)} X\right)^{-1} X^{T} W^{(t)}\left[X \hat{\beta}^{(t)}+\tilde{G}^{(t)}\left(\mathbf{y}-\hat{\mu}^{(t)}\right)\right] \\
& =\hat{\beta}^{(t)}+\left(X^{T} W^{(t)} X\right)^{-1} X^{T} W^{(t)} \tilde{G}^{(t)}\left(\mathbf{y}-\hat{\mu}^{(t)}\right)
\end{aligned}
$$

- Where
- $W^{(t)}$ is a diagonal matrix with elements $w_{i}^{(t)}$
- $\tilde{G}^{(t)}$ is a diagonal matrix with elements $g^{\prime}\left(\hat{\mu}_{i}^{(t)}\right)$
- It turns out that this is equivalent to the Fisher scoring algorithm
- Enough to show

$$
\left(X^{T} W^{(t)} X\right)^{-1} X^{T} W^{(t)} \tilde{G}^{(t)}\left(\mathbf{y}-\hat{\mu}^{(t)}\right)=-\left(E_{\beta} H\left(\hat{\beta}^{(t)}\right)\right)^{-1} s\left(\hat{\beta}^{(t)}\right)
$$

- Additionally, with the canonical link, this reduces to the Newton-Raphson algorithm

Calculation of Hessian H

- Recall that

$$
\frac{\partial \ell_{i}}{\partial \theta_{i}}=\frac{y_{i}-b^{\prime}\left(\theta_{i}\right)}{a_{i}(\varphi)} \Longrightarrow \frac{\partial^{2} \ell_{i}}{\partial \theta_{i}^{2}}=\frac{\partial}{\partial \theta_{i}}\left(\frac{y_{i}-\mu_{i}}{a_{i}(\varphi)}\right)=\frac{-b^{\prime \prime}\left(\theta_{i}\right)}{a_{i}(\varphi)}=-\frac{v\left(\mu_{i}\right)}{a_{i}(\varphi)}
$$

- $H_{j k}=\sum_{i} h_{i j k}$, where

$$
\begin{aligned}
h_{i j k}=\frac{\partial^{2} \ell_{i}}{\partial \beta_{j} \beta k} & =\frac{\partial}{\partial \beta_{j}}\left[\frac{\partial \ell_{i}}{\partial \beta_{k}}\right]=\frac{\partial}{\partial \beta_{j}}\left[\frac{\partial \ell_{i}}{\partial \theta_{i}} \times \frac{\partial \theta_{i}}{\partial \mu_{i}} \times \frac{\partial \mu_{i}}{\partial \eta_{i}} \times \frac{\partial \eta_{i}}{\partial \beta_{k}}\right] \\
& =\frac{\partial}{\partial \beta_{j}}\left[\frac{y_{i}-\mu_{i}}{a_{i}(\varphi)} \times \frac{\partial \theta_{i}}{\partial \mu_{i}} \times \frac{\partial \mu_{i}}{\partial \eta_{i}} \times x_{i k}\right] \\
& =x_{i k}\left[\frac{y_{i}-\mu_{i}}{a_{i}(\varphi)} \frac{\partial}{\partial \beta_{j}}\left(\frac{\partial \theta_{i}}{\partial \mu_{i}} \times \frac{\partial \mu_{i}}{\partial \eta_{i}}\right)+\frac{\partial}{\partial \beta_{j}}\left(\frac{y_{i}-\mu_{i}}{a_{i}(\varphi)}\right) \cdot \frac{\partial \theta_{i}}{\partial \mu_{i}} \times \frac{\partial \mu_{i}}{\partial \eta_{i}}\right] \\
& =x_{i k}\left[\frac{y_{i}-\mu_{i}}{a_{i}(\varphi)} \frac{\partial}{\partial \beta_{j}}\left(\frac{\partial \theta_{i}}{\partial \mu_{i}} \times \frac{\partial \mu_{i}}{\partial \eta_{i}}\right)-\frac{v\left(\mu_{i}\right)}{a_{i}(\varphi)} \cdot\left(\frac{\partial \theta_{i}}{\partial \mu_{i}} \times \frac{\partial \mu_{i}}{\partial \eta_{i}}\right)^{2} \times x_{i j}\right]
\end{aligned}
$$

Calculation of Hessian H when $g(\cdot)$ is canonical link

- $\frac{\partial \theta_{i}}{\partial \mu_{i}} \times \frac{\partial \mu_{i}}{\partial \eta_{i}} \equiv 1$
- First term vanishes
- Second term does not involve observations y_{i}
- Observed information equals expected information
- Results in Newton-Raphson iterations
- Hessian is given by

$$
H_{j k}=-\sum_{i=1}^{n} \frac{v\left(\mu_{i}\right)}{a_{i}(\varphi)} x_{i j} x_{i k}
$$

Calculation of expected Hessian H for general link

- First term vanishes after taking expectation as $E_{\beta}\left(y_{i}-\mu_{i}\right)=0$ (second term does not involve y)
- Results in Fisher scoring iterations (Newton-Raphson possible, but not equivalent to IRLS)
- Second term simplifies as before
- Expected Hessian is given by (after assuming $\left.a_{i}(\varphi)=\varphi / a_{i}\right)$

$$
E_{\beta} H_{j k}=-\sum_{i=1}^{n} \frac{v\left(\mu_{i}\right)}{a_{i}(\varphi)}\left(\frac{1}{v\left(\mu_{i}\right) g^{\prime}\left(\mu_{i}\right)}\right)^{2} x_{i j} x_{i k}=-\sum_{i=1}^{n} \frac{a_{i}}{\left[g^{\prime}\left(\mu_{i}\right)\right]^{2} v\left(\mu_{i}\right)} x_{i j} x_{i k}
$$

- In other words, Fisher information $I=-E_{\beta} H=X^{T} W X$, where W is diagonal with entries

$$
w_{i}=\frac{a_{i}}{\left[g^{\prime}\left(\mu_{i}\right)\right]^{2} v\left(\mu_{i}\right)}
$$

Equivalence of Fisher scoring and IRLS

- Recall: We need to show that

$$
\left(X^{T} W^{(t)} X\right)^{-1} X^{T} W^{(t)} \tilde{G}^{(t)}\left(\mathbf{y}-\hat{\mu}^{(t)}\right)=-\left(E_{\beta} H\left(\hat{\beta}^{(t)}\right)\right)^{-1} s\left(\hat{\beta}^{(t)}\right)
$$

- We have just shown that $X^{T} W^{(t)} X=-E_{\beta} H\left(\hat{\beta}^{(t)}\right)$
- Remains to show that $X^{T} W^{(t)} \tilde{G}^{(t)}\left(\mathbf{y}-\hat{\mu}^{(t)}\right)=s\left(\hat{\beta}^{(t)}\right)$
- Dropping the suffix ${ }^{(t)}$ indicating iteration, the j-th element of the RHS is

$$
s(\beta)=\sum_{i=1}^{n} \frac{a_{i}\left(y_{i}-\mu_{i}\right)}{v\left(\mu_{i}\right)} \cdot \frac{x_{i j}}{g^{\prime}\left(\mu_{i}\right)}=\sum_{i=1}^{n} x_{i j}\left[\frac{a_{i}}{\left[g^{\prime}\left(\mu_{i}\right)\right]^{2} v\left(\mu_{i}\right)} \cdot g^{\prime}\left(\mu_{i}\right)\right]\left(y_{i}-\mu_{i}\right)
$$

- It is easy to see that the j-th element of the LHS is the same

Initial estimates

- Simple choice: $\hat{\mu}_{i}^{(0)}=y_{i}$
- This may cause a problem computing $\hat{\eta}_{i}^{(0)}$ in some cases
- For Bernoulli response, if $\mu=y \in\{0,1\}, \operatorname{logit}(\mu)= \pm \infty$
- For Poisson response, if $\mu=y=0, \log (\mu)=-\infty$
- The initial values are not that critical, and can be adjusted to avoid this
- E.g., choose initial $\mu=0.5$ for Bernoulli, or $\mu=1$ when $y=0$ for Poisson

Estimating the dispersion parameter

- Recall that $V\left(y_{i}\right)=\varphi v\left(\mu_{i}\right) / a_{i}$
- This suggests the method of moments estimator

$$
\hat{\varphi}=\frac{1}{n-p} \sum_{i=1}^{n} \frac{a_{i}\left(y_{i}-\hat{\mu}_{i}\right)^{2}}{v\left(\hat{\mu}_{i}\right)}
$$

- This is usually preferred over the MLE of φ

Asymptotic sampling distribution of $\hat{\beta}$

- Under mild regularity conditions, the MLE $\hat{\beta}$ is asymptotically normal
- Variance-covariance matrix is given by inverse of Fisher information

$$
\hat{\beta} \sim A N\left(\beta, \varphi I_{\mu}^{-1}\right) \equiv A N\left(\beta, \varphi\left(X^{T} W_{\mu} X\right)^{-1}\right)
$$

- So Wald tests for linear functions of β can be performed using standard errors based on

$$
\hat{V}(\hat{\beta})=\hat{\varphi}\left(X^{T} W_{\hat{\mu}} X\right)^{-1}
$$

- For models without a dispersion parameter, these are approximate χ^{2} or z-tests
- For models with a dispersion parameter, these are approximate F or t-tests

Analysis of deviance

- F-tests to test nested models in linear regression are no longer valid
- Analogous tests can be performed using asymptotic results for likelihood ratio tests
- Recall that the log-likelihood for the model can be written as

$$
\ell(\mu, \varphi \mid y)=\log L(\mu, \varphi \mid y)=\sum_{i=1}^{n}\left[\frac{a_{i}\left(y_{i} \theta_{i}-b\left(\theta_{i}\right)\right)}{\varphi}+c\left(y_{i}, \varphi\right)\right]
$$

- For any fitted model, this can be compared with the "saturated model" $\hat{\mu}_{i}=y_{i}$
- Define deviance (ignoring the dispersion parameter) as twice the difference in log-likelihoods

$$
\begin{aligned}
D(y ; \hat{\mu}) & =2 \varphi[\ell(y, \varphi \mid y)-\ell(\hat{\mu}, \varphi \mid y)] \\
& =2 \sum_{i=1}^{n} a_{i}\left[y_{i}\left(\theta\left(y_{i}\right)-\theta\left(\hat{\mu}_{i}\right)\right)-\left(b\left(\theta\left(y_{i}\right)\right)-b\left(\theta\left(\hat{\mu}_{i}\right)\right)\right)\right]
\end{aligned}
$$

- Boundary problems can be resolved on the observation scale
- This is analogous to sum of squared errors in a linear model (exercise: check for Gaussian)
- Forms basis for (asymptotic) χ^{2} tests for models without a dispersion parameter (Binomial, Poisson)
- Exercise: Compute deviance explicitly for Binomial proportion and Poisson
- The scaled deviance divides by the estimated dispersion parameter

$$
D^{*}(y ; \hat{\mu})=D(y ; \hat{\mu}) / \hat{\varphi}
$$

- Forms basis for (approximate) F tests for models with a dispersion parameter
- The deviance for a constant mean model (intercept only) is called the null deviance (say D_{0})
- A GLM analogue of the coefficient of determination R^{2} for a model with deviance D_{1} is

$$
R^{2}=1-\frac{D_{1}}{D_{0}}
$$

Fitting Generalized Linear Models in R

- GLMs are fit using the function $g \operatorname{lm}()$, which has an interface similar to $\operatorname{lm}()$
- In addition to a formula and the data argument, $g \operatorname{lm}()$ requires a family argument to be specified
- Examples (continuous):

```
gaussian(link = "identity")
gaussian(link = "log")
gaussian(link = "inverse")
Gamma(link = "inverse")
Gamma(link = "identity")
Gamma(link = "log")
inverse.gaussian(link = "1/mu^2")
inverse.gaussian(link = "inverse")
inverse.gaussian(link = "identity")
inverse.gaussian(link = "log")
```

- GLMs are fit using the function $\operatorname{glm}()$, which has an interface similar to $\operatorname{lm}()$
- In addition to a formula and the data argument, $\operatorname{glm}()$ requires a family argument to be specified
- Examples (discrete):

```
binomial(link = "logit")
binomial(link = "probit")
binomial(link = "cauchit")
binomial(link = "cloglog")
binomial(link = "log")
```

```
poisson(link = "log")
poisson(link = "identity")
poisson(link = "sqrt")
```

- The link function can also be constructed by specifying the functions
- link: g
- linkinv: g^{-1}
- mu.eta: $\frac{d \mu}{d \eta}$
str(make.link("probit"))
List of 5
\$ linkfun :function (mu)
\$ linkinv :function (eta)
\$ mu.eta :function (eta)
\$ valideta:function (eta)
\$ name : chr "probit"
- attr(*, "class")= chr "link-glm"

Example: volunteering

```
fgm1 <- glm(dvol ~ (extraversion + neuroticism) * sex, Cowles, family = binomial("logit"))
summary(fgm1)
```

Call:
glm(formula = dvol ~ (extraversion + neuroticism) * sex, family = binomial("logit"),
data $=$ Cowles)
Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-1.3972	-1.0505	-0.9044	1.2603	1.6909

Coefficients:

| | Estimate | Std. Error z value $\operatorname{Pr}(>\|z\|)$ | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | :--- |
| (Intercept) | -1.138048 | 0.329538 | -3.453 | 0.000553 | $* * *$ |
| extraversion | 0.065547 | 0.019360 | 3.386 | 0.000710 | $* * *$ |
| neuroticism | 0.008910 | 0.015348 | 0.581 | 0.561539 | |
| sexmale | -0.191828 | 0.477453 | -0.402 | 0.687851 | |
| extraversion:sexmale | 0.001600 | 0.028627 | 0.056 | 0.955419 | |
| neuroticism:sexmale | -0.005612 | 0.022827 | -0.246 | 0.805785 | |

(Dispersion parameter for binomial family taken to be 1)
Null deviance: 1933.5 on 1420 degrees of freedom
Residual deviance: 1906.0 on 1415 degrees of freedom
AIC: 1918
Number of Fisher Scoring iterations: 4
fgm2 <- glm(dvol ~ extraversion, Cowles, family = binomial("logit"))
anova(fgm2, fgm1, test = "LRT")

Analysis of Deviance Table

```
Model 1: dvol ~ extraversion
Model 2: dvol ~ (extraversion + neuroticism) * sex
    Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1419 1911.5
2 1415 1906.0 4 5.4899 0.2406
```


Example: voting intentions

```
Chile0 <- na.omit(Chile[, c("dvote", "statusquo", "income", "age", "sex")])
fgm3 <- glm(dvote ~ ., Chile0, family = binomial("cauchit")) # ~ . means all covariates
summary(fgm3)
Call:
glm(formula = dvote ~ ., family = binomial("cauchit"), data = Chile0)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.6516 & -0.3281 & -0.2669 & 0.2883 & 2.5213
\end{tabular}
Coefficients:
            Estimate Std. Error z value Pr(> |z|)
(Intercept) 6.723e-01 6.060e-01 1.109 0.267233
statusquo 6.164e+00 6.231e-01 9.893 < 2e-16 ***
income -1.707e-05 4.540e-06 -3.759 0.000171 ***
age 2.529e-02 1.279e-02 1.978 0.047953 *
sexM -6.480e-01 3.676e-01 -1.763 0.077951.
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for binomial family taken to be 1)
    Null deviance: 2368.68 on 1708 degrees of freedom
Residual deviance: 754.18 on 1704 degrees of freedom
AIC: 764.18
Number of Fisher Scoring iterations: 9
anova(fgm3, test = "LRT")
Analysis of Deviance Table
Model: binomial, link: cauchit
Response: dvote
Terms added sequentially (first to last)
    Df Deviance Resid. Df Resid. Dev Pr(>Chi)
\begin{tabular}{lrrrrr} 
NULL & & & 1708 & 2368.68 \\
Statusquo & 1 & 1597.76 & 1707 & \(770.92<2.2 \mathrm{e}-16 * * *\) \\
income & 1 & 9.69 & 1706 & 761.23 & \(0.001852^{* *}\) \\
age & 1 & 4.07 & 1705 & 757.17 & \(0.043740 *\)
\end{tabular}
```

```
sex 1 2.99 1704 754.18 0.084023 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```


Example: Snow geese flock counts

- Background: Aerial surveys to estimate number of snow geese over Hudson Bay, Canada
- Approximate count visually estimated by "experienced person"
- In this experiment, two observers recorded estimates for several flocks
- Actual count was obtained from a photograph taken at the same time

library (alr3) head(snowgeese)			
photo obs1 obs2			
1	56	50	40
2	38	25	30
3	25	30	40
4	48	35	45
5	38	25	30
6	22	20	

Example: Poisson response for snow geese flock counts

```
fmp1 <- glm(photo ~ obs1, snowgeese, family = poisson("log"))
summary(fmp1)
Call:
glm(formula = photo ~ obs1, family = poisson("log"), data = snowgeese)
Deviance Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-11.516 & -4.602 & -1.296 & 2.939 & 14.351
\end{tabular}
Coefficients
            Estimate Std. Error z value Pr(>|z|)
(Intercept) 4.020e+00 2.098e-02 191.55 <2e-16 ***
obs1 4.759e-03 9.689e-05 49.12 <2e-16 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 2939.7 on 44 degrees of freedom
Residual deviance: 1274.9 on 43 degrees of freedom
AIC: 1546.8
Number of Fisher Scoring iterations: 5
fmp2 <- glm(photo ~ obs2, snowgeese, family = poisson("log"))
summary(fmp2)
```

Call:

```
glm(formula = photo ~ obs2, family = poisson("log"), data = snowgeese)
```

Deviance Residuals:

Min	$1 Q$	Median	3Q	Max
-9.4531	-3.4545	-0.4068	1.6597	12.6966

Coefficients:
Estimate Std. Error z value $\operatorname{Pr}(>|z|)$
(Intercept) $3.823 \mathrm{e}+00 \quad 2.377 \mathrm{e}-02 \quad 160.84 \quad<2 \mathrm{e}-16$ ***
obs2 $4.966 \mathrm{e}-03 \quad 9.408 \mathrm{e}-05 \quad 52.78 \quad<2 \mathrm{e}-16$ ***
--
Signif. codes: $0{ }^{\prime * * * ' ~} 0.001$ '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
Null deviance: 2939.73 on 44 degrees of freedom
Residual deviance: 773.67 on 43 degrees of freedom
AIC: 1045.6

Number of Fisher Scoring iterations: 4
xyplot(photo ~ obs2, snowgeese, grid = TRUE, aspect = "iso") + layer(panel.curve(predict(fmp2, newdata = list(obs2 = x), type = "response")))

fmp3 <- glm(photo ~ obs2, snowgeese, family = poisson("identity"))
summary (fmp3)

Call:
glm(formula $=$ photo ~ obs2, family = poisson("identity"), data = snowgeese)
Deviance Residuals:
$\begin{array}{llll}\text { Min } & \text { 1Q Median } & \text { 3Q Max }\end{array}$

```
-5.0628 -1.6622 -0.3158 1.3064 8.6863
Coefficients:
    Estimate Std. Error z value Pr(>|z|)
(Intercept) 11.22312 1.39585 8.04 8.96e-16 ***
obs2 0.82102 0.01948 42.14 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for poisson family taken to be 1)
    Null deviance: 2939.73 on 44 degrees of freedom
Residual deviance: 324.55 on 43 degrees of freedom
AIC: 596.51
Number of Fisher Scoring iterations: 6
xyplot(photo ~ obs2, snowgeese, grid = TRUE, aspect = "iso") +
    layer(panel.curve(predict(fmp3, newdata = list(obs2 = x), type = "response")))
```


Diagnostics for GLMs

- For the most part, based on (final) WLS approximation
- Hat-values: Can be taken from WLS approximation (technically depends on y as well as X)
- Residuals: can be of several types, residuals(object, type = ...) in R
- "response" : $y_{i}-\hat{\mu}_{i}$
- "working" : $z_{i}-\hat{\eta}_{i}$ (residuals from WLS approximation)
- "deviance" : square root of i-th component of deviance (with appropriate sign)
- "pearson" : $\frac{\sqrt{\hat{\varphi}\left(y_{i}-\hat{\mu}_{i}\right)}}{\sqrt{\hat{V}\left(y_{i}\right)}}$
- Other diagnostic measures and plots have similar generalizations

Quasi-likelihood families

- Binomial and Poisson families have $\varphi=1$
- We can still pretend that there is a dispersion parameter φ during estimation
- There is no corresponding response distribution or likelihood
- The IRLS procedure still works (and gives identical estimates for β)
- However, estimated $\hat{\varphi}>1$ indicates overdispersion
- Tests can be adjusted accordingly
- This approach is known as quasi-likelihood estimation

Example: Quasi-Poisson model for snow geese counts

```
fmp4 <- glm(photo ~ obs2, snowgeese, family = quasipoisson("identity"))
summary(fmp4)
Call:
glm(formula = photo ~ obs2, family = quasipoisson("identity"),
    data = snowgeese)
Deviance Residuals:
    Min 1Q Median 3Q Max
-5.0628 -1.6622 -0.3158 1.3064 8.6863
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) 11.22312 3.93720 2.851 0.00668 **
obs2 0.82102 0.05496 14.939 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
(Dispersion parameter for quasipoisson family taken to be 7.956067)
    Null deviance: 2939.73 on 44 degrees of freedom
Residual deviance: 324.55 on 43 degrees of freedom
AIC: NA
Number of Fisher Scoring iterations: 6
```

