# Penalized Regression

Deepayan Sarkar

## Penalized regression

- Another potential remedy for collinearity
- Decreases variability of estimated coefficients at the cost of introducing bias
- Also known as regularization
- Important beyond the collinearity context
  - Certain types of penalties can be used for variable selection in a natural way
  - Penalized regression provides solutions in ill-posed (rank-deficient) problems
  - Familiar examples of such models are ANOVA models with all dummy variables
  - A more realistic situation is models with p > n (more covariates than observations)

### Penalized likelihood and Bayesian interpretation

- We have already seen an example of penalized regression: smoothing splines
- Given data  $\{(x_i, y_i) : x_i \in [a, b]\}$ , goal is to find f that minimizes (given  $\lambda > 0$ )

$$\sum_{i} (y_i - f(x_i))^2 + \lambda \int_a^b (f''(t))^2 dt$$

- The solution is a natural cubic spline
- Here f is the parameter of interest
- The (ill-posed) least squares problem is regularized by adding a penalty for "undesirable" (wiggly) solutions
- The same idea can be applied for usual (finite-dimensional) parameters as well
- Penalized regression is a special case of the more general penalized likelihood approach
- This is easiest to motivate using a Bayesian argument
- Consider unknown parameter  $\theta$  and observed data y with

$$\theta \sim p(\theta) \quad (\text{prior})$$
 $y|\theta \sim p(y|\theta)$ 

• Bayesian inference is based on the posterior distribution of  $\theta$ , given by

$$p(\theta|y) = \frac{p(\theta, y)}{p(y)} = \frac{p(\theta) p(y|\theta)}{p(y)}$$

• Here p(y) is the marginal density of y given by

$$p(y) = \int p(\theta) p(y|\theta) d\theta$$

- How does posterior  $p(\theta|y)$  lead to inference on  $\theta$ ?
- We could look at  $E(\theta|y)$ ,  $V(\theta|y)$ , etc.
- We could also look at the maximum-a-posteriori (MAP) estimator

$$\hat{\theta} = \arg\max_{\theta} p(\theta|y)$$

- This is analogous to MLE in the classical frequentist setup
- Unfortunately, p(y) is in general difficult to compute
- This has led to methods to simulate from  $p(\theta|y)$  without knowing p(y) (MCMC)
- Fortunately, MAP estimation does not require p(y), which does not depend on  $\theta$
- $\hat{\theta}$  is given by

$$\begin{split} \hat{\theta} &= & \arg \max_{\theta} \, p(\theta|y) \\ &= & \arg \max_{\theta} \, \frac{p(\theta) \, p(y|\theta)}{p(y)} \\ &= & \arg \max_{\theta} \, p(y|\theta) \, p(\theta) \\ &= & \arg \max_{\theta} \, [\log p(y|\theta) + \log p(\theta)] \end{split}$$

- The first term is precisely the usual log-likelihood
- The second term can be viewed as a "regularization penalty" for "undesirable"  $\theta$

## Penalized regression: normal linear model with normal prior

• Assume the usual normal linear model

$$\mathbf{y}|\mathbf{X}, \beta \sim N(\mathbf{X}\beta, \sigma^2 \mathbf{I})$$

• Additionally, assume an i.i.d. mean-zero normal prior for each  $\beta_j$ 

$$\beta \sim N(\mathbf{0}, \tau^2 \mathbf{I})$$

• Then it is easy to see that if L is the penalized log-likelihood, then

$$-2L(\beta) = C(\sigma^2, \tau^2) + \frac{1}{\sigma^2} \sum_{i=1}^n (y_i - \mathbf{x}_i^T \beta)^2 + \frac{1}{\tau^2} \sum_{j=1}^p \beta_j^2$$

• Thus, the MAP estimate of  $\beta$  is (as a function of the unknown  $\sigma^2$  and "prior parameter"  $\tau^2$ )

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2 + \frac{\sigma^2}{\tau^2} \sum_{j=1}^{p} \beta_j^2$$

### **Ridge regression**

• This is known as Ridge regression, with the problem defined in terms of the "tuning parameter"  $\lambda$ 

$$\hat{\beta} = \arg\min_{\beta} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2 + \lambda \sum_{j=1}^{p} \beta_j^2$$

- As discussed earlier, this approach does not really make sense unless columns of **X** are standardized
- It is also not meaningful to penalize the intercept
- For these reasons, in what follows, we assume without loss of generality that
  - Columns of  ${\bf X}$  have been centered and scaled to have mean 0 and variance 1
  - **y** has been centered to have mean 0
  - The model is fit without an intercept (which is separately estimated as  $\bar{y}$ )
- In practice, these issues are usually handled by model fitting software in the background

## Ridge regression: solution

• It is easy to see that the objective function to be minimized is

$$\mathbf{y}^T \mathbf{y} + \beta^T \mathbf{X}^T \mathbf{X} \beta - 2 \mathbf{y}^T \mathbf{X} \beta + \lambda \beta^T \beta = \mathbf{y}^T \mathbf{y} + \beta^T (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}) \beta - 2 \mathbf{y}^T \mathbf{X} \beta$$

• The corresponding normal equations are

$$(\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})\beta = \mathbf{X}^T \mathbf{y}$$

• This gives the Ridge estimator

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

- Note that  $\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I}$  is *always* invertible
- To prove this, use the singular value decomposition of  $\mathbf{X}^T \mathbf{X} = \mathbf{A} \mathbf{\Lambda} \mathbf{A}^T$

$$\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I} = \mathbf{A} (\mathbf{\Lambda} + \lambda \mathbf{I}) \mathbf{A}^T$$

- Even if  $\Lambda$  has some zero diagonal entries, all diagonal entries of  $\Lambda + \lambda I$  are at least  $\lambda$
- As  $\lambda \to 0$ ,  $\hat{\beta}_{ridge} \to \hat{\beta}_{OLS}$
- As  $\lambda \to \infty$ ,  $\hat{\beta}_{ridge} \to \mathbf{0}$
- In the special case where columns of **X** are orthogonal  $(\mathbf{A} = \mathbf{I})$

$$\hat{\beta}_{ridge} = \frac{1}{1+\lambda} \hat{\beta}_{OLS}$$

- This illustates the essential feature of ridge regression: shrinkage towards 0 (the prior mean of  $\beta$ )
- The ridge penalty introduces bias by shrinkage but reduces variance

## Ridge regression in the presence of collinearity

```
• Recall our experiment with simulated collinearity
simCollinear <- function(n = 100)</pre>
{
    z1 < - rnorm(n)
    z2 < - rnorm(n)
    x1 < z1 + z2 + 0.1 * rnorm(n)
    x2 <- z1 - 2 * z2 + 0.1 * rnorm(n)
    x3 <- 2 * z1 - z2 + 0.1 * rnorm(n)
    y <- x1 + 2 * x2 + 2 * rnorm(n) # x3 has coefficient 0
    data.frame(y, x1, x2, x3)
}
d3 <- simCollinear()
lm(y \sim ., data = d3)
Call:
lm(formula = y ~ ., data = d3)
Coefficients:
(Intercept)
                                     x2
                                                   xЗ
                       x1
    -0.3256
                  0.7419
                                1.8612
                                              0.1909
library(MASS) # for lm.ridge()
lm.ridge(y ~ . , data = d3, lambda = 1)
                    x1
                              x2
                                           xЗ
-0.3339996 0.1511181 1.2421567 0.7907122
lm.ridge(y \sim ., data = d3, lambda = 10)
                      x1
                                   x2
                                                x3
-0.34263086 \quad 0.01199235 \quad 1.03851408 \quad 0.89352016
## Replicate this several times
sim.results <-
    replicate(100,
    {
        d3 <- simCollinear()</pre>
        beta.ols <- coef(lm(y ~ . , data = d3))[-1]
        beta.ridge.1 <- coef(lm.ridge(y ~ . , data = d3, lambda = 1))[-1]</pre>
        beta.ridge.10 <- coef(lm.ridge(y ~ . , data = d3, lambda = 10))[-1]</pre>
        data.frame(beta1 = c(beta.ols[1], beta.ridge.1[1], beta.ridge.10[1]),
                    beta2 = c(beta.ols[2], beta.ridge.1[2], beta.ridge.10[2]),
                    beta3 = c(beta.ols[3], beta.ridge.1[3], beta.ridge.10[3]),
                    which = c("lambda=0 (OLS)", "lambda=1", "lambda=10"))
    }, simplify = FALSE)
sim.df <- do.call(rbind, sim.results)</pre>
```

Ridge regression in the presence of collinearity

splom(~ data.frame(beta1, beta2, beta3) | which, data = sim.df, grid = TRUE)



## Bias and variance of Ridge regression

```
• Recall that true \beta = (1, 2, 0)
with(sim.df, rbind(tapply(beta1, which, mean),
                   tapply(beta2, which, mean),
                   tapply(beta3, which, mean)))
     lambda=0 (OLS) lambda=1 lambda=10
[1,]
        1.024926051 0.2217080 0.04698428
[2,]
        1.997629453 1.1864466 0.96557666
[3,]
       -0.005341892 0.7949516 0.92124664
with(sim.df, rbind(tapply(beta1, which, sd),
                   tapply(beta2, which, sd),
                   tapply(beta3, which, sd)))
     lambda=0 (OLS) lambda=1 lambda=10
[1,]
           1.163054 0.2630750 0.11957701
[2,]
           1.174441 0.2519598 0.07013490
[3,]
           1.171263 0.2512505 0.08062144
```

• The variance of the ridge estimator is

 $V(\hat{\beta}) = \sigma^2 \mathbf{W} \mathbf{X}^T \mathbf{X} \mathbf{W}$  where  $\mathbf{W} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1}$ 

• The expectation of the ridge estimator is

$$E(\hat{\beta}) = \mathbf{W}\mathbf{X}^T\mathbf{X}\beta$$

• The bias of the ridge estimator is

$$bias(\hat{\beta}) = (\mathbf{W}\mathbf{X}^T\mathbf{X} - \mathbf{I})\beta = -\lambda\mathbf{W}\beta$$

• This follows because

$$\mathbf{W}(\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I}) = \mathbf{I} \implies \mathbf{W}\mathbf{X}^T\mathbf{X} - \mathbf{I} = \lambda\mathbf{W}$$

- It can be shown that
  - the total variance  $\sum_{j} V(\hat{\beta}_{j})$  is monotone decreasing w.r.t.  $\lambda$
  - the total squared bias  $\sum_{j} \text{bias}^2(\hat{\beta}_j)$  is monotone increasing w.r.t.  $\lambda$
- It can also be shown that there exists some  $\lambda$  for which the total MSE of  $\hat{\beta}$  is less than the MSE of  $\hat{\beta}_{OLS}$
- This is a surprising result that is an instance of a more general phenomenon in decision theory
- Note however that the total MSE has no useful interpretation for the overall fit
- We still need to address the problem of choosing  $\lambda$
- Before doing so, let us consider a related (but much more interesting) estimator called LASSO

## LASSO

- LASSO stands for "Least Absolute Shrinkage and Selection Operator"
- The LASSO estimator is given by solving a penalized regression with a  $L_1$  penalty (rather than  $L_2$ )

$$\hat{\beta} = \arg\min_{\beta} \quad \frac{1}{2} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2 + \lambda \sum_{j=1}^{p} |\beta_j|$$

- This corresponds to an i.i.d. double exponential prior on each  $\beta_i$
- Even though the change seems subtle, the behaviour of the estimator changes dramatically
- The problem is much more difficult to solve numerically (except when **X** is orthogonal exercise)
- It is an area of active research, and implementations have improved considerably over the last few decades
- We will not go into further theoretical details, but only look at some practical aspects

## LASSO in the presence of collinearity

```
library(glmnet) # usage: glmnet(X, y, alpha, ...)
coef(with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 1, lambda = 1)))
4 x 1 sparse Matrix of class "dgCMatrix"
                    s0
(Intercept) -0.3733872
x1
             0.8227224
x2
             0.6775433
xЗ
## Replicate this several times
sim.results.lasso <-</pre>
    replicate(100,
    {
        d3 <- simCollinear()
        beta.ols <- coef(lm(y ~ . , data = d3))[-1]
        fm.lasso <- with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 1, lambda = c(2, 1)))
```

# LASSO in the presence of collinearity

splom(~ data.frame(beta1, beta2, beta3) | which, data = sim.df.lasso, grid = TRUE)



splom(~ data.frame(beta1, beta2, beta3) | which, data = sim.df.lasso, grid = TRUE, subset = which != "la"



# Bias and variance of LASSO

```
• Recall that true \beta = (1, 2, 0)
with(sim.df.lasso, rbind(tapply(beta1, which, mean),
                         tapply(beta2, which, mean),
                         tapply(beta3, which, mean)))
     lambda=0 (OLS) lambda=1 lambda=2
        0.972813560 0.0000000 0.0000000
[1,]
[2,]
        2.008541811 0.7920059 0.5423446
[3,]
       -0.002656804 0.7109653 0.4587019
with(sim.df.lasso, rbind(tapply(beta1, which, sd),
                         tapply(beta2, which, sd),
                         tapply(beta3, which, sd)))
     lambda=0 (OLS) lambda=1 lambda=2
[1,]
           1.282199 0.0000000 0.0000000
[2,]
           1.274482 0.1630202 0.1698728
           1.281313 0.1495002 0.1506298
[3,]
```

# Coefficients as a function of $\lambda$ : LASSO

```
fm.lasso <- with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 1))
plot(fm.lasso, xvar = "norm", label = TRUE)</pre>
```



```
fm.lasso <- with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 1))
plot(fm.lasso, xvar = "dev", label = TRUE)</pre>
```



# Coefficients as a function of $\lambda$ : Ridge

fm.ridge <- with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 0))
plot(fm.ridge, xvar = "norm", label = TRUE)</pre>



fm.ridge <- with(d3, glmnet(cbind(x1, x2, x3), y, alpha = 0))
plot(fm.ridge, xvar = "dev", label = TRUE)</pre>



```
Example: Salary of hitters in Major League Baseball (1987)
```

```
data(Hitters, package = "ISLR")
str(Hitters)
'data.frame':
                322 obs. of 20 variables:
$ AtBat
            : int 293 315 479 496 321 594 185 298 323 401 ...
                  66 81 130 141 87 169 37 73 81 92 ...
 $ Hits
            : int
 $ HmRun
            : int 1 7 18 20 10 4 1 0 6 17 ...
 $ Runs
            : int 30 24 66 65 39 74 23 24 26 49 ...
 $ RBI
                  29 38 72 78 42 51 8 24 32 66 ...
            : int
 $ Walks
            : int
                  14 39 76 37 30 35 21 7 8 65 ...
            : int 1 14 3 11 2 11 2 3 2 13 ...
 $ Years
 $ CAtBat
            : int 293 3449 1624 5628 396 4408 214 509 341 5206 ...
 $ CHits
            : int 66 835 457 1575 101 1133 42 108 86 1332 ...
 $ CHmRun
            : int 1 69 63 225 12 19 1 0 6 253 ...
 $ CRuns
            : int 30 321 224 828 48 501 30 41 32 784 ...
 $ CRBI
            : int 29 414 266 838 46 336 9 37 34 890 ...
            : int 14 375 263 354 33 194 24 12 8 866 ...
 $ CWalks
 $ League
            : Factor w/ 2 levels "A", "N": 1 2 1 2 2 1 2 1 2 1 ...
 $ Division : Factor w/ 2 levels "E","W": 1 2 2 1 1 2 1 2 2 1 ...
           : int 446 632 880 200 805 282 76 121 143 0 ...
 $ PutOuts
           : int 33 43 82 11 40 421 127 283 290 0 ...
 $ Assists
 $ Errors
            : int 20 10 14 3 4 25 7 9 19 0 ...
 $ Salary
            : num NA 475 480 500 91.5 750 70 100 75 1100 ...
 $ NewLeague: Factor w/ 2 levels "A","N": 1 2 1 2 2 1 1 1 2 1 ...
Hitters <- na.omit(Hitters)</pre>
dim(Hitters)
[1] 263 20
y <- Hitters$Salary
X <- model.matrix( ~ . - Salary - 1, Hitters) # converts factors into dummy variables
```

```
fm.lasso <- glmnet(X, y, alpha = 1)
fm.ridge <- glmnet(X, y, alpha = 0)</pre>
```

## top axis labels indicate number of nonzero coefficients
plot(fm.lasso, xvar = "lambda", label = TRUE)



Example: Salary of hitters in Major League Baseball (1987)

## top axis labels indicate number of nonzero coefficients
plot(fm.lasso, xvar = "dev", label = TRUE)



## Example: Salary of hitters in Major League Baseball (1987)

## top axis labels indicate number of nonzero coefficients (not useful for Ridge)
plot(fm.ridge, xvar = "lambda", label = TRUE)



## Choosing $\lambda$

- Usual model selection criteria can be used (AIC, BIC, etc.)
- Using cross-validation is more common
- Note that there is no closed form expression for  $e_{i\left(-i\right)}$  in general
- Leave-one-out (n-fold) cross-validation is computationally intensive for large data sets
- The cv.glmnet() function performs k-fold cross-validation (k = 10 by default)
  - Divides dataset randomly into k (roughly) equal parts
  - Predicts on each part using model fit with remaining (k-1) parts
  - Computes overall prediction error

```
cv.lasso <- cv.glmnet(X, y, alpha = 1, nfolds = 50)
cv.ridge <- cv.glmnet(X, y, alpha = 0, nfolds = 50)</pre>
```

```
plot(cv.lasso)
```

![](_page_12_Figure_0.jpeg)

The two lines on the plot correspond to

- $\lambda$  that minimizes cross-validation error
- largest value of  $\lambda$  such that error is within 1 standard error of the minimum

```
c(lambda.min = cv.lasso$lambda.min,
  lambda.1se = cv.lasso$lambda.1se)
lambda.min lambda.1se
  2.674375 83.593378
s.cv <- c(lambda.min = cv.lasso$lambda.min, lambda.1se = cv.lasso$lambda.1se)</pre>
round(coef(cv.lasso, s = s.cv), 3) # corresponding coefficients
21 x 2 sparse Matrix of class "dgCMatrix"
                    1
                            2
(Intercept)
             155.817 167.912
AtBat
              -1.547
                        .
Hits
               5.661
                        1.293
HmRun
                        .
Runs
                .
                        .
RBI
Walks
               4.730
                        1.398
              -9.596
Years
                        .
CAtBat
                .
                        .
CHits
                        .
CHmRun
               0.511
CRuns
               0.659
                        0.142
CRBI
                        0.322
               0.393
CWalks
              -0.529
                        .
LeagueA
             -32.065
                        .
               0.000
LeagueN
DivisionW
            -119.299
PutOuts
               0.272
                        0.047
Assists
               0.173
                        .
Errors
              -2.059
                        .
```

#### NewLeagueN

#### plot(cv.ridge)

.

![](_page_13_Figure_2.jpeg)

## How well does LASSO work for variable selection?

- We repeat our earlier simulation example
- Let us look at number of variables selected when none are related to the response

```
## Replicate this experiment
num.nonzero.coefs <-
    replicate(100,
    {
        d <- matrix(rnorm(100 * 21), 100, 21)
        cv.lasso <- cv.glmnet(x = d[,-1], y = d[,1])
        lambda.cv <- cv.lasso$lambda.1se
        sum(coef(cv.lasso, s = lambda.cv)[-1] != 0) # exclude intercept
    })
table(num.nonzero.coefs)
num.nonzero.coefs
    0   2
    99   1</pre>
```

• So Type-I error probability is much lower for LASSO compared to stepwise regression

### How well does LASSO work for variable selection?

```
    How about power to detect effects that are present? Choose β<sub>1</sub>, β<sub>2</sub> ~ U(-1,1), other β<sub>j</sub> = 0
    coefs <- replicate(100, {</li>
    X <- matrix(rnorm(100 * 20), 100, 20)</li>
    y <- X[,1:2] %*% runif(2, -1, 1) + rnorm(100)</li>
```

```
cv.lasso <- cv.glmnet(X, y)
lambda.cv <- cv.lasso$lambda.lse
coef(cv.lasso, s = lambda.cv)[-1] # exclude intercept
})
coefs[coefs == 0] <- NA
levelplot(t(coefs), col.regions = heat.colors, xlab = "Replication number", ylab = "Coefficient number"</pre>
```

![](_page_14_Figure_1.jpeg)

## Why does LASSO lead to exact 0 coefficients?

• Alternative formulation of Ridge regression: consider problem of minimizing

$$\sum_{i=1}^{n} (y_i - \mathbf{x}_i^T \beta)^2 \quad \text{subject to} \quad \|\beta\|^2 = \sum \beta_j^2 \leq t$$

- Claim: The solution  $\hat{\beta}$  is the usual Ridge estimate for some  $\lambda$
- Case 1 :  $\|\hat{\beta}_{OLS}\|^2 \le t \implies \hat{\beta} = \hat{\beta}_{OLS}, \lambda = 0$
- Case 2 :  $\|\hat{\beta}_{OLS}\|^2 > t$ 
  - Then must have  $\|\hat{\beta}\|^2 = t$  (otherwise can move closer to  $\hat{\beta}_{OLS}$ )
  - The Lagrangian is  $\|\mathbf{y} \mathbf{X}\beta\|^2 + \lambda \|\hat{\beta}\|^2 \lambda t$
  - This is the same optimization problem as before
  - $-\lambda$  is defined implicitly as a function of t, to ensure  $\|\hat{\beta}\|^2 = t$
- The LASSO problem can be similarly formulated as: minimize  $\|\mathbf{y} \mathbf{X}\beta\|^2$  subject to  $\sum |\beta_j| \le t$
- This interpretation gives a useful geometric justification for the variable selection behaviour of LASSO

Comparative geometry of Ridge and LASSO optimization

![](_page_15_Figure_1.jpeg)

**FIGURE 3.11.** Estimation picture for the lasso (left) and ridge regression (right). Shown are contours of the error and constraint functions. The solid blue areas are the constraint regions  $|\beta_1| + |\beta_2| \leq t$  and  $\beta_1^2 + \beta_2^2 \leq t^2$ , respectively, while the red ellipses are the contours of the least squares error function.

(From Elements of Statistical Learning, page 71)