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Motivation

• The standard linear model assumes

yi ∼ N(xTi β, σ2)

• In other words, the conditional distribution of Y |X = x

– is a normal distrbution
– with the mean parameter linear in terms involving x, and
– the variance parameter independent of the mean

• Generalized Linear Models (GLMs) allow the response distribution to be non-Normal

• Still retains “linearity” in the sense that the conditional distribution depends on x only through xTi β

Important special case: binary response

• We will first focus on a special case: binary response

• This problem can be viewed from various perspectives

• Example: Cowles dataset from carData package (1421 rows):

– volunteer (response): whether willing to volunteer for psychological research
– neuroticism as measured by a test
– extraversion as measured by a test
– sex: whether male or female

• Interested in ‘predicting’ whether subject is willing to volunteer

Example: Data on volunteering

head(Cowles, 20)

neuroticism extraversion sex volunteer
1 16 13 female no
2 8 14 male no
3 5 16 male no
4 8 20 female no
5 9 19 male no
6 6 15 male no
7 8 10 female no
8 12 11 male no
9 15 16 male no
10 18 7 male no
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11 12 16 female no
12 9 15 male no
13 13 11 male no
14 9 13 male no
15 12 16 female no
16 11 12 male no
17 5 5 male no
18 12 8 male no
19 9 7 male no
20 4 11 female no

xyplot(volunteer ~ neuroticism + extraversion, Cowles, outer = TRUE, jitter.y = TRUE, xlab = NULL)

bwplot(volunteer ~ neuroticism + extraversion, Cowles, outer = TRUE, xlab = NULL, varwidth = TRUE)
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bwplot(volunteer:sex ~ neuroticism + extraversion, Cowles, outer = TRUE, xlab = NULL, varwidth = TRUE)

xyplot(neuroticism ~ extraversion | sex, Cowles, groups = volunteer, grid = TRUE, jitter.x = TRUE, jitter.y = TRUE)

Summary

• Dependence of response on predictors does not seem to be very strong

• However, there is some information, and there appears to be some interaction

• To proceed, we need to decide

– How can we predict willingness to volunteer?
– What is a suitable loss function?
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Possible loss functions

• Loss based on conditional negative log-likelihood

– Needs a model for the conditional distribution of response
– Leads to GLM (logistic regression in this case)

• Misclassfication loss (0 is correctly classified, 1 if misclassfied)

• Even if we use GLM, this is often the loss function we are actually interested in

• We will try some “simple” alternatives before we try logistic regression

Another example: Voting intentions in the 1988 Chilean plebiscite

• Before proceeding, we look at another example where dependence is more clear-cut

• Context: Chile was a military dictatorship under Augusto Pinochet from 1973–1990

• A referendum was held in October 1988 to decide if Chile should

– Continue with Pinochet (Yes; result: 45%)
– Return to democracy (No; result: 55%)

• The Chile data (package carData): National survey conducted 5 months before the referendum

• Response: intended vote (Yes / No / Abstain / Undecided)

• Other variables are sex, age, income, etc., and statusquo which measures support for the status quo.

Example: Voting intentions data

xyplot(vote ~ age + jitter(log(income)) + statusquo, Chile, subset = vote %in% c("Y", "N"),
outer = TRUE, jitter.y = TRUE, scales = list(x = "free"), xlab = NULL)
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Mis-classification loss: goal is to minimize false classifications

Volunteering data

(x <- xtabs(~ volunteer, data = Cowles))

volunteer
no yes

824 597

min(x) / sum(x) # loss when classifying everything as modal class

[1] 0.4201267

Voting intentions data

Chile <- droplevels(subset(Chile, vote %in% c("Y", "N"))) # remove Abstain / Undecided
(x <- xtabs(~ vote, Chile))

vote
N Y

889 868

min(x) / sum(x) # loss when classifying everything as modal class

[1] 0.4940239

A simple non-parametric classification method: k-NN

• Given x, find k nearest neighbours

• Classify as modal (most common) class among these k observations

• Similar in spirit to LOWESS

library(class)
p <- knn.cv(Cowles[, "extraversion", drop = FALSE], cl = Cowles$volunteer, k = 11)
(x <- xtabs(~ p + Cowles$volunteer))

Cowles$volunteer
p no yes

no 673 429
yes 151 168

1 - sum(diag(x)) / sum(x)

[1] 0.4081633

• Slight improvement over baseline

• More variables not necessarily better (worse than baseline)

p <- knn.cv(Cowles[, c("extraversion", "neuroticism")], cl = Cowles$volunteer, k = 11)
(x <- xtabs(~ p + Cowles$volunteer))

Cowles$volunteer
p no yes

no 628 436
yes 196 161

1 - sum(diag(x)) / sum(x)

[1] 0.4447572
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• Substantial improvement in voting intentions data

Chile2 <- subset(Chile, !(is.na(statusquo) | is.na(vote)))
p <- knn.cv(Chile2[, "statusquo", drop = FALSE], cl = Chile2$vote, k = 11)
(x <- xtabs(~ p + Chile2$vote))

Chile2$vote
p N Y

N 824 71
Y 64 795

1 - sum(diag(x)) / sum(x)

[1] 0.07696693

• Many other classification approaches available (but not in the scope of this course)

• We want to view this as a regression problem with a binary (0/1) response

A simple option: pretend that linear regression is valid

xyplot(volunteer ~ neuroticism + extraversion, Cowles, outer = TRUE, jitter.y = TRUE, xlab = NULL,
type = c("p", "r", "smooth"), degree = 1, col.line = "black")

xyplot(vote ~ age + jitter(log(income)) + statusquo, Chile,
outer = TRUE, jitter.y = TRUE, scales = list(x = "free"), xlab = NULL,
type = c("p", "r", "smooth"), degree = 1, col.line = "black")
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Can use linear regression to predict: volunteering

Cowles <- transform(Cowles, dvol = ifelse(volunteer == "no", 0, 1))
fm1 <- lm(dvol ~ extraversion, Cowles)
anova(fm1)

Analysis of Variance Table

Response: dvol
Df Sum Sq Mean Sq F value Pr(>F)

extraversion 1 5.32 5.3171 22.135 2.789e-06 ***
Residuals 1419 340.87 0.2402
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cowles$predvol1 <- as.numeric(predict(fm1) > 0.5)
(x <- xtabs(~ predvol1 + volunteer, Cowles))

volunteer
predvol1 no yes

0 765 526
1 59 71

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.4116819

fm2 <- lm(dvol ~ (neuroticism + extraversion) * sex, Cowles)
anova(fm2)

Analysis of Variance Table

Response: dvol
Df Sum Sq Mean Sq F value Pr(>F)

neuroticism 1 0.06 0.0552 0.2298 0.63172
extraversion 1 5.49 5.4863 22.8623 1.922e-06 ***
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sex 1 1.07 1.0696 4.4571 0.03493 *
neuroticism:sex 1 0.02 0.0153 0.0640 0.80038
extraversion:sex 1 0.00 0.0006 0.0024 0.96109
Residuals 1415 339.56 0.2400
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Cowles$predvol2 <- as.numeric(predict(fm2) > 0.5)
(x <- xtabs(~ predvol2 + volunteer, Cowles))

volunteer
predvol2 no yes

0 745 512
1 79 85

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.4159043

Can use linear regression to predict: voting intentions

Chile <- transform(Chile, dvote = ifelse(vote == "N", 0, 1))
fm3 <- lm(dvote ~ statusquo, Chile, na.action = na.exclude)
anova(fm3)

Analysis of Variance Table

Response: dvote
Df Sum Sq Mean Sq F value Pr(>F)

statusquo 1 320.21 320.21 4745.2 < 2.2e-16 ***
Residuals 1752 118.23 0.07
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Chile$predvote <- as.numeric(predict(fm3) > 0.5)
(x <- xtabs(~ predvote + vote, Chile))

vote
predvote N Y

0 838 82
1 50 784

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.07525656

fm4 <- lm(dvote ~ statusquo + age, Chile, na.action = na.exclude)
anova(fm4)

Analysis of Variance Table

Response: dvote
Df Sum Sq Mean Sq F value Pr(>F)

statusquo 1 320.21 320.21 4747.5401 <2e-16 ***
age 1 0.13 0.13 1.8752 0.1711
Residuals 1751 118.10 0.07
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Chile$predvote <- as.numeric(predict(fm4) > 0.5)
(x <- xtabs(~ predvote + vote, Chile))

vote
predvote N Y

0 839 85
1 49 781

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.07639681

Drawbacks of linear regression

• Model is clearly wrong: expected value should be in [0, 1]

• Expected value of response should be a non-linear function (of parameters)

• Squared error is not a meaningful loss function

• However, maximum likelihood approach is still reasonable

• Natural response distribution is Bernoulli

• Probability of “success” depends on covariates

• Logistic regression assumes that this dependence is through a linear combination xTβ

Model and terminology

• Model:

Y |X = x ∼ Ber(µ(x)) where µ : Rp → [0, 1]

• Linear predictor

η = xTβ

• Link function g(·):

η = g(µ) where g : [0, 1]→ R

• Inverse link function g−1(·) (also called the mean function):

µ = g−1(η) where g−1 : R→ [0, 1]

Likelihood

• Observations (x1, y1), . . . , (xn, yn); linear predictors ηi = xTi β; mean responses µi = g−1(ηi)

• Likelihood

n∏
i=1

[g−1(xTi β)]yi [1− g−1(xTi β)]1−yi =
n∏
i=1

µyii (1− µi)1−yi

• log-likelihood
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n∑
i=1

[yi logµi + (1− yi) log(1− µi)]

• log-likelihood for the simplest case of one predictor

n∑
i=1

[yi log g−1(α+ βxi) + (1− yi) log(1− g−1(α+ βxi))]

• Will be completely specified once we specify the link function g(·)

• There are often multiple choices, with no reason to specifically prefer one over others

Choice of link function for binary response

• The inverse link function g−1(η) should have the following properties

– Should map R to [0, 1]
– Should be monotone (increasing, without loss of generality)
– Should decrease to 0 as η → −∞, increase to 1 as η → −∞

• These are properties satisfied by cumulative distribution functions

• We are usually interested in smooth functions

• Three particular choices are most commonly used:

– The logistic function µ = eη

1+eη
– The Normal CDF µ = Φ(η)
– The Cauchy CDF

• The logistic function is also a CDF, although the corresponding distribution is not very common

• It is a more “natural” choice in some sense, as we will see later

Common inverse link functions

logistic <- function(x) exp(x) / (1 + exp(x))
eta <- seq(-3, 3, 0.01)
xyplot(logistic(eta) + pnorm(eta) + pcauchy(eta) ~ eta, type = "l", ylab = NULL,

auto.key = list(columns = 3, lines = TRUE, points = FALSE), grid = TRUE)
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Common link functions

• The corresponding link functions η = g(µ) have standard names

– Logit: η = log µ
1−µ

– Probit: η = Φ−1(µ)

– Cauchit: η = F−1(µ) where F is the Cauchy CDF

• Link functions connect linear predictor η to mean response µ

• Choice of coefficients (e.g., α and β) control location and slope

How can we estimate parameters?

• We can think of this as a general optimization problem

• Can be solved using general numerical optimizer (will see examples)

• However, we study GLMs in detail for a different reason

• For a specific but quite general class of distributions (exponential family)

– There is a simple and elegant way to estimate parameters
– Like M-estimation, this approach is an example of IRLS
– This allows tools developed for linear models to be easily adapted for GLMs

Examples revisited: volunteering data

• Before we study the general approach, let us try numerical optimization

negLogLik.logit <- function(beta)
{

with(Cowles,
{
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mu <- logistic(beta[1] + beta[2] * extraversion)
-sum(dvol * log(mu) + (1-dvol) * log(1-mu))

})
}
negLogLik.probit <- function(beta)
{

with(Cowles,
{

mu <- pnorm(beta[1] + beta[2] * extraversion)
-sum(dvol * log(mu) + (1-dvol) * log(1-mu))

})
}
opt.logit <- optim(par = c(0, 1), fn = negLogLik.logit)
opt.probit <- optim(par = opt.logit$par, fn = negLogLik.probit)
opt.logit$par

[1] -1.14145947 0.06577276

opt.probit$par

[1] -0.70500897 0.04048727

xyplot(dvol ~ extraversion, Cowles, jitter.x = TRUE, jitter.y = TRUE, ylim = c(-0.2, 1.2)) +
layer(panel.curve(logistic(opt.logit$par[1] + opt.logit$par[2] * x), col = "black")) +
layer(panel.curve(pnorm(opt.probit$par[1] + opt.probit$par[2] * x), col = "red"))

pred.logit <- with(Cowles, logistic(opt.logit$par[1] + opt.logit$par[2] * extraversion) > 0.5)
(x <- xtabs(~ pred.logit + volunteer, Cowles))

volunteer
pred.logit no yes

FALSE 765 526
TRUE 59 71

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.4116819
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pred.probit <- with(Cowles, logistic(opt.probit$par[1] + opt.probit$par[2] * extraversion) > 0.5)
(x <- xtabs(~ pred.probit + volunteer, Cowles))

volunteer
pred.probit no yes

FALSE 765 526
TRUE 59 71

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.4116819

Examples revisited: voting intentions data

negLogLik.logit <- function(beta)
{

with(Chile,
{

mu <- logistic(beta[1] + beta[2] * statusquo)
-sum(dvote * log(mu) + (1-dvote) * log(1-mu), na.rm = TRUE)

})
}
negLogLik.probit <- function(beta)
{

with(Chile,
{

mu <- pnorm(beta[1] + beta[2] * statusquo)
-sum(dvote * log(mu) + (1-dvote) * log(1-mu), na.rm = TRUE)

})
}
opt.logit <- optim(par = c(0, 1), fn = negLogLik.logit)
opt.probit <- optim(par = opt.logit$par, fn = negLogLik.probit)
opt.logit$par

[1] 0.2153074 3.2054346

opt.probit$par

[1] 0.09379718 1.74529391

xyplot(dvote ~ statusquo, Chile, jitter.y = TRUE, ylim = c(-0.2, 1.2)) +
layer(panel.curve(logistic(opt.logit$par[1] + opt.logit$par[2] * x), col = "black")) +
layer(panel.curve(pnorm(opt.probit$par[1] + opt.probit$par[2] * x), col = "red"))
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pred.logit <- with(Chile, logistic(opt.logit$par[1] + opt.logit$par[2] * statusquo) > 0.5)
(x <- xtabs(~ pred.logit + vote, Chile))

vote
pred.logit N Y

FALSE 829 76
TRUE 59 790

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.07696693

pred.probit <- with(Chile, logistic(opt.probit$par[1] + opt.probit$par[2] * statusquo) > 0.5)
(x <- xtabs(~ pred.probit + vote, Chile))

vote
pred.probit N Y

FALSE 829 76
TRUE 59 790

1 - sum(diag(x)) / sum(x) # misclassification rate

[1] 0.07696693

Inference: sampling distribution and testing

• Inference approaches usually based on asymptotic properties of MLEs

• In particular, estimates are asymptotically normal, and Wald tests are possible

• Likelihood ratio tests can also be performed to compare models (asymptotically χ2)

The general formulation: Exponential family

• A p.d.f. or p.m.f. of Y that can be written as
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p(y; θ, ϕ) = exp
[
yθ − b(θ)
a(ϕ) + c(y, ϕ)

]
• where

– a(·), b(·), c(·) are known functions; in most common cases, a(ϕ) = ϕ/a for some known a

– θ is known as the canonical parameter, and is essentially a location parameter

– ϕ is a dispersion parameter (absent in some cases)

• This representation can be made more general, but is sufficient (and more suitable) for our needs

• Advantage: We can use general results for exponential families

• Expectation and variance: it can be shown that

– E(Y ) = µ = b′(θ)
– V (Y ) = σ2 = b′′(θ)a(ϕ) = a(ϕ)v(µ)

– In the simplified case, V (Y ) = ϕv(µ)/a

• In general, variance is function of mean (and possibly a dispersion parameter)

• The function gc(·) such that θ = gc(µ) = b′
−1(µ) is known as the canonical link function

Digression: expectation and variance of exponential family

• Using shorthand notation a ≡ a(ϕ) and c(y) = c(y, ϕ), we note that

p(y) = exp
[
yθ − b(θ)

a
+ c(y)

]
= e−

b(θ)
a exp

[
yθ

a
+ c(y)

]
• Assuming that p(y) is a density (analogous calculations are valid if p(y) is a mass function),

∫
p(y)dy = 1 =⇒ e

b(θ)
a =

∫
exp

[
yθ

a
+ c(y)

]
dy

=⇒ b(θ)
a

= log
∫

exp
[
yθ

a
+ c(y)

]
dy = logQ(θ)

• Thus, we have

b′(θ)
a

= Q′(θ)
Q(θ) and b′′(θ)

a
= Q′′(θ)

Q(θ) −
(
Q′(θ)
Q(θ)

)2

• Now, interchanging
∫
and d

dθ as necessary (Leibniz’s rule), we have

Q′(θ)
Q(θ) =

∫
exp

[
yθ
a + c(y)

]
y
ady∫

exp
[
yθ
a + c(y)

]
dy

=

∫
exp

[
yθ−b(θ)

a + c(y)
]
y
ady∫

exp
[
yθ−b(θ)

a + c(y)
]
dy

= E(Y )
a

Q′′(θ)
Q(θ) =

∫
y
a
d
dθ exp

[
yθ
a + c(y)

]
dy∫

exp
[
yθ
a + c(y)

]
dy

=

∫
exp

[
yθ
a + c(y)

]
y2

a2 dy∫
exp

[
yθ
a + c(y)

]
dy

=

∫
exp

[
yθ−b(θ)

a + c(y)
]
y2

a2 dy∫
exp

[
yθ−b(θ)

a + c(y)
]
dy

= E(Y 2)
a2
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• It immediately follows that E(Y ) = b′(θ) and V (Y ) = a(ϕ)b′′(θ)

Examples of exponential families

Family a(ϕ) b(θ) c(y, ϕ)

Gaussian ϕ θ2/2 − 1
2 [ y

2

ϕ + log(2πϕ)]
Binomial
proportion

1/n log(1 + eθ) log
(
n
ny

)
Poisson 1 eθ − log y!
Gamma ϕ − log(−θ) log(y/ϕ)/ϕ2 − log y − log Γ(1/ϕ)
Inverse-
Gaussian

ϕ −
√
−2θ − 1

2 [log(πϕy3) + 1/(ϕy)]

• Exercise: Verify

• What are the corresponding canonical link functions?

GLM with response distribution given by exponential family

• Observations (xi, yi); i = 1, . . . , n

• Basic premise of model: Location parameter µi = E(Y |X = xi) depends on predictors xi
• Variance depends on µi, but apart from that no dependence on predictors

• In other words, dispersion parameter ϕ is a constant nuisance parameter

• Dependence of µi on xi given by a link function g(·) through the relationship

g(µi) = g(b′(θi)) = xTi β = ηi

• In other words, a GLM can be thought of as a linear model for the transformation g(µ) of the mean µ

• If g(·) is chosen to be the canonical link gc(·), then g(µi) = θi = xTi β = ηi

• This choice leads to some simplications

• However, no reason for effects of covariates to be additive on this particular (transformed) scale

Common link functions

Link η = g(µ) µ = g−1(η)
Identity µ η
Log logµ eη

Inverse 1/µ 1/η
Inverse square 1/µ2 1/√η
Square root √

µ η2

Logit log µ
1−µ

eη

1+eη
Probit Φ−1(µ) Φ(η)
Log-log − log(− logµ) e−e

−η

Complementary log-log log(− logµ) 1− e−eη
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• Last four are for Binomial proportion; last two are asymmetric (Exercise: plot and compare)

Comparison with variable transformation

• GLM assumes that a transformation of the mean is linear in parameters

• This is somewhat similar to transforming the response to achieve linearity in a linear model

• However, in a linear model, transforming the response also changes its distribution / variance

• In contrast, distribution of response and linearizing transformation are kept separate in GLM

• A practical problem: transformation may not be defined for all observations

– Bernoulli response 0 / 1 is mapped to ±∞ by all link functions
– Poisson count of 0 is mapped to −∞ by log link

Maximum likelihood estimation

• Log-likelihood (assuming for the moment that a(ϕ) may depend on i)

`(θ(β), ϕ|y) = logL(θ(β), ϕ|y) =
n∑
i=1

[
yiθi − b(θi)
ai(ϕ) + c(yi, ϕ)

]
=

n∑
i=1

`i

• Suppose link function is g(µi) = ηi = xTi β where µi = b′(θi)

• To obtain score equations / estimating equations, we need to calculate (for i = 1, . . . , n; j = 1, . . . , p)

∂`i
∂βj

= ∂`i
∂θi
× ∂θi
∂µi
× ∂µi
∂ηi
× ∂ηi
∂βj

• Note that b′(θi) = µi, ∂µi∂θi
= b′′(θi) = v(µi), ∂ηi∂µi

= g′(µi), and ∂ηi
∂βj

= xij

• After simplification, we obtain the score equations (one for each βj)

sj(β) = ∂

∂βj
`(θ(β), ϕ|y) =

n∑
i=1

yi − µi
ai(ϕ)v(µi)

× xij
g′(µi)

= 0

• To proceed further, we need to assume the form ai(ϕ) = ϕ/ai, which gives

sj(β) =
n∑
i=1

ai(yi − µi)
v(µi)

× xij
g′(µi)

= 0

• In other words, score equations for β do not depend on the dispersion parameter ϕ

• In practice, ai is constant for most models; for binomial proportion, ϕ = 1 and ai = ni

Maximum likelihood estimation with canonical link

• Further simplification when g(·) is the canonical link gc(·), where ηi = θi

∂`i
∂βj

= ∂`i
∂θi
× ∂ηi
∂βj

= yi − µi
ai(θ)

xij

• Score equations become (when ai(ϕ) = ϕ/ai)
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n∑
i=1

aiyixij =
n∑
i=1

aiµixij

Analogy with normal equations in linear model

• With A = diag(a1, . . . , an) diagonal matrix of prior weights, these can be written as

XTAµ(β) = XTAy

• In particular, when A = I (for Binomial, use individual Bernoulli trials)

XT (y− µ̂) = 0

• In other words, “residuals” are orthogonal to column space of X

• In the linear model, µ(β) = Xβ, giving the usual normal equations

• In general, the score equations are non-linear in β because µ(β) is non-linear

• This is true whether or not we use the canonical link

• How can we solve them? Need some kind of iterative method

Digression: Newton-Raphson and Fisher scoring

• The Newton-Raphson method is a general numerical algorithm to solve f(x) = 0

• Suppose we have an approximate solution x0

• Locally approximate f(x) by a line (first order Taylor series approximation)

f(x) ≈ f(x0) + f ′(x0)(x− x0)

• A hopefully “closer” solution of f(x) = 0 is the root of this approximation

x1 = x0 −
f(x0)
f ′(x0)

• Treat x1 as an updated estimate and iterate until convergence

x(t+1) = x(t) − f(x(t))
f ′(x(t))

• This usually works as long as we get a good starting estimate x(0) and f is well behaved

• In our case, f is the score function s(β)

• This is actually a set of p separate equations sj(β) = 0 (one for each βj)

• In other words, s(·) is a vector function

s : Rp → Rp

• Fortunately, the algorithm is still valid, giving
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β̂(t+1) = β̂(t) −
(
H
(
β̂(t)

))−1
s(β̂(t))

• where H
(
β̂(t)

)
is the Jacobian matrix of s(·) or the Hessian of the log-likelihood function at β̂(t)

• The only potential difficulty is in computing H

• In the context of maximum likelihood estimation, H is closely related to Fisher information

• Recall that for a scalar parameter θ,

Eθ(s(θ;X)) = Eθ

[
∂

∂θ
log f(X; θ)

]
=
∫ ∂

∂θf(x; θ)
f(x; θ) f(x; θ) = ∂

∂θ
1 = 0

• Also, under regularity conditions, the variance of the score function (a.k.a. Fisher information) is given
by

I(θ) = Vθ(s(θ;X)) = Eθ

[(
∂

∂θ
log f(X; θ)

)2
]

= −Eθ
[
∂2

∂θ2 log f(X; θ)
]

= −EθH(θ;X)

• In other words, Fisher information is the expected value of the Hessian

• −H(θ;X) is often referred to as the observed information (as it depends on the observations X)

• These results hold for vector-valued parameters as well

• The Newton-Raphson algorithm described above uses the observed information

• If we use Fisher information instead, we get the so-called “Fisher scoring” algorithm

• Before we try to see how this turns out, we look at a more “intuitive” iterative method

Iteratively Reweighted Least Squares for GLM

• Write y = µ+ (y − µ) = µ+ ε. Can we transform both µ and ε to the linear scale?

• η = g(µ) is the “mean” in the linear scale, and a first order Taylor approximation of g around µ gives

g̃(y) = g(µ) + g′(µ)(y − µ)

• Use this to define “error” εi and “response” zi on the linear scale as

zi ≡ g̃(yi) = g(µi) + g′(µi)(yi − µi) = ηi + εi

• It follows that

E(zi) = ηi = xTi β and V (zi) = [g′(µi)]2v(µi)/ai
• This is a weighted linear model that can be fitted using weighted least squares problem. . .

• apart from the slight inconvenience that µi-s depend on the unknown parameter β

However, this immediately suggests the following iterative approach:

1. Start with initial estimates µ̂(0)
i and η̂(0)

i = g(µ̂(0)
i )

2. For each iteration, set

• working response z(t)
i = η̂

(t)
i + g′(µ̂(t)

i )
(
yi − µ̂(t)

i

)
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• working weights
w

(t)
i = ai[

g′(µ̂(t)
i )
]2
v(µ̂(t)

i )

3. Fit a weighted least squares model for z on X with weights w to obtain β̂(t+1)

4. Define η̂(t+1)
i = xTi β̂

(t+1) and µ̂(t+1)
i = g−1

(
η̂

(t+1)
i

)
5. Repeat steps 2–4 until convergence

• In matrix notation, the iteration can be written as

β̂(t+1) = (XTW (t)X)−1XTW (t)z(t)

= (XTW (t)X)−1XTW (t)
[
Xβ̂(t) + G̃(t) (y− µ̂(t))

]
= β̂(t) + (XTW (t)X)−1XTW (t)G̃(t) (y− µ̂(t))

• Where

– W (t) is a diagonal matrix with elements w(t)
i

– G̃(t) is a diagonal matrix with elements g′(µ̂(t)
i )

• It turns out that this is equivalent to the Fisher scoring algorithm

• Enough to show

(XTW (t)X)−1XTW (t)G̃(t) (y− µ̂(t)) = −
(
EβH

(
β̂(t)

))−1
s(β̂(t))

• Additionally, with the canonical link, this reduces to the Newton-Raphson algorithm

Calculation of Hessian H

• Recall that

∂`i
∂θi

= yi − b′(θi)
ai(ϕ) =⇒ ∂2`i

∂θ2
i

= ∂

∂θi

(
yi − µi
ai(ϕ)

)
= −b

′′(θi)
ai(ϕ) = − v(µi)

ai(ϕ)

• Hjk =
∑
i hijk, where

hijk = ∂2`i
∂βjβk

= ∂

∂βj

[
∂`i
∂βk

]
= ∂

∂βj

[
∂`i
∂θi
× ∂θi
∂µi
× ∂µi
∂ηi
× ∂ηi
∂βk

]
= ∂

∂βj

[
yi − µi
ai(ϕ) ×

∂θi
∂µi
× ∂µi
∂ηi
× xik

]
= xik

[
yi − µi
ai(ϕ)

∂

∂βj

(
∂θi
∂µi
× ∂µi
∂ηi

)
+ ∂

∂βj

(
yi − µi
ai(ϕ)

)
· ∂θi
∂µi
× ∂µi
∂ηi

]
= xik

[
yi − µi
ai(ϕ)

∂

∂βj

(
∂θi
∂µi
× ∂µi
∂ηi

)
− v(µi)
ai(ϕ) ·

(
∂θi
∂µi
× ∂µi
∂ηi

)2
× xij

]
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Calculation of Hessian H when g(·) is canonical link

• ∂θi
∂µi
× ∂µi

∂ηi
≡ 1

• First term vanishes

• Second term does not involve observations yi
• Observed information equals expected information

• Results in Newton-Raphson iterations

• Hessian is given by

Hjk = −
n∑
i=1

v(µi)
ai(ϕ)xijxik

Calculation of expected Hessian H for general link

• First term vanishes after taking expectation as Eβ(yi − µi) = 0 (second term does not involve y)

• Results in Fisher scoring iterations (Newton-Raphson possible, but not equivalent to IRLS)

• Second term simplifies as before

• Expected Hessian is given by (after assuming ai(ϕ) = ϕ/ai)

EβHjk = −
n∑
i=1

v(µi)
ai(ϕ)

(
1

v(µi)g′(µi)

)2
xijxik = −

n∑
i=1

ai
[g′(µi)]2v(µi)

xijxik

• In other words, Fisher information I = −EβH = XTWX, where W is diagonal with entries

wi = ai
[g′(µi)]2v(µi)

Equivalence of Fisher scoring and IRLS

• Recall: We need to show that

(XTW (t)X)−1XTW (t)G̃(t) (y− µ̂(t)) = −
(
EβH

(
β̂(t)

))−1
s(β̂(t))

• We have just shown that XTW (t)X = −EβH
(
β̂(t)

)
• Remains to show that XTW (t)G̃(t) (y− µ̂(t)) = s(β̂(t))

• Dropping the suffix (t) indicating iteration, the j-th element of the RHS is

s(β) =
n∑
i=1

ai(yi − µi)
v(µi)

· xij
g′(µi)

=
n∑
i=1

xij

[
ai

[g′(µi)]2v(µi)
· g′(µi)

]
(yi − µi)

• It is easy to see that the j-th element of the LHS is the same

21



Initial estimates

• Simple choice: µ̂(0)
i = yi

• This may cause a problem computing η̂(0)
i in some cases

– For Bernoulli response, if µ = y ∈ {0, 1}, logit(µ) = ±∞
– For Poisson response, if µ = y = 0, log(µ) = −∞

• The initial values are not that critical, and can be adjusted to avoid this

• E.g., choose initial µ = 0.5 for Bernoulli, or µ = 1 when y = 0 for Poisson

Estimating the dispersion parameter

• Recall that V (yi) = ϕv(µi)/ai
• This suggests the method of moments estimator

ϕ̂ = 1
n− p

n∑
i=1

ai(yi − µ̂i)2

v(µ̂i)

• This is usually preferred over the MLE of ϕ

Asymptotic sampling distribution of β̂

• Under mild regularity conditions, the MLE β̂ is asymptotically normal

• Variance-covariance matrix is given by inverse of Fisher information

β̂ ∼ AN(β, ϕ I−1
µ ) ≡ AN(β, ϕ

(
XTWµX

)−1)

• So Wald tests for linear functions of β can be performed using standard errors based on

V̂ (β̂) = ϕ̂
(
XTWµ̂X

)−1

• For models without a dispersion parameter, these are approximate χ2 or z-tests

• For models with a dispersion parameter, these are approximate F or t-tests

Analysis of deviance

• F -tests to test nested models in linear regression are no longer valid

• Analogous tests can be performed using asymptotic results for likelihood ratio tests

• Recall that the log-likelihood for the model can be written as

`(µ, ϕ|y) = logL(µ, ϕ|y) =
n∑
i=1

[
ai(yiθi − b(θi))

ϕ
+ c(yi, ϕ)

]
• For any fitted model, this can be compared with the “saturated model” µ̂i = yi

• Define deviance (ignoring the dispersion parameter) as twice the difference in log-likelihoods
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D(y; µ̂) = 2ϕ [`(y, ϕ|y)− `(µ̂, ϕ|y)]

= 2
n∑
i=1

ai [yi(θ(yi)− θ(µ̂i))− (b(θ(yi))− b(θ(µ̂i)))]

• Boundary problems can be resolved on the observation scale

• This is analogous to sum of squared errors in a linear model (exercise: check for Gaussian)

• Forms basis for (asymptotic) χ2 tests for models without a dispersion parameter (Binomial, Poisson)

• Exercise: Compute deviance explicitly for Binomial proportion and Poisson

• The scaled deviance divides by the estimated dispersion parameter

D∗(y; µ̂) = D(y; µ̂)/ϕ̂

• Forms basis for (approximate) F tests for models with a dispersion parameter

• The deviance for a constant mean model (intercept only) is called the null deviance (say D0)

• A GLM analogue of the coefficient of determination R2 for a model with deviance D1 is

R2 = 1− D1

D0

Fitting Generalized Linear Models in R

• GLMs are fit using the function glm(), which has an interface similar to lm()

• In addition to a formula and the data argument, glm() requires a family argument to be specified

• Examples (continuous):

gaussian(link = "identity")
gaussian(link = "log")
gaussian(link = "inverse")

Gamma(link = "inverse")
Gamma(link = "identity")
Gamma(link = "log")

inverse.gaussian(link = "1/mu^2")
inverse.gaussian(link = "inverse")
inverse.gaussian(link = "identity")
inverse.gaussian(link = "log")

• GLMs are fit using the function glm(), which has an interface similar to lm()

• In addition to a formula and the data argument, glm() requires a family argument to be specified

• Examples (discrete):

binomial(link = "logit")
binomial(link = "probit")
binomial(link = "cauchit")
binomial(link = "cloglog")
binomial(link = "log")
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poisson(link = "log")
poisson(link = "identity")
poisson(link = "sqrt")

• The link function can also be constructed by specifying the functions
– link: g
– linkinv: g−1

– mu.eta: dµ
dη

str(make.link("probit"))

List of 5
$ linkfun :function (mu)
$ linkinv :function (eta)
$ mu.eta :function (eta)
$ valideta:function (eta)
$ name : chr "probit"
- attr(*, "class")= chr "link-glm"

Example: volunteering

fgm1 <- glm(dvol ~ (extraversion + neuroticism) * sex, Cowles, family = binomial("logit"))
summary(fgm1)

Call:
glm(formula = dvol ~ (extraversion + neuroticism) * sex, family = binomial("logit"),

data = Cowles)

Deviance Residuals:
Min 1Q Median 3Q Max

-1.3972 -1.0505 -0.9044 1.2603 1.6909

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.138048 0.329538 -3.453 0.000553 ***
extraversion 0.065547 0.019360 3.386 0.000710 ***
neuroticism 0.008910 0.015348 0.581 0.561539
sexmale -0.191828 0.477453 -0.402 0.687851
extraversion:sexmale 0.001600 0.028627 0.056 0.955419
neuroticism:sexmale -0.005612 0.022827 -0.246 0.805785
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1933.5 on 1420 degrees of freedom
Residual deviance: 1906.0 on 1415 degrees of freedom
AIC: 1918

Number of Fisher Scoring iterations: 4

fgm2 <- glm(dvol ~ extraversion, Cowles, family = binomial("logit"))
anova(fgm2, fgm1, test = "LRT")
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Analysis of Deviance Table

Model 1: dvol ~ extraversion
Model 2: dvol ~ (extraversion + neuroticism) * sex

Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 1419 1911.5
2 1415 1906.0 4 5.4899 0.2406

Example: voting intentions

Chile0 <- na.omit(Chile[, c("dvote", "statusquo", "income", "age", "sex")])
fgm3 <- glm(dvote ~ ., Chile0, family = binomial("cauchit")) # ~ . means all covariates
summary(fgm3)

Call:
glm(formula = dvote ~ ., family = binomial("cauchit"), data = Chile0)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.6516 -0.3281 -0.2669 0.2883 2.5213

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 6.723e-01 6.060e-01 1.109 0.267233
statusquo 6.164e+00 6.231e-01 9.893 < 2e-16 ***
income -1.707e-05 4.540e-06 -3.759 0.000171 ***
age 2.529e-02 1.279e-02 1.978 0.047953 *
sexM -6.480e-01 3.676e-01 -1.763 0.077951 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2368.68 on 1708 degrees of freedom
Residual deviance: 754.18 on 1704 degrees of freedom
AIC: 764.18

Number of Fisher Scoring iterations: 9

anova(fgm3, test = "LRT")

Analysis of Deviance Table

Model: binomial, link: cauchit

Response: dvote

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev Pr(>Chi)
NULL 1708 2368.68
statusquo 1 1597.76 1707 770.92 < 2.2e-16 ***
income 1 9.69 1706 761.23 0.001852 **
age 1 4.07 1705 757.17 0.043740 *

25



sex 1 2.99 1704 754.18 0.084023 .
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Example: Snow geese flock counts

• Background: Aerial surveys to estimate number of snow geese over Hudson Bay, Canada

• Approximate count visually estimated by “experienced person”

• In this experiment, two observers recorded estimates for several flocks

• Actual count was obtained from a photograph taken at the same time

library(alr3)
head(snowgeese)

photo obs1 obs2
1 56 50 40
2 38 25 30
3 25 30 40
4 48 35 45
5 38 25 30
6 22 20 20

Example: Poisson response for snow geese flock counts

fmp1 <- glm(photo ~ obs1, snowgeese, family = poisson("log"))
summary(fmp1)

Call:
glm(formula = photo ~ obs1, family = poisson("log"), data = snowgeese)

Deviance Residuals:
Min 1Q Median 3Q Max

-11.516 -4.602 -1.296 2.939 14.351

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 4.020e+00 2.098e-02 191.55 <2e-16 ***
obs1 4.759e-03 9.689e-05 49.12 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2939.7 on 44 degrees of freedom
Residual deviance: 1274.9 on 43 degrees of freedom
AIC: 1546.8

Number of Fisher Scoring iterations: 5

fmp2 <- glm(photo ~ obs2, snowgeese, family = poisson("log"))
summary(fmp2)
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Call:
glm(formula = photo ~ obs2, family = poisson("log"), data = snowgeese)

Deviance Residuals:
Min 1Q Median 3Q Max

-9.4531 -3.4545 -0.4068 1.6597 12.6966

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.823e+00 2.377e-02 160.84 <2e-16 ***
obs2 4.966e-03 9.408e-05 52.78 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2939.73 on 44 degrees of freedom
Residual deviance: 773.67 on 43 degrees of freedom
AIC: 1045.6

Number of Fisher Scoring iterations: 4

xyplot(photo ~ obs2, snowgeese, grid = TRUE, aspect = "iso") +
layer(panel.curve(predict(fmp2, newdata = list(obs2 = x), type = "response")))

fmp3 <- glm(photo ~ obs2, snowgeese, family = poisson("identity"))
summary(fmp3)

Call:
glm(formula = photo ~ obs2, family = poisson("identity"), data = snowgeese)

Deviance Residuals:
Min 1Q Median 3Q Max
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-5.0628 -1.6622 -0.3158 1.3064 8.6863

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 11.22312 1.39585 8.04 8.96e-16 ***
obs2 0.82102 0.01948 42.14 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 2939.73 on 44 degrees of freedom
Residual deviance: 324.55 on 43 degrees of freedom
AIC: 596.51

Number of Fisher Scoring iterations: 6

xyplot(photo ~ obs2, snowgeese, grid = TRUE, aspect = "iso") +
layer(panel.curve(predict(fmp3, newdata = list(obs2 = x), type = "response")))

Diagnostics for GLMs

• For the most part, based on (final) WLS approximation

• Hat-values: Can be taken from WLS approximation (technically depends on y as well as X)

• Residuals: can be of several types, residuals(object, type = ...) in R

– "response" : yi − µ̂i
– "working" : zi − η̂i (residuals from WLS approximation)
– "deviance" : square root of i-th component of deviance (with appropriate sign)
– "pearson" :

√
ϕ̂(yi−µ̂i)√
V̂ (yi)

• Other diagnostic measures and plots have similar generalizations
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Quasi-likelihood families

• Binomial and Poisson families have ϕ = 1

• We can still pretend that there is a dispersion parameter ϕ during estimation

• There is no corresponding response distribution or likelihood

• The IRLS procedure still works (and gives identical estimates for β)

• However, estimated ϕ̂ > 1 indicates overdispersion

• Tests can be adjusted accordingly

• This approach is known as quasi-likelihood estimation

Example: Quasi-Poisson model for snow geese counts

fmp4 <- glm(photo ~ obs2, snowgeese, family = quasipoisson("identity"))
summary(fmp4)

Call:
glm(formula = photo ~ obs2, family = quasipoisson("identity"),

data = snowgeese)

Deviance Residuals:
Min 1Q Median 3Q Max

-5.0628 -1.6622 -0.3158 1.3064 8.6863

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.22312 3.93720 2.851 0.00668 **
obs2 0.82102 0.05496 14.939 < 2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasipoisson family taken to be 7.956067)

Null deviance: 2939.73 on 44 degrees of freedom
Residual deviance: 324.55 on 43 degrees of freedom
AIC: NA

Number of Fisher Scoring iterations: 6
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