
Introduction to Nonparametric Regression

Deepayan Sarkar

Visualizing distributions

• Recall that the goal of regression is to predict distribution of Y|X = x

• How can we assess distribution visually? (e.g., to check normality)

• Usual tools

– Histograms / density plots
– Box-and-whisker plots
– Quantile-quantile plots

Example: SLID data

data(SLID, package = "carData")
xyplot(wages ~ education, data = SLID)

Example: SLID data (rounding education)

SLID$education <- round(SLID$education)
xyplot(wages ~ education, data = SLID)

1

Distribution of wages (overall)

histogram(~ wages, data = SLID)

Distribution of wages (conditional on education)

histogram(~ wages | factor(education), data = SLID)

2

densityplot(~ wages | factor(education), data = SLID, plot.points = FALSE)

qqmath(~ wages | factor(education), data = SLID, grid = TRUE)

3

More direct comparison

bwplot(wages ~ factor(education), data = SLID)

bwplot(wages ~ factor(education), data = SLID, panel = panel.violin)

4

Pure error model

• Corresponding linear model is called the pure error model (assuming equal variance)

fm.linear <- lm(wages ~ education, data = SLID) # for comparison
fm.pe <- lm(wages ~ factor(education), data = SLID)
summary(fm.linear)

Call:
lm(formula = wages ~ education, data = SLID)

Residuals:
Min 1Q Median 3Q Max

-17.649 -5.796 -1.005 4.133 34.139

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.0829 0.5304 9.584 <2e-16 ***
education 0.7848 0.0388 20.226 <2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.5 on 4012 degrees of freedom
(3411 observations deleted due to missingness)

Multiple R-squared: 0.09253, Adjusted R-squared: 0.09231
F-statistic: 409.1 on 1 and 4012 DF, p-value: < 2.2e-16

summary(fm.pe)

Call:
lm(formula = wages ~ factor(education), data = SLID)

Residuals:

5

Min 1Q Median 3Q Max
-20.393 -5.670 -1.067 4.060 32.834

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 10.1375 2.6133 3.879 0.000107 ***
factor(education)1 3.1000 4.5264 0.685 0.493470
factor(education)2 -1.3025 4.5264 -0.288 0.773551
factor(education)3 -0.4808 3.9920 -0.120 0.904132
factor(education)4 4.1743 3.4346 1.215 0.224297
factor(education)5 5.7100 3.6958 1.545 0.122429
factor(education)6 3.5995 3.0922 1.164 0.244463
factor(education)7 4.6654 3.2760 1.424 0.154496
factor(education)8 4.2245 2.7043 1.562 0.118327
factor(education)9 3.4266 2.7059 1.266 0.205455
factor(education)10 3.2118 2.6446 1.214 0.224633
factor(education)11 3.1782 2.6529 1.198 0.230994
factor(education)12 3.5089 2.6248 1.337 0.181355
factor(education)13 4.0991 2.6375 1.554 0.120223
factor(education)14 4.7441 2.6335 1.801 0.071714 .
factor(education)15 6.3196 2.6499 2.385 0.017133 *
factor(education)16 7.3000 2.6438 2.761 0.005786 **
factor(education)17 10.5326 2.6545 3.968 7.38e-05 ***
factor(education)18 10.1605 2.6714 3.803 0.000145 ***
factor(education)19 10.3711 2.7322 3.796 0.000149 ***
factor(education)20 13.3853 2.6970 4.963 7.23e-07 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 7.392 on 3993 degrees of freedom
(3411 observations deleted due to missingness)

Multiple R-squared: 0.1227, Adjusted R-squared: 0.1183
F-statistic: 27.93 on 20 and 3993 DF, p-value: < 2.2e-16

anova(fm.pe)

Analysis of Variance Table

Response: wages
Df Sum Sq Mean Sq F value Pr(>F)

factor(education) 20 30522 1526.08 27.931 < 2.2e-16 ***
Residuals 3993 218164 54.64

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(fm.linear, fm.pe)

Analysis of Variance Table

Model 1: wages ~ education
Model 2: wages ~ factor(education)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 4012 225674
2 3993 218164 19 7510.3 7.2347 < 2.2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

6

plot(wages ~ jitter(education), data = SLID)
lines(0:20, predict(fm.pe, newdata = data.frame(education = 0:20)))

• Such comparison possible when lots of data, few unique covariate values

• Can be used to assess “non-linearity”

• But need graphical tools to assess

– Skewness
– Multiple modes
– “Heavy” tails
– Unequal variance / spread

• But what can we do when covariate x is continuous?

– weight ~ height
– prestige ~ income

Continuous predictor

• Even with large datasets, replicated x will be rare

• We can still divide range of x into several bins

• Width of bin represents trade-off (for non-linear relationship)

– How “locally” we can estimate (bias of estimator)
– Number of data points (variance of estimator)

Example: Prestige data

data(Prestige, package = "carData")
xyplot(prestige ~ income, data = Prestige)

7

bwplot(prestige ~ cut(income, 10, dig.lab = 5), data = Prestige)

Example: Davis data

data(Davis, package = "carData")
xyplot(weight ~ height, Davis)

8

bwplot(weight ~ cut(height, 10), Davis)

Example: UN data

data(UN, package = "carData")
xyplot(pctUrban ~ ppgdp, UN)

9

bwplot(pctUrban ~ cut(ppgdp, 10, dig.lab = 6), UN)

Choice of bin width - constant vs variable

• Constant bin width means some bins could have very few data, or even be empty

• Generally better to define bins with fixed number of data points

– Decide number of bins
– Bin boundaries are defined by quantiles

10

Example: UN data — box and whisker plots

Example: UN data — Q-Q plots

11

Example: UN data — log-transformed GDP

Assessing linearity

• Can summarize distribution in each bin my mean or median (and possibly standard deviation to assess
non-constant variance)

Estimating conditional mean: a local binning approach

• Model: Yi = f(xi) + εi

• Interested in estimating f(x) = E(Y |x) for various x

12

• Approach: Estimate f(x) locally by fitting mean or linear regression within bin

• Window size represents trade-off

– Larger window means more data points
– More data points means lower variance
– But larger window means larger bias

• Specifically, estimate is biased if f is non-linear, or if x is not uniformly distributed

Bias-variance trade-off — large data

• Any reasonable method should at least be consistent

• In other words, if we want to estimate E(Y |x), we should have

Ên(Y |x)→ E(Y |x) as n→∞

• Suppose for sample size n, we define
√
n bins, each containing

√
n points.

• Clearly, as n→∞,

– number of bins →∞
– width of each bin → 0 (with some assumptions about x)
– number of data points in each bin →∞

If f(x) = E(Y |x) is “smooth”, then for xi in the same bin as x0,

f(xi) = f(x0) + f ′(x0)(xi − x0) + h(xi)(xi − x0)

where h(·) is such that limx→x0 h(x) = 0 (Taylor’s Theorem)

Yi = f(xi) + εi, so for xi in the same bin as x0,

Yi = f(x0) + f ′(x0)(xi − x0) + h(xi)(xi − x0) + εi

and so

Ȳ (x0) = f(x0) + f ′(x0)(x̄− x0) + ε̄+ 1
n

∑
i

h(xi)(xi − x0)

As n→∞, xi, x̄→ x0, so Ȳ (x0)→ f(x0)

13

Example: UN data

Example: UN data – overlapping bins

14

Example: UN data – more bins

15

Example: UN data – wider bins

Locally linear regression

• Instead of Ȳ , we could fit a linear regression model in each bin

Ŷ (x0) = α̂

where α̂ and β̂ are estimated by fitting the linear regression model (for all xi in the same bin as x0)

Yi = α+ β(xi − x0) + εi

16

• In general, the model could be a d-th “degree” polynomial

– d = 0 : local mean
– d = 1 : locally linear fit
– d = 2 : locally quadratic fit

• Tuning parameter “span” : proportion of full data in each bin

Example: UN data – locally linear

17

Example: UN data – locally linear with more bins

18

Example: UN data – locally linear with wider bins

Adding weights

• Larger span gives

– Wider bins
– Smoother estimate of f(x) = E(Y |x)
– But more data points per bin (less “local”)

• One solution is to add weights (give more weightage to xi near x0)

• Weighted mean: Ŷ =
∑

wiYi∑
wi

19

• Weighted regression: Normal equations are given by

XT WXβ̂ = XT Wy

where W−1 is a diagonal matrix of inverse weights 1/w2
i (higher weight means less uncertainty).

• For example,
wi = k((xi − x0)/h),

where

– 2h is the bin width
– k(·) is a symmetric weight function that is highest at 0 and decreases (usually to 0 at ±h)

Example: UN data – locally weighted linear regression

20

Example: UN data – LOWESS

xyplot(pctUrban ~ log(ppgdp), data = UN, col.line = "black",
type = c("p", "smooth"), span = 0.27, degree = 1, family = "gaussian")

LOWESS

• Stands for “LOcally WEighted Scatterplot Smoother”

• Can be viewed as k nearest neighbour weighted local polynomial regression

• Main control parameters are span and degree

• Optionally provides estimates of standard error

• By default also provides “robust” estimates

Example: UN data – LOWESS

xyplot(pctUrban ~ log(ppgdp), data = UN, type = c("p", "smooth"),
span = 0.27, degree = 1, family = "gaussian")

21

xyplot(pctUrban ~ log(ppgdp), data = UN, type = c("p", "smooth"),
span = 2/3, degree = 2, family = "gaussian")

xyplot(pctUrban ~ log(ppgdp), data = UN, type = c("p", "smooth"),
span = 2/3, degree = 2, family = "symmetric")

22

Example: UN data – LOWESS with local mean

xyplot(pctUrban ~ log(ppgdp), data = UN, type = c("p", "smooth"),
span = 2/3, degree = 0, family = "symmetric")

Example: UN data – LOWESS with confidence band

library(latticeExtra)
xyplot(pctUrban ~ log(ppgdp), data = UN) + layer(panel.smoother(x, y, method = "loess", se = TRUE))

23

Example: Davis data – LOWESS with least squares

xyplot(weight ~ repwt, data = Davis, type = c("p", "smooth"), family = "gaussian") # non-robust

Example: Davis data – LOWESS with robust regression

xyplot(weight ~ repwt, data = Davis, type = c("p", "smooth"), family = "symmetric") # robust

24

Example: Davis data – effect of span

xyplot(weight ~ repwt, data = Davis, type = c("p", "smooth"), span = 1/6)

Choice of span in LOWESS

• The span (proportion of data in each bin) is an important tuning parameter

• How do we choose span?

• Generally speaking, cross-validation is often a useful strategy for choosing tuning parameters

25

• Choose span to minimize
n∑

i=1
(Yi − Ŷi(−i))2

• This is equivalent to maximixing predictive R2

• Next assignment!

Parametric “smooth” regression

• The linear model is actually more flexible than it first seems

• Recall our previous example:

• This can be viewed as a piecewise constant f(x)

• Choose breakpoints (“knots”) −∞ = t0 < t1 < t2 < · · · < tk = +∞

• Define Zji = 1{Xi ∈ (tj−1, tj]} for j = 1, 2, . . . , k

• Fit linear model y = Zβ + ε — this will give piecewise constant f̂

Pieceise constant regression

• Implementation in R

pconst <- function(x, knots)
{

Z <- matrix(0, length(x), length(knots) - 1)
for (j in seq_len(length(knots)-1))

Z[, j] <- ifelse(knots[j] < x & x <= knots[j+1], 1, 0)
Z

}
lgdp.knots <- c(-Inf,

26

quantile(log(UN$ppgdp), probs = seq(0.1, 0.9, by = 0.1), na.rm = TRUE),
Inf)

• Fitting a model

fm <- lm(pctUrban ~ 0 + pconst(log(ppgdp), knots = lgdp.knots))

xyplot(pctUrban ~ log(ppgdp), data = UN) +
layer(panel.smoother(x, y, method = "lm", se = FALSE, n = 500, form = y ~ 0 + pconst(x, knots = lgdp.knots)))

Piecewise linear regression

• Knots −∞ = t0 < t1 < t2 < · · · < tk = +∞

• f(x) = αj + βjx for x ∈ (tj−1, tj] for j = 1, 2, . . . , k

• Define Zji = 1{Xi ∈ (tj−1, tj]} for j = 1, 2, . . . , k

• Additionally, define Z̃ji = Zjixi for j = 1, 2, . . . , k

plinear <- function(x, knots)
{

Z <- pconst(x, knots)
cbind(Z, Z * x)

}

xyplot(pctUrban ~ log(ppgdp), data = UN) +
layer(panel.smoother(x, y, method = "lm", se = FALSE, n = 500, form = y ~ 0 + plinear(x, knots = lgdp.knots)))

27

Piecewise linear interpolating regression

This is the best (least squares) piecewise linear f(x) of the form

f(x) = αj + βjx

for x ∈ (tj−1, tj] , j = 1, 2, . . . , k.

• But we would prefer f to be continuous

• Requires αj + βjtj = αj+1 + βj+1tj for j = 1, 2, . . . , k − 1

Equivalent formulation

f(x) = δ0 + γ0x+
k−1∑
j=1

γj(x− tj)+

where x+ = max{0, x}

plincont <- function(x, knots)
{

Z <- matrix(0, length(x), length(knots)-1)
Z[,1] <- x
for (j in seq_len(length(knots)-2)) Z[, j+1] <- pmax(x - knots[j+1], 0)
Z

}

Piecewise linear regression

xyplot(pctUrban ~ log(ppgdp), data = UN) +
layer(panel.smoother(x, y, method = "lm", se = FALSE, n = 500, form = y ~ 1 + plincont(x, knots = lgdp.knots)))

28

Natural generalization: piecewise quadratic interpolation

(with matching first derivatives)

f(x) = α0 + α1x+ β0x
2 +

k−1∑
j=1

βj(x− tj)2
+

where x+ = max{0, x}

pquadint <- function(x, knots)
{

Z <- plincont(x, knots)
cbind(x, Z^2)

}

xyplot(pctUrban ~ log(ppgdp), data = UN) +
layer(panel.smoother(x, y, method = "lm", se = FALSE, n = 500, form = y ~ 1 + pquadint(x, knots = lgdp.knots)))

29

Further generalization: piecewise cubic interpolation

(with matching second derivatives)

f(x) = α0 + α1x+ α2x
2 + β0x

3 +
k−1∑
j=1

βj(x− tj)3
+

where x+ = max{0, x}

pcubint <- function(x, knots)
{

Z <- plincont(x, knots)
cbind(x, x^2, Z^3)

}

xyplot(pctUrban ~ log(ppgdp), data = UN) +
layer(panel.smoother(x, y, method = "lm", se = FALSE,

form = y ~ 1 + pcubint(x, knots = lgdp.knots)))

30

Also known as cubic spline regression

library(splines)
xyplot(pctUrban ~ log(ppgdp), data = UN) +

layer(panel.smoother(x, y, method = "lm", form = y ~ bs(x, knots = lgdp.knots[2:10]), se = FALSE))

Regression with basis functions: background

• Goal: Estimate best (least squares) f̂ within some class of functions

• Example: “Interpolating splines” — piecewise cubic polynomials with continuous second derivatives

• All the examples we have seen are vector spaces (for a fixed set of knots)

31

https://en.wikipedia.org/wiki/Spline_(mathematics)

• To find f̂ using a linear model, we need to find a basis

• One example (for cubic interpolating splines) is

{1, x, x2, x3} ∪ {(x− tj)3
+ : j = 1, ..., k − 1}

Plot of cubic spline basis functions

u <- seq(0, 1, length = 101)
m <- as.data.frame(pcubint(u, knots = c(-Inf, c(0.25, 0.5, 0.75, Inf))))
names(m) <- paste0("f", seq_len(ncol(m)))
xyplot(f1 + f2 + f3 + f4 + f5 + f6 ~ u, data = cbind(u, m), type = "l", ylab = NULL, grid = TRUE)

Alternative basis for cubic splines

u <- seq(0, 1, length = 101)
m <- as.data.frame(bs(u, knots = c(0.25, 0.5, 0.75)))
names(m) <- paste0("f", seq_len(ncol(m)))
xyplot(f1 + f2 + f3 + f4 + f5 + f6 ~ u, data = cbind(u, m), type = "l", ylab = NULL, grid = TRUE)

32

Basis splines in R

• Available as the bs() function in package splines (degree 3, “cubic”, by default)

• Usually specify df rather than explicit knots (tuning parameter providing flexibility)

summary(lm(pctUrban ~ 1 + bs(log(ppgdp), df = 6), data = UN)) # fitting a B-spline model

Call:
lm(formula = pctUrban ~ 1 + bs(log(ppgdp), df = 6), data = UN)

Residuals:
Min 1Q Median 3Q Max

-58.942 -9.267 0.426 11.094 38.561

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 34.688 13.254 2.617 0.009573 **
bs(log(ppgdp), df = 6)1 -11.885 20.810 -0.571 0.568600
bs(log(ppgdp), df = 6)2 2.469 13.466 0.183 0.854691
bs(log(ppgdp), df = 6)3 21.769 14.884 1.463 0.145226
bs(log(ppgdp), df = 6)4 44.026 14.446 3.048 0.002631 **
bs(log(ppgdp), df = 6)5 46.601 16.149 2.886 0.004354 **
bs(log(ppgdp), df = 6)6 59.317 16.645 3.564 0.000462 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 15.65 on 192 degrees of freedom
(14 observations deleted due to missingness)

Multiple R-squared: 0.5674, Adjusted R-squared: 0.5539
F-statistic: 41.98 on 6 and 192 DF, p-value: < 2.2e-16

33

Why splines?

• Consider the problem of interpolation through k points

• Obvious approach: Fit a polynomial

f <- function(x) 1 / (1 + x^2)
degree <- 4
x <- seq(-3, 3, length = degree + 1)
xyplot(f(x) ~ x, col = 1, pch = 16, ylim = c(-0.5, 1.1)) +

layer_(panel.curve(f, type = "l", col = "grey50")) +
layer(panel.smoother(x, y, method = "lm", form = y ~ poly(x, degree), se = FALSE))

• Consider the problem of interpolation through k points

• Obvious approach: Fit a polynomial

f <- function(x) 1 / (1 + x^2)
degree <- 8
x <- seq(-3, 3, length = degree + 1)
xyplot(f(x) ~ x, col = 1, pch = 16, ylim = c(-0.5, 1.1)) +

layer_(panel.curve(f, type = "l", col = "grey50")) +
layer(panel.smoother(x, y, method = "lm", form = y ~ poly(x, degree), se = FALSE))

• Consider the problem of interpolation through k points

• Obvious approach: Fit a polynomial — Runge’s phenomenon

34

https://en.wikipedia.org/wiki/Runge%27s_phenomenon

f <- function(x) 1 / (1 + x^2)
degree <- 12
x <- seq(-3, 3, length = degree + 1)
xyplot(f(x) ~ x, col = 1, pch = 16, ylim = c(-0.5, 1.1)) +

layer_(panel.curve(f, type = "l", col = "grey50")) +
layer(panel.smoother(x, y, method = "lm", form = y ~ poly(x, degree), se = FALSE))

• Consider the problem of interpolation through k points

• Alternative: Fit a cubic spline

f <- function(x) 1 / (1 + x^2)
degree <- 12
x <- seq(-3, 3, length = degree + 1)
xyplot(f(x) ~ x, col = 1, pch = 16, ylim = c(-0.5, 1.1)) +

layer_(panel.curve(f, type = "l", col = "grey50")) +
layer(panel.lines(predict(interpSpline(x, y))))

An interesting property of interpolating splines

Consider finding f : [a, b]→ R interpolating the points {(xi, yi) : xi ∈ [a, b]} that minimizes

∫ b

a

(f ′′(t))2dt (roughness penalty)

35

in the class of functions with continuous second derivative

• The solution is a “natural” cubic spline
• “Natural” because the solution is linear outside the range of the knots

Smoothing splines

A non-parametric regression approach motivated by this:

Find f to minimize (given λ > 0)

∑
i

(yi − f(xi))2 + λ

∫ b

a

(f ′′(t))2dt

• The solution is a “natural” cubic spline

• λ represents a tuning parameter (smoothness vs flexibility)

• λ is usually chosen by a form of cross-validation

• The mathematical analysis of smoothing splines is relatively complicated (will not discuss)

Smoothing splines in R

UN.sub <- subset(UN, !is.na(ppgdp) & !is.na(pctUrban)) # cannot handle NA
fm.ss <- with(UN.sub, smooth.spline(log(ppgdp), pctUrban, df = 6)) # lambda controlled by df
fm.ss

Call:
smooth.spline(x = log(ppgdp), y = pctUrban, df = 6)

Smoothing Parameter spar= 1.034826 lambda= 0.004116211 (12 iterations)
Equivalent Degrees of Freedom (Df): 6.000823
Penalized Criterion (RSS): 46566.24
GCV: 1031.185

fm.ss.gcv <- with(UN.sub, smooth.spline(log(ppgdp), pctUrban)) # lambda chosen by GCV
fm.ss.gcv

Call:
smooth.spline(x = log(ppgdp), y = pctUrban)

Smoothing Parameter spar= 1.499952 lambda= 9.443731 (25 iterations)
Equivalent Degrees of Freedom (Df): 2.030403
Penalized Criterion (RSS): 47818.1
GCV: 986.3203

xyplot(pctUrban ~ log(ppgdp), data = UN) + layer(panel.lines(predict(fm.ss)))

36

xyplot(pctUrban ~ log(ppgdp), data = UN) + layer(panel.lines(predict(fm.ss.gcv)))

Summary: smooth regression for non-linear expectation function

• Focuses on estimating f(x) = E(Y |X = x)

• Several methods available, both non-parametric and parametric

• Usually involves tuning parameter that needs to be chosen

• Can be used to visually diagnose non-linearity of f(x)

37

What about non-constant variance?

• Assume constant variance

• Define ε̂i = yi − f̂(xi)

• Expect E(|ε̂i|) ∝ σ

fm <- lm(pctUrban ~ log(ppgdp), data = UN)
xyplot(abs(residuals(fm)) ~ fitted(fm)) + layer(panel.smoother(x, y, method = "loess"))

Summary: smooth regression for non-linear expectation function

• Focuses on estimating f(x) = E(Y |X = x)

• Several methods available, both non-parametric and parametric

• Usually involves tuning parameter that needs to be chosen

• Can be used to visually diagnose non-linearity of f(x)

• Can also be used to diagnose heteroscedasticity

38

	Visualizing distributions
	Example: SLID data
	Example: SLID data (rounding education)
	Distribution of wages (overall)
	Distribution of wages (conditional on education)
	More direct comparison
	Pure error model
	Continuous predictor
	Example: Prestige data
	Example: Davis data
	Example: UN data
	Choice of bin width - constant vs variable
	Example: UN data — box and whisker plots
	Example: UN data — Q-Q plots
	Example: UN data — log-transformed GDP
	Assessing linearity
	Estimating conditional mean: a local binning approach
	Bias-variance trade-off — large data
	Example: UN data
	Example: UN data – overlapping bins
	Example: UN data – more bins
	Example: UN data – wider bins
	Locally linear regression
	Example: UN data – locally linear
	Example: UN data – locally linear with more bins
	Example: UN data – locally linear with wider bins
	Adding weights
	Example: UN data – locally weighted linear regression
	Example: UN data – LOWESS
	LOWESS
	Example: UN data – LOWESS
	Example: UN data – LOWESS with local mean
	Example: UN data – LOWESS with confidence band
	Example: Davis data – LOWESS with least squares
	Example: Davis data – LOWESS with robust regression
	Example: Davis data – effect of span
	Choice of span in LOWESS
	Parametric ``smooth'' regression
	Pieceise constant regression
	Piecewise linear regression
	Piecewise linear interpolating regression
	Piecewise linear regression
	Natural generalization: piecewise quadratic interpolation
	Further generalization: piecewise cubic interpolation
	Also known as cubic spline regression
	Regression with basis functions: background
	Plot of cubic spline basis functions
	Alternative basis for cubic splines
	Basis splines in R
	Why splines?
	An interesting property of interpolating splines
	Smoothing splines
	Smoothing splines in R
	Summary: smooth regression for non-linear expectation function
	What about non-constant variance?
	Summary: smooth regression for non-linear expectation function

