
Penalized Regression
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Penalized regression

• Another potential remedy for collinearity

• Decreases variability of estimated coefficients at the cost of introducing bias

• Also known as regularization

• Important beyond the collinearity context

– Certain types of penalties can be used for variable selection in a natural way

– Penalized regression provides solutions in ill-posed (rank-deficient) problems

– Familiar examples of such models are ANOVA models with all dummy variables

– A more realistic situation is models with p > n (more covariates than observations)

Penalized likelihood and Bayesian interpretation

• We have already seen an example of penalized regression: smoothing splines

• Given data {(xi, yi) : xi ∈ [a, b]}, goal is to find f that minimizes (given λ > 0)

∑
i

(yi − f(xi))2 + λ

∫ b

a

(f ′′(t))2dt

• The solution is a natural cubic spline

• Here f is the parameter of interest

• The (ill-posed) least squares problem is regularized by adding a penalty for “undesirable” (wiggly)
solutions

• The same idea can be applied for usual (finite-dimensional) parameters as well

• Penalized regression is a special case of the more general penalized likelihood approach

• This is easiest to motivate using a Bayesian argument

• Consider unknown parameter θ and observed data y with

θ ∼ p(θ) (prior)
y|θ ∼ p(y|θ)

• Bayesian inference is based on the posterior distribution of θ, given by
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p(θ|y) = p(θ, y)
p(y) = p(θ) p(y|θ)

p(y)
• Here p(y) is the marginal density of y given by

p(y) =
∫
p(θ) p(y|θ) dθ

• How does posterior p(θ|y) lead to inference on θ?

• We could look at E(θ|y), V (θ|y), etc.

• We could also look at the maximum-a-posteriori (MAP) estimator

θ̂ = arg max
θ

p(θ|y)

• This is analagous to MLE in the classical frequentist setup

• Unfortunately, p(y) is in general difficult to compute

• This has led to methods to simulate from p(θ|y) without knowing p(y) (MCMC)

• Fortunately, MAP estimation does not require p(y), which does not depend on θ

• θ̂ is given by

θ̂ = arg max
θ

p(θ|y)

= arg max
θ

p(θ) p(y|θ)
p(y)

= arg max
θ

p(y|θ) p(θ)

= arg max
θ

[log p(y|θ) + log p(θ)]

• The first term is precisely the usual log-likelihood

• The second term can be viewed as a “regularization penalty” for “undesirable” θ

Penalized regression: normal linear model with normal prior

• Assume the usual normal linear model

y|X, β ∼ N(Xβ, σ2I)
• Addidionally, assume an i.i.d. mean-zero normal prior for each βj

β ∼ N(0, τ2I)
• Then it is easy to see that if L is the penalized log-likelihood, then

−2L(β) = C(σ2, τ2) + 1
σ2

n∑
i=1

(yi − xTi β)2 + 1
τ2

p∑
j=1

β2
j

• Thus, the MAP estimate of β is (as a function of the unknown σ2 and “prior parameter” τ2)

β̂ = arg min
β

n∑
i=1

(yi − xTi β)2 + σ2

τ2

p∑
j=1

β2
j
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Ridge regression

• This is known as Ridge regression, with the problem defined in terms of the “tuning parameter” λ

β̂ = arg min
β

n∑
i=1

(yi − xTi β)2 + λ

p∑
j=1

β2
j

• As discussed earlier, this approach does not really make sense unless columns of X are standardized

• It is also not meaningful to penalize the intercept

• For these reasons, in what follows, we assume without loss of generality that

– Columns of X have been centered and scaled to have mean 0 and variance 1

– y has been centered to have mean 0

– The model is fit without an intercept (which is separately estimated as ȳ)

• In practice, these issues are usually handled by model fitting software in the background

Ridge regression: solution

• It is easy to see that the objective function to be minimized is

yTy + βTXTXβ − 2yTXβ + λβTβ = yTy + βT (XTX + λI)β − 2yTXβ

• The corresponding normal equations are

(XTX + λI)β = XTy

• This gives the Ridge estimator

β̂ = (XTX + λI)−1XTy

• Note that XTX + λI is always invertible

• To prove this, use the singular value decomposition of XTX = AΛAT

XTX + λI = A(Λ + λI)AT

• Even if Λ has some zero diagonal entries, all diagonal entries of Λ + λI are at least λ

• As λ→ 0, β̂ridge → β̂OLS

• As λ→∞, β̂ridge → 0

• In the special case where columns of X are orthogonal (A = I)

β̂ridge = 1
1 + λ

β̂OLS

• This illustates the essential feature of ridge regression: shrinkage towards 0 (the prior mean of β)

• The ridge penalty introduces bias by shrinkage but reduces variance
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Ridge regression in the presence of collinearity

• Recall our experiment with simulated collinearity

simCollinear <- function(n = 100)
{

z1 <- rnorm(n)
z2 <- rnorm(n)
x1 <- z1 + z2 + 0.1 * rnorm(n)
x2 <- z1 - 2 * z2 + 0.1 * rnorm(n)
x3 <- 2 * z1 - z2 + 0.1 * rnorm(n)
y <- x1 + 2 * x2 + 2 * rnorm(n) # x3 has coefficient 0
data.frame(y, x1, x2, x3)

}
d3 <- simCollinear()
lm(y ~ . , data = d3)

Call:
lm(formula = y ~ ., data = d3)

Coefficients:
(Intercept) x1 x2 x3

-0.3256 0.7419 1.8612 0.1909

library(MASS) # for lm.ridge()
lm.ridge(y ~ . , data = d3, lambda = 1)

x1 x2 x3
-0.3339996 0.1511181 1.2421567 0.7907122

lm.ridge(y ~ . , data = d3, lambda = 10)

x1 x2 x3
-0.34263086 0.01199235 1.03851408 0.89352016

## Replicate this several times
sim.results <-

replicate(100,
{

d3 <- simCollinear()
beta.ols <- coef(lm(y ~ . , data = d3))[-1]
beta.ridge.1 <- coef(lm.ridge(y ~ . , data = d3, lambda = 1))[-1]
beta.ridge.10 <- coef(lm.ridge(y ~ . , data = d3, lambda = 10))[-1]
data.frame(beta1 = c(beta.ols[1], beta.ridge.1[1], beta.ridge.10[1]),

beta2 = c(beta.ols[2], beta.ridge.1[2], beta.ridge.10[2]),
beta3 = c(beta.ols[3], beta.ridge.1[3], beta.ridge.10[3]),
which = c("lambda=0 (OLS)", "lambda=1", "lambda=10"))

}, simplify = FALSE)
sim.df <- do.call(rbind, sim.results)

Ridge regression in the presence of collinearity

splom(~ data.frame(beta1, beta2, beta3) | which, data = sim.df, grid = TRUE)
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Bias and variance of Ridge regression

• Recall that true β = (1, 2, 0)

with(sim.df, rbind(tapply(beta1, which, mean),
tapply(beta2, which, mean),
tapply(beta3, which, mean)))

lambda=0 (OLS) lambda=1 lambda=10
[1,] 1.024926051 0.2217080 0.04698428
[2,] 1.997629453 1.1864466 0.96557666
[3,] -0.005341892 0.7949516 0.92124664

with(sim.df, rbind(tapply(beta1, which, sd),
tapply(beta2, which, sd),
tapply(beta3, which, sd)))

lambda=0 (OLS) lambda=1 lambda=10
[1,] 1.163054 0.2630750 0.11957701
[2,] 1.174441 0.2519598 0.07013490
[3,] 1.171263 0.2512505 0.08062144

• The variance of the ridge estimator is

V (β̂) = σ2WXTXW where W = (XTX + λI)−1

• The expectation of the ridge estimator is

E(β̂) = WXTXβ

• The bias of the ridge estimator is

bias(β̂) = (WXTX− I)β = −λWβ

• This follows because
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W(XTX + λI) = I =⇒ WXTX− I = λW

• It can be shown that

– the total variance
∑
j V (β̂j) is monotone decreasing w.r.t. λ

– the total squared bias
∑
j bias

2(β̂j) is monotone increasing w.r.t. λ

• It can also be shown that there exists some λ for which the total MSE of β̂ is less than the MSE of
β̂OLS

• This is a surprising result that is an instance of a more general phenomenon in decision theory

• Note however that the total MSE has no useful interpretation for the overall fit

• We still need to address the problem of choosing λ

• Before doing so, let us consider a related (but much more interesting) estimator called LASSO

LASSO

• LASSO stands for “Least Absolute Shrinkage and Selection Operator”

• The LASSO estimator is given by solving a penalized regression with a L1 penalty (rather than L2)

β̂ = arg min
β

1
2

n∑
i=1

(yi − xTi β)2 + λ

p∑
j=1
|βj |

• This corresponds to an i.i.d. double exponential prior on each βj
• Even though the change seems subtle, the behaviour of the estimator changes dramatically

• The problem is much more difficult to solve numerically (except when X is orthogonal — exercise)

• It is an area of active research, and implementations have improved considerably over the last few
decades

• We will not go into further theoretical details, but only look at some practical aspects

LASSO in the presence of collinearity

library(glmnet) # usage: glmnet(X, y, alpha, ...)
coef(with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 1, lambda = 1)))

4 x 1 sparse Matrix of class "dgCMatrix"
s0

(Intercept) -0.3733872
x1 .
x2 0.8227224
x3 0.6775433

## Replicate this several times
sim.results.lasso <-

replicate(100,
{

d3 <- simCollinear()
beta.ols <- coef(lm(y ~ . , data = d3))[-1]
fm.lasso <- with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 1, lambda = c(2, 1)))
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beta.lasso <- as.matrix(coef(fm.lasso))[-1, ]
data.frame(beta1 = c(beta.ols[1], beta.lasso[1,2], beta.lasso[1,1]),

beta2 = c(beta.ols[2], beta.lasso[2,2], beta.lasso[2,1]),
beta3 = c(beta.ols[3], beta.lasso[3,2], beta.lasso[3,1]),
which = c("lambda=0 (OLS)", "lambda=1", "lambda=2"))

}, simplify = FALSE)
sim.df.lasso <- do.call(rbind, sim.results.lasso)

LASSO in the presence of collinearity

splom(~ data.frame(beta1, beta2, beta3) | which, data = sim.df.lasso, grid = TRUE)

splom(~ data.frame(beta1, beta2, beta3) | which, data = sim.df.lasso, grid = TRUE, subset = which != "lambda=0 (OLS)")
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Bias and variance of LASSO

• Recall that true β = (1, 2, 0)

with(sim.df.lasso, rbind(tapply(beta1, which, mean),
tapply(beta2, which, mean),
tapply(beta3, which, mean)))

lambda=0 (OLS) lambda=1 lambda=2
[1,] 0.972813560 0.0000000 0.0000000
[2,] 2.008541811 0.7920059 0.5423446
[3,] -0.002656804 0.7109653 0.4587019

with(sim.df.lasso, rbind(tapply(beta1, which, sd),
tapply(beta2, which, sd),
tapply(beta3, which, sd)))

lambda=0 (OLS) lambda=1 lambda=2
[1,] 1.282199 0.0000000 0.0000000
[2,] 1.274482 0.1630202 0.1698728
[3,] 1.281313 0.1495002 0.1506298

Coefficients as a function of λ : LASSO

fm.lasso <- with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 1))
plot(fm.lasso, xvar = "norm", label = TRUE)

fm.lasso <- with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 1))
plot(fm.lasso, xvar = "dev", label = TRUE)
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Coefficients as a function of λ : Ridge

fm.ridge <- with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 0))
plot(fm.ridge, xvar = "norm", label = TRUE)

fm.ridge <- with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 0))
plot(fm.ridge, xvar = "dev", label = TRUE)
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Example: Salary of hitters in Major League Baseball (1987)

data(Hitters, package = "ISLR")
str(Hitters)

'data.frame': 322 obs. of 20 variables:
$ AtBat : int 293 315 479 496 321 594 185 298 323 401 ...
$ Hits : int 66 81 130 141 87 169 37 73 81 92 ...
$ HmRun : int 1 7 18 20 10 4 1 0 6 17 ...
$ Runs : int 30 24 66 65 39 74 23 24 26 49 ...
$ RBI : int 29 38 72 78 42 51 8 24 32 66 ...
$ Walks : int 14 39 76 37 30 35 21 7 8 65 ...
$ Years : int 1 14 3 11 2 11 2 3 2 13 ...
$ CAtBat : int 293 3449 1624 5628 396 4408 214 509 341 5206 ...
$ CHits : int 66 835 457 1575 101 1133 42 108 86 1332 ...
$ CHmRun : int 1 69 63 225 12 19 1 0 6 253 ...
$ CRuns : int 30 321 224 828 48 501 30 41 32 784 ...
$ CRBI : int 29 414 266 838 46 336 9 37 34 890 ...
$ CWalks : int 14 375 263 354 33 194 24 12 8 866 ...
$ League : Factor w/ 2 levels "A","N": 1 2 1 2 2 1 2 1 2 1 ...
$ Division : Factor w/ 2 levels "E","W": 1 2 2 1 1 2 1 2 2 1 ...
$ PutOuts : int 446 632 880 200 805 282 76 121 143 0 ...
$ Assists : int 33 43 82 11 40 421 127 283 290 0 ...
$ Errors : int 20 10 14 3 4 25 7 9 19 0 ...
$ Salary : num NA 475 480 500 91.5 750 70 100 75 1100 ...
$ NewLeague: Factor w/ 2 levels "A","N": 1 2 1 2 2 1 1 1 2 1 ...

Hitters <- na.omit(Hitters)
dim(Hitters)

[1] 263 20

y <- Hitters$Salary
X <- model.matrix( ~ . - Salary - 1, Hitters) # converts factors into dummy variables
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fm.lasso <- glmnet(X, y, alpha = 1)
fm.ridge <- glmnet(X, y, alpha = 0)

## top axis labels indicate number of nonzero coefficients
plot(fm.lasso, xvar = "lambda", label = TRUE)

Example: Salary of hitters in Major League Baseball (1987)

## top axis labels indicate number of nonzero coefficients
plot(fm.lasso, xvar = "dev", label = TRUE)
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Example: Salary of hitters in Major League Baseball (1987)

## top axis labels indicate number of nonzero coefficients (not useful for Ridge)
plot(fm.ridge, xvar = "lambda", label = TRUE)

Choosing λ

• Usual model selection criteria can be used (AIC, BIC, etc.)

• Using cross-validation is more common

• Note that there is no closed form expression for ei(−i) in general

• Leave-one-out (n-fold) cross-validation is computationally intensive for large data sets

• The cv.glmnet() function performs k-fold cross-validation (k = 10 by default)

– Divides dataset randomly into k (roughly) equal parts

– Predicts on each part using model fit with remaining (k − 1) parts

– Computes overall prediction error

cv.lasso <- cv.glmnet(X, y, alpha = 1, nfolds = 50)
cv.ridge <- cv.glmnet(X, y, alpha = 0, nfolds = 50)

plot(cv.lasso)
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The two lines on the plot correspond to

• λ that minimizes cross-validation error

• largest value of λ such that error is within 1 standard error of the minimum

c(lambda.min = cv.lasso$lambda.min,
lambda.1se = cv.lasso$lambda.1se)

lambda.min lambda.1se
2.674375 83.593378

s.cv <- c(lambda.min = cv.lasso$lambda.min, lambda.1se = cv.lasso$lambda.1se)
round(coef(cv.lasso, s = s.cv), 3) # corresponding coefficients

21 x 2 sparse Matrix of class "dgCMatrix"
1 2

(Intercept) 155.817 167.912
AtBat -1.547 .
Hits 5.661 1.293
HmRun . .
Runs . .
RBI . .
Walks 4.730 1.398
Years -9.596 .
CAtBat . .
CHits . .
CHmRun 0.511 .
CRuns 0.659 0.142
CRBI 0.393 0.322
CWalks -0.529 .
LeagueA -32.065 .
LeagueN 0.000 .
DivisionW -119.299 .
PutOuts 0.272 0.047
Assists 0.173 .
Errors -2.059 .
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NewLeagueN . .

plot(cv.ridge)

How well does LASSO work for variable selection?

• We repeat our earlier simulation example

• Let us look at number of variables selected when none are related to the response

## Replicate this experiment
num.nonzero.coefs <-

replicate(100,
{

d <- matrix(rnorm(100 * 21), 100, 21)
cv.lasso <- cv.glmnet(x = d[,-1], y = d[,1])
lambda.cv <- cv.lasso$lambda.1se
sum(coef(cv.lasso, s = lambda.cv)[-1] != 0) # exclude intercept

})
table(num.nonzero.coefs)

num.nonzero.coefs
0 2

99 1

• So Type-I error probability is much lower for LASSO compared to stepwise regression

How well does LASSO work for variable selection?

• How about power to detect effects that are present? Choose β1, β2 ∼ U(−1, 1), other βj = 0

coefs <- replicate(100,
{

X <- matrix(rnorm(100 * 20), 100, 20)
y <- X[,1:2] %*% runif(2, -1, 1) + rnorm(100)
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cv.lasso <- cv.glmnet(X, y)
lambda.cv <- cv.lasso$lambda.1se
coef(cv.lasso, s = lambda.cv)[-1] # exclude intercept

})
coefs[coefs == 0] <- NA
levelplot(t(coefs), col.regions = heat.colors, xlab = "Replication number", ylab = "Coefficient number")

Why does LASSO lead to exact 0 coefficients?

• Alternative formulation of Ridge regression: consider problem of minimizing

n∑
i=1

(yi − xTi β)2 subject to ‖β‖2 =
∑

β2
j ≤ t

• Claim: The solution β̂ is the usual Ridge estimate for some λ

• Case 1 : ‖β̂OLS‖2 ≤ t =⇒ β̂ = β̂OLS , λ = 0

• Case 2 : ‖β̂OLS‖2 > t

– Then must have ‖β̂‖2 = t (otherwise can move closer to β̂OLS)
– The Lagrangian is ‖y−Xβ‖2 + λ‖β̂‖2 − λt
– This is the same optimization problem as before
– λ is defined implicitly as a function of t, to ensure ‖β̂‖2 = t

• The LASSO problem can be similarly formulated as: minimize ‖y−Xβ‖2 subject to
∑
|βj | ≤ t

• This interpretation gives a useful geometric justification for the variable selection behaviour of LASSO
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Comparative geometry of Ridge and LASSO optimization

(From Elements of Statistical Learning, page 71)
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