Model Selection

Deepayan Sarkar

Model selection

- Regression problems often have many predictors
- The number of possible models increase rapidly with number of predictors
- Even if we one of these models is "correct", how do we find it?

Why does it matter?

- One solution could be to use all the predictors
- This is technically a valid model
- Unfortunately this usually leads to unnecessarily high prediction error
- Alternative: find "smallest" model for which F-test comparing to full model is accepted
- This leads to multiple testing, inflated Type I error probability (and no obvious fix)
- Model selection is usually based on some alternative criteria developed specifically for that purpose

Underfitting vs overfitting: the bias-variance trade-off

- The basic problem in model selection is the familiar bias-variance trade-off problem
- Underfitting leads to biased coefficient estimates
- Overfitting leads to coefficient estimates with higher variance
- Formally, suppose we fit the two models

$$
\begin{aligned}
& E(\mathbf{y})=\mathbf{X}_{1} \beta_{1} \\
& E(\mathbf{y})=\mathbf{X}_{1} \beta_{1}+\mathbf{X}_{2} \beta_{2}=\mathbf{X} \beta
\end{aligned}
$$

- If the second model is correct, then $\hat{\beta}_{1}^{(1)}$ obtained by fitting the first model will be biased for β_{1} in general
- If the first model is correct, then $\hat{\beta}_{1}^{(2)}$ obtained by fitting the second model will be unbiased for β_{1}
- However, in that case, $\hat{\beta}_{1}^{(2)}$ will have higher variance than $\hat{\beta}_{1}^{(1)}$ in general; i.e., for any vector \mathbf{u},

$$
V\left(\mathbf{u}^{T} \hat{\beta}_{1}^{(2)}\right) \geq V\left(\mathbf{u}^{T} \hat{\beta}_{1}^{(1)}\right)
$$

- Proof: exercise

Model selection criteria

- Overly simple and overly complex models are both bad
- Best model usually lies somewhere in the middle
- How do we find this ideal model?
- Most common approach: some model-selection criterion measuring overall quality of a model
- To be useful, such a criterion must punish both overly simple and overly complex models
- Once criterion is determined, fit a number of different models and choose the best (details later)
- We will first discuss some possible criteria

Coefficient of determination

- The simplest model quality measure is R^{2}

$$
R^{2}=\frac{T^{2}-S^{2}}{T^{2}}=\frac{\frac{T^{2}}{n}-\frac{S^{2}}{n}}{\frac{T^{2}}{n}}
$$

- Always increases when more predictors are added (does not penalize complexity)
- Can compare models of same size, but not generally useful for model selection
- Possible alternative: Adjusted R^{2} (substitute unbiased estimators of σ^{2})

$$
R_{a d j}^{2}=\frac{\frac{T^{2}}{n-1}-\frac{S^{2}}{n-p}}{\frac{T^{2}}{n-1}}=1-\frac{n-1}{n-p}\left(1-R^{2}\right)
$$

- Maximizing R^{2} equivalent to minimizing SSE (or $\hat{\sigma}_{M L E}^{2}$)
- Maximizing $R_{a d j}^{2}$ equivalent to minimizing unbiased $\hat{\sigma}^{2}$
- Other than simplicity of interpretation, no particular justification

Cross-validation SSE

- Use cross-validation to directly assess prediction error
- Define

$$
T_{p}^{2}=\sum_{i=1}^{n}\left(y_{i}-\bar{y}_{(-i)}\right)^{2}
$$

and

$$
S_{p}^{2}=\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i(-i)}\right)^{2}=\sum_{i=1}^{n}\left(\frac{e_{i}}{1-h_{i}}\right)^{2}
$$

- The predictive R^{2} is defined as

$$
R_{p}^{2}=\frac{T_{p}^{2}-S_{p}^{2}}{T_{p}^{2}}
$$

- Equivalently, minimize predictive sum of squares S_{p}^{2} (often abbreviated as PRESS)

Directly estimating bias and variance

- More sophisticated approaches attempt to directly estimate bias and variance
- Suppose true expected value of y_{i} is μ_{i}
- Total mean squared error of a model fit is

$$
M S E=E \sum_{i}\left(\hat{y}_{i}-\mu_{i}\right)^{2}=\sum_{i}\left[\left(E \hat{y}_{i}-\mu_{i}\right)^{2}+V\left(\hat{y}_{i}\right)\right]
$$

- The first term is the "bias sum of squares" $B S S$ (equals zero if no bias)
- The second term simplifies to

$$
\sum_{i} V\left(\hat{y}_{i}\right)=\sigma^{2} \sum_{i} \mathbf{x}_{i}^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{x}_{i}=\sigma^{2} \sum_{i} h_{i}=p \sigma^{2}
$$

- On the other hand

$$
E(R S S)=E \sum_{i}\left(y_{i}-\hat{y}_{i}\right)^{2}=E\left(\mathbf{y}^{T}(\mathbf{I}-\mathbf{H}) \mathbf{y}\right)
$$

- This equals $(n-p) \sigma^{2}$ when \hat{y}_{i}-s are unbiased
- If \hat{y}_{i}-s are biased, it can be shown that this term equals $B S S+(n-p) \sigma^{2}$
- This gives the following estimator of $M S E$ (up to unknown σ^{2})

$$
R S S-(n-p) \sigma^{2}+p \sigma^{2}=R S S+(2 p-n) \sigma^{2}
$$

Mallow's C_{p}

- Dividing by σ^{2} on both sides, this gives Mallow's C_{p} criterion

$$
C_{p}=\frac{R S S}{\sigma^{2}}+2 p-n
$$

- This requires an estimate of σ^{2}
- It is customary to use $\hat{\sigma}^{2}$ from the largest model
- If model has no bias, then $C_{p} \approx p$ (exact for largest model by definition)
- An alternative expression for C_{p} is (exercise)

$$
C_{p}=\left(p_{f}-p\right)(F-1)+p
$$

- where
$-p_{f}$ is the number of coefficients in the largest model (used to estimate σ^{2})
- F is the F-statistic comparing the model being evaluated with the largest model
- Again, if the model is "correct", then $F \approx 1$, so $C_{p} \approx p$

Likelihood based criterion

- A more general approach is to prefer models that improve the expected log-likelihood

$$
E \sum_{i} \log P_{\hat{\theta}}\left(y_{i}\right)
$$

- Here the expectation is over two independent sets of the true distribution of \mathbf{y}
- One set of \mathbf{y} is used to estimate $\hat{\theta}$
- Akaike showed that

$$
-2 E \sum_{i} \log P_{\hat{\theta}}\left(y_{i}\right) \approx-2 E(\log \operatorname{lik})+2 p
$$

- Here $\log \mathrm{li}$ is the maximized \log-likelihood for the fitted model

Akaike Information Criterion

- This suggests the Akaike Information Criterion (AIC)

$$
\mathrm{AIC}=-2 \log \operatorname{lik}+2 p
$$

- For linear models, this is equivalent to (up to a constant)

$$
\mathrm{AIC}=n \log R S S+2 p
$$

- An advantage of AIC over C_{p} is that it does not require an estimate of σ^{2}
- It is also applicable more generally (e.g., for GLMs)

Bayesian Information Criterion

- A similar criterion is the Bayesian Information Criterion (BIC)

$$
\mathrm{BIC}=-2 \log \operatorname{lik}+p \log n
$$

- As suggested by its name, this is derived using a Bayesian approach
- The complexity penalty for BIC is higher (except for small n), so favours simpler models

Example: SLID data - comparing pre-determined set of models

```
SLID2 <- transform(na.omit(SLID), log.wages = log(wages), edu.sq = education^2)
SLID2 <- SLID2[c("log.wages", "sex", "edu.sq", "age", "language")]
str(SLID2)
'data.frame': }3987\mathrm{ obs. of 5 variables:
    $ log.wages: num 2.36 2.4 2.88 2.64 2.1 ...
$ sex : Factor w/ 2 levels "Female","Male": 2 2 2 1 2 1 1 1 2 2 ...
$ edu.sq : num 225 174 196 256 225 ...
$ age : int 40 19 46 50 31 30 61 46 43 17 ...
$ language : Factor w/ 3 levels "English","French",..: 1 1 3 1 1 1 1 3 1 1 ...
```

```
fm <- list()
fm[["S+E+A"]] <- lm(log.wages ~ sex + edu.sq + poly(age, 2), data = SLID2)
fm[["S+E+A+L"]] <- lm(log.wages ~ sex + edu.sq + poly(age, 2) + language, data = SLID2)
fm[["+ SE"]] <- update(fm[[2]], . ~ . + sex:edu.sq)
fm[["+ SA"]] <- update(fm[[2]], . ~ . + sex:poly(age, 2))
fm[["+ EA"]] <- update(fm[[2]], . ~ . + edu.sq:poly(age, 2))
fm[["(S+E+A)~2"]] <- update(fm[[2]], . ~ . + (sex + edu.sq + poly(age, 2)) ^2)
fm[["(S+E+A+L)~2"]] <- update(fm[[2]], . ~ . + (sex + edu.sq + poly(age, 2) + language)^2)
fm[["(S+E+A)~3"]] <- update(fm[[2]], . ~ . + (sex + edu.sq + poly(age, 2))^3)
fm[["(S+E+A+L)~3"]] <- update(fm[[2]], . ~ . + (sex + edu.sq + poly(age, 2) + language)^3)
models <- factor(names(fm), levels = names(fm))
```


Example: SLID data $-R^{2}$ and adjusted R^{2}

```
R2 <- sapply(fm, function(fit) summary(fit)$r.squared)
adj.R2 <- sapply(fm, function(fit) summary(fit)$adj.r.squared)
dotplot(R2 + adj.R2 ~ models, type = "o", pch = 16)
```


Example: SLID data - prediction SS

PRESS <- sapply(fm, function(fit) sum((residuals(fit) / (1-hatvalues(fit)))~2))
dotplot(PRESS ~ models, type = "o", pch = 16)

Example: SLID data - Mallow's C_{p}

```
sigma.sq <- summary(fm[[9]])$sigma^2 # common 'scale' for all fits
Cp <- sapply(fm, function(fit) extractAIC(fit, scale = sigma.sq)[2])
dotplot(Cp ~ models, type = "o", pch = 16)
```


Example: SLID data - AIC

AIC <- sapply(fm, function(fit) extractAIC(fit)[2])
dotplot(AIC ~ models, type = "o", pch = 16)

Example: SLID data - BIC

```
n <- nrow(SLID2)
BIC <- sapply(fm, function(fit) extractAIC(fit, k = log(n))[2])
dotplot(BIC ~ models, type = "o", pch = 16)
```


Automatic model selection

- This process still requires us to construct a list of models to consider
- In general, the number of possible models can be large
- With k predictors, there are 2^{k} additive models, many more with interactions
- How do we select the "best" out of all possible models?
- Two common strategies
- Best subset selection: exhaustive search of all possible models
- Stepwise selection: add or drop one term at a time (only benefit: needs less time)

Best subset selection: exhaustive search

```
library(leaps)
reg.sub <- regsubsets(log.wages ~ (sex + edu.sq + poly(age, 2) + language)^3,
    data = SLID2, nbest = 2, nvmax = 100)
t(summary(reg.sub)$outmat)
```

sexMale
edu.sq
poly(age, 2) 1
poly(age, 2)2
languageFrench
languageOther
sexMale:edu.sq
sexMale:poly(age, 2)1
sexMale:poly(age, 2)2
sexMale:languageFrench
sexMale:languageOther
edu.sq:poly(age, 2)1
edu.sq:poly(age, 2)2
edu.sq:languageFrench
edu.sq:languageOther
poly (age, 2) 1:languageFrench
poly(age, 2)2:languageFrench
poly(age, 2)1:languageOther
poly(age, 2)2:languageOther
sexMale:edu.sq:poly(age, 2)1
sexMale:edu.sq:poly(age, 2)2
sexMale:edu.sq:languageFrench
sexMale:edu.sq:languageOther
sexMale:poly (age, 2) 1:languageFrench
sexMale:poly(age, 2)2:languageFrench
sexMale:poly(age, 2)1:languageOther
sexMale:poly(age, 2)2:languageOther
edu.sq:poly(age, 2) 1:languageFrench
edu.sq:poly(age, 2) 2:languageFrench
edu.sq:poly(age, 2)1:languageOther
edu.sq:poly(age, 2)2:languageOther
sexMale
edu.sq
poly (age, 2) 1
poly(age, 2)2
languageFrench
languageOther
sexMale:edu.sq
sexMale:poly(age, 2)1

edu.sq:poly(age, 2) 2:languageOther
sexMale
edu.sq
poly(age, 2)1
poly(age, 2)2
languageFrench
languageOther
sexMale:edu.sq
sexMale:poly(age, 2)1
sexMale:poly(age, 2)2
sexMale:languageFrench
sexMale:languageOther
edu.sq:poly(age, 2)1
edu.sq:poly(age, 2)2
edu.sq:languageFrench
edu.sq:languageOther
poly(age, 2)1:languageFrench
poly(age, 2)2:languageFrench
poly(age, 2)1:languageOther
poly(age, 2)2:languageOther
sexMale:edu.sq:poly(age, 2)1
sexMale:edu.sq:poly(age, 2)2
sexMale:edu.sq:languageFrench
sexMale:edu.sq:languageOther
sexMale:poly(age, 2)1:languageFrench
sexMale:poly(age, 2) $2: l a n g u a g e F r e n c h ~$
sexMale:poly(age, 2)1:languageOther
sexMale:poly(age, 2) $2: l a n g u a g e O t h e r ~$
edu.sq:poly(age, 2)1:languageFrench
edu.sq:poly(age, 2) $2: l a n g u a g e F r e n c h ~$
edu.sq:poly(age, 2)1:languageOther
edu.sq:poly(age, 2) $2: l a n g u a g e O t h e r ~$
sexMale
edu.sq
poly(age, 2)1
poly(age, 2)2
languageFrench
languageOther
sexMale:edu.sq
sexMale:poly(age, 2)1
sexMale:poly(age, 2)2
sexMale:languageFrench
sexMale:languageOther
edu.sq:poly(age, 2)1
edu.sq:poly(age, 2)2
edu.sq:languageFrench
edu.sq:languageOther
poly(age, 2) 1:languageFrench
poly(age, 2)2:languageFrench
poly(age, 2) 1:languageOther
poly(age, 2)2:languageOther
sexMale:edu.sq:poly(age, 2) 1

sexMale:edu.sq:poly (age, 2) 2	"*'		"*"		"*'		"*'		"*		"*"		"*"
sexMale:edu.sq:languageFrench	"*'		"*"		"*"		"*'		"*		"*"		"*"
sexMale:edu.sq:languageOther	"		" "		"								
sexMale:poly (age, 2) 1:languageFrench	"*'		"*"		"*'		"*'		"*		"*"		"*"
sexMale:poly (age, 2) 2:languageFrench	"		" "		"		"						
sexMale:poly (age, 2) 1:languageOther	"*'		"*"		"*"		*'		"*		"*"		"*"
sexMale:poly (age, 2)2:languageOther	"*'		"*"		"*'		"*'		"*		"*"		"*"
edu.sq:poly (age, 2) 1:languageFrench	"		" "						"*		"*"		"*"
edu.sq:poly (age, 2) 2:languageFrench			" "		"								
edu.sq:poly (age, 2) 1:languageOther			" "		"*'				"*		"*		*"
edu.sq:poly (age, 2) 2:languageOther			" "		"		"		"				
sexMale	"*'	(1)	"*"	(2)	23	(1)	23	(2)	24	1)	24	(2)	25
edu.sq	"*'		"*"		"*'		"*'		"*		"*"		"*"
poly(age, 2) 1	"*'		"*"		"*'		"*'		"*		"*'		"*"
poly (age, 2)2	"*'		"*"		"*'		"*'		"*		"*'		"*"
languageFrench	"*'		" "		"*'		"				"*'		
languageOther			" "		"		"				"		" "
sexMale:edu.sq	"*'		"*"		"*'		"*'		'*		"*'		*"
sexMale:poly (age, 2) 1	"*'		"*"		"*'		"*'		"*		"*'		"*"
sexMale:poly (age, 2)2	"*'		"*"		"*'		"*'		"*		"*'		"*"
sexMale:languageFrench	"		"*"		"		"*'		"*		"*'		"*"
sexMale:languageOther	"*'		"*"		"*"		"*'		"*		"*'		"*"
edu.sq:poly (age, 2) 1	"*'		"*"		"*'		"*'		"*		"*'		"*"
edu.sq:poly (age, 2)2	*'		"*"		"*"		"*'		"*		"*'		"*"
edu.sq:languageFrench			" "		"		"*'		"*				"*"
edu.sq:languageOther	*'		"*"		"*"		*'		"*		"*'		"*"
poly (age, 2) 1:languageFrench	*"		"*"		"*"		"*'		"*		"*'		"*"
poly(age, 2) 2:languageFrench	"		" "		"		"				"		"*"
poly (age, 2) 1:languageOther	"*'		"*"		"*"		"*"		"*		"*'		"*"
poly (age, 2) 2:languageOther	"		" "		"		"		"		"		
sexMale:edu.sq:poly (age, 2) 1	"*'		"*"		"*"		"*'		"*		"*'		"*"
sexMale:edu.sq:poly (age, 2) 2	"*'		"*"		"*'		"*'		"*		"*'		"*"
sexMale:edu.sq:languageFrench	"*'		"*"		"*'		"*'		"*		"*'		"*"
sexMale:edu.sq:languageOther	"		" "		"*"		"		"*		"*"		"*"
sexMale:poly (age, 2) 1:languageFrench	"*"		"*"		"*"		"*"		"*		"*'		"*"
sexMale:poly (age, 2) 2:languageFrench	"		" "		"		"		"				
sexMale:poly (age, 2) 1:languageOther	"*'		"*"		"*'		"*'		"*		"*'		"*"
sexMale:poly (age, 2) 2:languageOther	"*'		"*"		"*"		"*'		"*		"*'		"*"
edu.sq:poly (age, 2) 1:languageFrench	"*'		"*"		"*'		"*'		"*		"*'		"*"
edu.sq:poly (age, 2) 2:languageFrench	"		" "		"		"						" "
edu.sq:poly (age, 2) 1:languageOther	"*'		"*"		"*'		"*'		"*		"*'		"*"
edu.sq:poly (age, 2)2:languageOther	"		" "		"		"		"				" "
	26	(1)	26	(2)	27	(1)	27	(2)	28	(1)	28	(2)	29
sexMale	"*'		"*"		"*'		"*'		"*		"*		"*"
edu.sq	"*'		"*"		"*"		"*'		"*		"*'		"*"
poly (age, 2) 1	"*'		"*"		"*"		"*'		"*		"*'		"*"
poly (age, 2)2	"*'		"*"		"*'		"*'		"*		"*'		"*"
languageFrench											"*'		"*"
languageOther	"				"		"		"		"		" "
sexMale:edu.sq	"*'		"*"		"*"		"*'		"*		"*'		"*"
sexMale:poly (age, 2) 1	"*'		"*"		"*"		"*'		"*		"*'		"*"
sexMale:poly (age, 2)2	"*'		"*"		"*'		"*'		"*		"*'		"*"
sexMale:languageFrench	"*'		"*"		"*'		"*'		"*		"*		"*"

sexMale:languageOther	"*"	"*"	"*"	"*"	"*"	"*"	"*"
edu.sq:poly (age, 2)1	"*"	"*"	"*"	"*"	"*"	"*"	"*"
edu.sq:poly (age, 2) 2	"*"	"*"	"*"	"*"	"*"	"*"	"*"
edu.sq:languageFrench	"*"	"*"	"*"	"*"	"*"	"*"	"*'
edu.sq:languageOther	"*"	"*"	"*"	"*"	"*"	"*"	"*'
poly (age, 2) 1:languageFrench	"*"	"*"	"*"	"*"	"*"	"*"	"*'
poly (age, 2) 2:languageFrench	"*"		"*"	"*"	"*"	"*"	"*'
poly (age, 2) 1:languageOther	"*"	"*"	"*"	"*"	"*"	"*"	"*'
poly (age, 2) 2:languageOther		" "	"*"	" "	"*"	"*"	"*"
sexMale:edu.sq:poly (age, 2) 1	"*"	"*"	"*"	"*"	"*"	"*"	"*'
sexMale:edu.sq:poly (age, 2)2	"*"	"*"	"*"	"*"	"*"	"*"	"*"
sexMale:edu.sq:languageFrench	"*"	"*"	"*"	"*"	"*"	"*"	"*'
sexMale:edu.sq:languageOther	"*"	"*"	"*"	"*"	"*"	"*"	"*"
sexMale:poly (age, 2) 1:languageFrench	"*"	"*"	"*"	"*"	"*"	"*"	"*"
sexMale:poly (age, 2) 2:languageFrench	" "	"	" "	" "			"
sexMale:poly (age, 2) 1:languageOther	"*"	"*"	"*"	"*"	"*"	"*"	"*"
sexMale:poly (age, 2) 2:languageOther	"*"	"*"	"*"	"*"	"*"	"*"	*'
edu.sq:poly (age, 2) 1:languageFrench	"*"	"*"	"*"	"*"	"*"	"*"	"*'
edu.sq:poly (age, 2) 2:languageFrench	" "	"*"		"*"	"*"		"*"
edu.sq:poly (age, 2) 1:languageOther	"*"	"*"	"*"	"*"	"*"	"*"	"*'
edu.sq:poly (age, 2) 2:languageOther	"*"	"*"	"*"	"*"	"*"	"*"	"*"
	30	30					
sexMale	"*"	"*"	"*"				
edu.sq	"*"	"*"	"*"				
poly (age, 2) 1	"*"	"*"	"*"				
poly (age, 2) 2	"*"	"*"	"*"				
languageFrench	"*"	"*"	"*"				
languageOther	" "	"*"	"*"				
sexMale:edu.sq	"*"	"*"	"*"				
sexMale:poly (age, 2)1	"*"	"*"	"*"				
sexMale:poly (age, 2)2	"*"	"*"	"*"				
sexMale:languageFrench	"*"	"*"	"*"				
sexMale:languageOther	"*"	"*"	"*"				
edu.sq:poly (age, 2)1	"*"	"*"	"*"				
edu.sq:poly (age, 2)2	"*"	"*"	"*"				
edu.sq:languageFrench	"*"	"*"	"*"				
edu.sq: languageOther	"*"	"*"	"*"				
poly (age, 2) 1:languageFrench	"*"	"*"	"*"				
poly (age, 2) 2:languageFrench	"*"	"*"	"*"				
poly (age, 2) 1:languageOther	"*"	"*"	"*"				
poly (age, 2) 2:languageOther	"*"	"*"	"*"				
sexMale:edu.sq:poly (age, 2) 1	"*"	"*"	"*"				
sexMale:edu.sq:poly (age, 2) 2	"*"	"*"	"*"				
sexMale:edu.sq:languageFrench	"*"	"*"	"*"				
sexMale:edu.sq:languageOther	"*"	"*"	"*"				
sexMale:poly (age, 2) 1:languageFrench	"*"	"*"	"*"				
sexMale:poly (age, 2) 2:languageFrench	"*"	" "	"*"				
sexMale:poly (age, 2) 1:languageOther	"*"	"*"	"*"				
sexMale:poly (age, 2) 2:languageOther	"*"	"*"	"*"				
edu.sq:poly (age, 2) 1:languageFrench	"*"	"*"	"*"				
edu.sq:poly (age, 2) 2:languageFrench	"*"	"*"	"*"				
edu.sq:poly (age, 2) 1:languageOther	"*"	"*"	"*"				
edu.sq:poly (age, 2) 2:languageOther	"*"	"*"	"*"				

```
xyplot(scale(bic) + scale(cp) ~ seq_along(bic), data = summary(reg.sub), grid = TRUE,
    type \(=\) "o", pch = 16)
```



```
xyplot(scale(bic) + scale(cp) ~ seq_along(bic), data \(=\) summary (reg.sub), grid \(=\) TRUE,
type \(=\) "o", pch \(=16, \mathrm{ylim}=c(N A, 0.5))\)
```



```
with(summary(reg.sub), {
```

with(summary(reg.sub), {
o <- order(bic) ; w <- which; is.na(w) <- W == FALSE
o <- order(bic) ; w <- which; is.na(w) <- W == FALSE
wbic <- w * bic
wbic <- w * bic
levelplot(wbic[o,], xlim = as.character(round(bic))[o], xlab = NULL, ylab = NULL,
levelplot(wbic[o,], xlim = as.character(round(bic))[o], xlab = NULL, ylab = NULL,
scales = list(x = list(rot = 90)), main = "Models ordered by BIC")
scales = list(x = list(rot = 90)), main = "Models ordered by BIC")
\})

```

```

with(summary(reg.sub), {
o <- order(cp); w <- which; is.na(w) <- w == FALSE
wcp <- w * cp
levelplot(wcp[o,], xlim = as.character(round(cp))[o], xlab = NULL, ylab = NULL,
scales = list(x = list(rot = 90)), main = "Models ordered by Cp")
})

```


\section*{Handling dummy variables, interactions, etc.}
- One problem with this approach: considers each column of \(\mathbf{X}\) separately
- Usually we would keep or drop all columns for a term (factor, polynomial) together
- Similarly, an interaction term usually not meaningful without main effects and lower order interactions
- Such considerations are not automated by regsubsets() and have to be handled manually

\section*{Best subset selection: stepwise search}
- Stepwise selection methods are greedy algorithms that add or drop one predtctor at a time
- This greatly limits the number of subsets evaluated
- Makes the problem tractable if number of predictors is large
- On the other hand, stepwise methods explore only a fraction of possible subsets
- For many predictors, rarely finds the optimal model
- Forward selection
- Find best one-variable model
- Find best two-variable model by adding another variable
- and so on
- That is, do not look at all two-variable models; only ones that contain the best one-variable model
- Backward selection: start with full model and eliminate variables successively
- Sequential replacement: consider both adding and dropping in each step
- Stepwise selection is supported by regsubsets()
- Also implemented in MASS::stepAIC() and stats::step()

\section*{Best subset selection: forward selection}
```

reg.forward <-
regsubsets(log.wages ~ (sex + edu.sq + poly(age, 2) + language)^3,
data = SLID2, nvmax = 100, method = "forward")
xyplot(bic ~ seq_along(bic), data = summary(reg.forward), grid = TRUE, type = "o", pch = 16)

```

with(summary(reg.forward), \{
w <- which; is.na(w) <- w == FALSE
wbic <- w * bic
levelplot(wbic, xlim = as.character(round(bic)), xlab = NULL, ylab = NULL, scales \(=\) list \((x=\) list (rot \(=90)\) ), main \(=\) "BIC")
\})


\section*{Best subset selection: sequential replacement}
```

reg.seqrep <-
regsubsets(log.wages ~ (sex + edu.sq + poly(age, 2) + language)^3,
data = SLID2, nvmax = 100, method = "seqrep")
xyplot(bic ~ seq_along(bic), data = summary(reg.seqrep), grid = TRUE, type = "o", pch = 16)

```

```

with(summary(reg.seqrep), {
w <- which; is.na(w) <- w == FALSE
wbic <- w * bic
levelplot(wbic, xlim = as.character(round(bic)), xlab = NULL, ylab = NULL,
scales = list(x = list(rot = 90)), main = "BIC")
})

```


\section*{Benefits and drawbacks of automated model selection}
- Can quickly survey a large number of potential models
- However, there are many drawbacks to this approach
- In fact, automated model selection basically invalidates inference
- This is because all derivations assume that model and hypotheses are prespecified
- As a result, for the model chosen by automated selection
- Test statistics no longer follow \(t / F\) distributions
- Standard errors have negative bias, and confidence intervals are falsely narrow
- \(p\)-values are falsely small
- Regression coefficients are biased away from 0

\section*{Simulation example: no predictive relationship}
- Simulate \(V_{2}, \ldots, V_{21} \sim\) i.i.d. \(N(0,1)\)
- Simulate independent \(V_{1} \sim N(0,1)\)
- Regress \(V_{1}\) on \(V_{2}, \ldots, V_{21}\)
- Select model using stepAIC()
library (MASS)
d <- as.data.frame(matrix(rnorm(100 * 21), 100, 21))
fm.step <- stepAIC(lm(V1 ~ ., data \(=d)\), direction \(=\) "both", trace \(=0\) )
summary (fm.step)

Call:
\(\operatorname{lm}(\) formula \(=\mathrm{V} 1 \sim \mathrm{~V} 2+\mathrm{V} 3+\mathrm{V} 6+\mathrm{V} 9+\mathrm{V} 13\), data \(=\mathrm{d})\)

Residuals:
\begin{tabular}{lrrrr} 
Min & 1Q & Median & 3Q & Max \\
-2.20598 & -0.59320 & -0.05848 & 0.56056 & 2.34801
\end{tabular}

Signif. codes: \(0{ }^{\prime * * * '} 0.001\) '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.8665 on 94 degrees of freedom
Multiple R-squared: 0.1932, Adjusted R-squared: 0.1503
F-statistic: 4.501 on 5 and \(94 \mathrm{DF}, \mathrm{p}\)-value: 0.001011
with(summary (fm.step), pf(fstatistic[1], fstatistic[2], fstatistic[3], lower.tail = FALSE))
value
0.00101054
\#\# Replicate this experiment
pvals <-
replicate(100,
\{
d <- as.data.frame(matrix(rnorm(100 * 21), 100, 21))
fm.step <- stepAIC(lm(V1 ~ ., data = d), direction = "both", trace \(=0\) )
if (length (coef(fm.step)) > 1)
with(summary(fm.step), pf(fstatistic[1], fstatistic[2], fstatistic[3], lower.tail = FALSE))
else 1
\})
sum(pvals < 0.05)
[1] 84

Simulation example: no predictive relationship
```

densityplot(~ pvals)

```

- Results are slightly better when using BIC rather than AIC, but still bad
- Select model using stepAIC(..., \(k=\log (n))\)
pvals <-
replicate(100,
\{
d <- as.data.frame(matrix(rnorm(100 * 21), 100, 21))
fm.step <- stepAIC(lm(V1 ~ ., data \(=\mathrm{d})\), direction \(=\) "both", trace \(=0, \mathrm{k}=\log (100)\) )
if (length (coef(fm.step)) > 1)
with(summary(fm.step), pf(fstatistic[1], fstatistic[2], fstatistic[3], lower.tail = FALSE))
else 1
\})
sum(pvals < 0.05)
[1] 56
densityplot(~ pvals)


\section*{Summary}
- Automated model selection has its uses
- However, blindly applying it without thinking about the problem is dangerous
- Many applied studies have no prespecified hypothesis
- Especially in observational studies (e.g., public health and social sciences)
- Model is often chosen by automated selection, but interpreted as if prespecified
- Result: much more than \(5 \%\) of "significant" results are probably false```

