Regression Techniques

Deepayan Sarkar

Regression

- Most of you should be familiar with Linear Regression / Least Squares
- What is the purpose?
- What are the model assumptions?
- Are there any other kinds of regression?

Course: Regression Techniques

- This course is not about linear regression!
- We will
- Try to refine what we understand by the term "regression" (linear regression is only a special case)
- Learn alternative approaches to solve the "regression" problem
- Learn how to identify and address modeling errors
- Most techniques we will learn require non-trivial programming
- We will learn and use the R language for computation
- Room 11 (ground floor) is a computer lab (usually locked, but security guards at the main gate will open it when you ask them)
- There are two more (smaller) computer labs in teh ground floor of the Faculty Building
- You can use your own laptops as well

Evaluation scheme

- Midterm examination: 30\%
- Final examination: 50\%
- Assignments / Projects: 20\%

What is Regression?

- Consider bivariate data (X, Y) with some distribution
- Interested in "predicting" Y for a fixed value of $X=x$
- In probability terms, want the conditional distribution of

$$
Y \mid X=x
$$

- In general
- Y could be numeric or categorical
- X could also be numeric or categorical
- The "Regression Problem": when Y is numeric
- The "Classification Problem": when Y is categorical
- A more modern approach is to view both as special cases of the "Learning Problem"

Example: Height and Weight Data

data(Davis, package $=$					"carData")
Davis [1:20,]					
sex weight height					repwt
repht					
1	M	77	182	77	180
2	F	58	161	51	159
3	F	53	161	54	158
4	M	68	177	70	175
5	F	59	157	59	155
6	M	76	170	76	165
7	M	76	167	77	165
8	M	69	186	73	180
9	M	71	178	71	175
10	M	65	171	64	170
11	M	70	175	75	174
12	F	166	57	56	163
13	F	51	161	52	158
14	F	64	168	64	165
15	F	52	163	57	160
16	F	65	166	66	165
17	M	92	187	101	185
18	F	62	168	62	165
19	M	76	197	75	200
20	F	61	175	61	171

- Interested in predicting weight distribution as a function of height
- How should we proceed?

```
xyplot(weight ~ height, data = Davis)
```


Example: Survey of Labour and Income Dynamics

```
data(SLID, package = "carData")
str(SLID)
'data.frame': }7425\mathrm{ obs. of 5 variables:
    $ wages : num 10.6 11 NA 17.8 NA ...
    $ education: num 15 13.2 16 14 8 16 12 14.5 15 10 ...
    $ age : int 40 19 49 46 71 50 70 42 31 56 ...
    $ sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 1 1 1 2 1 ...
    $ language : Factor w/ 3 levels "English","French",..: 1 1 3 3 1 1 1 1 1 1 ...
head(SLID, 10)
\begin{tabular}{rrrrr} 
wages & education & age & \multicolumn{2}{r}{ sex language } \\
10.56 & 15.0 & 40 & Male & English \\
11.00 & 13.2 & 19 & Male & English \\
NA & 16.0 & 49 & Male & Other \\
17.76 & 14.0 & 46 & Male & Other \\
NA & 8.0 & 71 & Male & English \\
14.00 & 16.0 & 50 & Female & English \\
NA & 12.0 & 70 & Female & English \\
NA & 14.5 & 42 & Female & English \\
8.20 & 15.0 & 31 & Male & English \\
0 & NA & 10.0 & 56 & Female
\end{tabular} English
- Interested in predicting wage
```

xyplot(wages \sim education, data $=$ SLID)


```
xyplot(wages ~ jitter(round(education)), data = SLID, groups = sex, auto.key = list(columns = 2))
```


xyplot(wages ~ jitter(round(education)) | sex, data = SLID)


```
xyplot(wages ~ jitter(age) | sex, data = SLID, subset = !is.na(wages))
```


Example: Prestige vs Average income (Canada, 1971)

	education	income	women	prestige	census type
gov.administrators	13.11	12351	11.16	68.8	1113 prof
general.managers	12.26	25879	4.02	69.1	1130 prof
accountants	12.77	9271	15.70	63.4	1171 prof
purchasing.officers	11.42	8865	9.11	56.8	1175 prof
chemists	14.62	8403	11.68	73.5	2111 prof
physicists	15.64	11030	5.13	77.6	2113 prof
biologists	15.09	8258	25.65	72.6	2133 prof
architects	15.44	14163	2.69	78.1	2141 prof
civil.engineers	14.52	11377	1.03	73.1	2143 prof
mining.engineers	14.64	11023	0.94	68.8	2153 prof
surveyors	12.39	5902	1.91	62.0	2161 prof
draughtsmen	12.30	7059	7.83	60.0	2163 prof
computer.programers	13.83	8425	15.33	53.8	2183 prof
economists	14.44	8049	57.31	62.2	2311 prof
psychologists	14.36	7405	48.28	74.9	2315 prof
social.workers	14.21	6336	54.77	55.1	2331 prof
lawyers	15.77	19263	5.13	82.3	2343 prof
librarians	14.15	6112	77.10	58.1	2351 prof
vocational.counsellors	15.22	9593	34.89	58.3	2391 prof

```
ministers 14.50 4686 4.14 72.8 2511 prof
xyplot(prestige ~ income, Prestige, grid = TRUE)
```


Example: UN National Statistics

	region	group	fertility	ppgdp	lifeExpF	pctUrban	infantMortality
Afghanistan	Asia	other	5.968	499.0	49.49	23	124.53500
Albania	Europe	other	1.525	3677.2	80.40	53	16.56100
Algeria	Africa	africa	2.142	4473.0	75.00	67	21.45800
American Samoa	<NA>	<NA>	NA	NA	NA	NA	11.29389
Angola	Africa	africa	5.135	4321.9	53.17	59	96.19100
Anguilla	Caribbean	other	2.000	13750.1	81.10	100	NA
Argentina	Latin Amer	other	2.172	9162.1	79.89	93	12.33700
Armenia	Asia	other	1.735	3030.7	77.33	64	24.27200
Aruba	Caribbean	other	1.671	22851.5	77.75	47	14.68700
Australia	Oceania	oecd	1.949	57118.9	84.27	89	4.45500
Austria	Europe	oecd	1.346	45158.8	83.55	68	3.71300
Azerbaijan	Asia	other	2.148	5637.6	73.66	52	37.56600
Bahamas	Caribbean	other	1.877	22461.6	78.85	84	14.13500
Bahrain	Asia	other	2.430	18184.1	76.06	89	6.66300
Bangladesh	Asia	other	2.157	670.4	70.23	29	41.78600
Barbados	Caribbean	other	1.575	14497.3	80.26	45	12.28400

Belarus	Europe	other	1.479	5702.0	76.37	75	6.49400
Belgium	Europe	oecd	1.835	43814.8	82.81	97	3.73900
Belize	Latin Amer	other	2.679	4495.8	77.81	53	16.20000
Benin	Africa africa	5.078	741.1	58.66	42	76.67400	

- Interested in predicting pctUrban using ppgdp

Example: UN Data

```
xyplot(pctUrban ~ ppgdp, data = UN)
```


xyplot(pctUrban $\sim \log (p p g d p)$, data $=U N)$

Review of Linear Regression

- Interested in "predicting" Y for a fixed value of $X=x$
- In probability terms, want the conditional distribution of

$$
Y \mid X=x
$$

- Important special case: linear regression
- Appropriate under certain model assumptions
- Essential component in more general procedures
- You will learn theory in Linear Model course
- We will review basics

Conditional distribution

$$
Y \mid X=x
$$

- In general, the conditional distribution can be anything
- If (X, Y) is jointly Normal, then

$$
Y \mid X=x \sim N\left(\alpha+\beta x, \sigma^{2}\right)
$$

for some $\alpha, \beta, \sigma^{2}$

- This is the motivation for Linear Regression

Correlation: Measuring linear dependence

- Suppose $E(X)=\mu_{X}$ and $E(Y)=\mu_{Y}$
- The covariance of X and Y is defined by

$$
\operatorname{Cov}(X, Y)=E\left(\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right)=E(X Y)-\mu_{X} \mu_{Y}
$$

- The correlation coefficient $\rho(X, Y)$ of X and Y is defined by

$$
\rho(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}
$$

Properties of Correlation Coefficient

- $-1 \leq \rho \leq 1$
- $\rho=-1$: perfect decreasing linear relation
- $\rho=1$: perfect increasing linear relation
- $\rho=0$: no linear relation

Sample Correlation

- Sample analog of correlation

$$
r(X, Y)=\frac{\sum_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum_{i}\left(x_{i}-\bar{x}\right)^{2} \sum_{i}\left(y_{i}-\bar{y}\right)^{2}}}
$$

- Closely related with regression
- Correlation between height and weight (Davis data): 0.19
- Correlation between reported height and weight (Davis data): 0.762
- Correlations in labour dynamics data

	wages	education	age
wages	1.000	0.307	0.361
education	0.307	1.000	-0.298
age	0.361	-0.298	1.000

Warning! Correlation only measures linear relation!

(Multiple) Linear Regression

In general form, the regression model assumes

$$
\begin{gathered}
E\left(Y \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{p}=x_{p}\right)=\beta_{0}+\sum_{j=1}^{p} \beta_{j} x_{j} \\
\operatorname{Var}\left(Y \mid X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{p}=x_{p}\right)=\sigma^{2}
\end{gathered}
$$

where

- $\beta_{0}, \beta_{1}, \ldots, \beta_{p}, \sigma^{2}>0$ are unknown parameters
- $X_{1}, X_{2}, \ldots, X_{p}$ are (conditionally) fixed covariates
- $X_{1}, X_{2}, \ldots, X_{p}$ may be derived from a smaller set of predictors, e.g.,
$-X_{2}=Z_{1}$ (linear term for Z_{1})
$-X_{3}=Z_{2}$ (linear term for Z_{2})
$-X_{4}=Z_{1}^{2}$ (quadratic term for Z_{1})
$-X_{5}=Z_{2}^{2}$ (quadratic term for Z_{2})
- $X_{6}=Z_{1} Z_{2}$ (interaction term)
- In vector notation (incorporating intercept term in \mathbf{X})

$$
\begin{gathered}
E(Y \mid \mathbf{X}=\mathbf{x})=\mathbf{x}^{T} \beta \\
\operatorname{Var}(Y \mid \mathbf{X}=\mathbf{x})=\sigma^{2}
\end{gathered}
$$

- Alternatively

$$
\begin{gathered}
Y=\mathbf{x}^{T} \beta+\varepsilon \text { where } \\
E(\varepsilon)=0, \operatorname{Var}(\varepsilon)=\sigma^{2}
\end{gathered}
$$

Sample version: n independent observations from this model

- For i th sample point, let
- $Y_{i}=$ response
- $\mathbf{x}_{i}=p$-dimensional vector of predictors
- We assume that

$$
Y_{i}=\mathbf{x}_{i}^{T} \beta+\varepsilon_{i},
$$

where ε_{i} are independent and

$$
E\left(\varepsilon_{i}\right)=0, \operatorname{Var}\left(\varepsilon_{i}\right)=\sigma^{2}
$$

In matrix notation

$$
\mathbf{Y}=\mathbf{X} \beta+\varepsilon
$$

- where

$$
\mathbf{Y}=\left(\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right), \mathbf{X}=\left(\begin{array}{c}
\mathbf{x}_{1}^{T} \\
\vdots \\
\mathbf{x}_{n}^{T}
\end{array}\right), \varepsilon=\left(\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{n}
\end{array}\right)
$$

- \mathbf{Y} and ε are $n \times 1$
- \mathbf{X} is $n \times p$
- Columns of \mathbf{X} are assumed to be linearly independent $(\operatorname{rank}(\mathbf{X})=p)$
- $\beta_{p \times 1}$ and $\sigma^{2}>0$ are unknown parameters

Problem: How to estimate β and σ^{2}

- Least squares approach: minimize sum of squared errors

$$
\widehat{\beta}=\arg \min _{\beta} q(\beta)
$$

where

$$
q(\beta)=\sum\left(Y_{i}-\mathbf{x}_{i}^{T} \beta\right)^{2}=(\mathbf{Y}-\mathbf{X} \beta)^{T}(\mathbf{Y}-\mathbf{X} \beta)
$$

- Set gradient with respect to β to $\mathbf{0}$.

$$
\nabla q(\beta)=2 \mathbf{X}^{T}(\mathbf{Y}-\mathbf{X} \beta)=2\left(\mathbf{X}^{T} \mathbf{Y}-\mathbf{X}^{T} \mathbf{X} \beta\right)=\mathbf{0}
$$

- This leads to Normal Equations:

$$
\mathbf{X}^{T} \mathbf{X} \beta=\mathbf{X}^{T} \mathbf{Y}
$$

- Estimate of β assuming that $\mathbf{X}^{T} \mathbf{X}$ has full rank (OLS estimator):

$$
\widehat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{Y}
$$

The OLS estimator in practice

```
fm1 <- lm(weight ~ height, data = Davis)
xyplot(weight ~ height, data = Davis, grid = TRUE, type = c("p", "r"))
```


fm1 <- lm(repwt ~ repht, data = Davis) xyplot(repwt \sim repht, data $=$ Davis, grid $=$ TRUE, type $=c(" p ", ~ " r "))$


```
xyplot(pctUrban ~ log(ppgdp), data = UN, grid = TRUE, type = c("p", "r"))
```


Alternative approach: maximum likelihood

- Less arbitrary, but needs model assumption: Multivariate Normality
- To indicate that \mathbf{Y} follows n-dimensional Multivariate Normal Distribution with mean vector μ and covariance matrix Σ, we write

$$
\mathbf{Y} \sim N_{n}(\mu, \Sigma)
$$

- When Σ has full rank (positive definite), \mathbf{Y} has joint density function (pdf)

$$
f(\mathbf{y})=(2 \pi)^{-n / 2}|\Sigma|^{-1 / 2} \exp \left\{-\frac{1}{2}(\mathbf{y}-\mu)^{T} \Sigma^{-1}(\mathbf{y}-\mu)\right\}
$$

- Note that this function has the two worst things in matrices, the determinant and the inverse of a matrix.
- Fortunately, the situation is simpler for the regression model

$$
\mathbf{Y} \sim N_{n}\left(\mathbf{X} \beta, \sigma^{2} \mathbf{I}\right)
$$

with probability density function

$$
f(\mathbf{y})=(2 \pi)^{-n / 2}\left(\sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\|\mathbf{y}-\mathbf{X} \beta\|^{2}\right\}
$$

- Therefore the likelihood for this model is

$$
L\left(\beta, \sigma^{2}\right)=(2 \pi)^{-n / 2}\left(\sigma^{2}\right)^{-n / 2} \exp \left\{-\frac{1}{2 \sigma^{2}}\|\mathbf{Y}-\mathbf{X} \beta\|^{2}\right\}
$$

- Maximizing $L\left(\beta, \sigma^{2}\right)$ w.r.t. β is equivalent to minimizing $\|\mathbf{Y}-\mathbf{X} \beta\|^{2}$

Is this a good estimator?

- To answer this, we need some more tools
- Mean and Covariance of a random vector \mathbf{Y}

$$
\mu=\left(\begin{array}{c}
\mu_{1} \\
\vdots \\
\mu_{n}
\end{array}\right), \Sigma=\left(\begin{array}{ccc}
\Sigma_{11} & \cdots & \Sigma_{1 n} \\
\vdots & \ddots & \vdots \\
\Sigma_{n 1} & \cdots & \Sigma_{n n}
\end{array}\right)
$$

where

$$
\mu_{i}=E Y_{i}
$$

and

$$
\Sigma_{i j}= \begin{cases}\operatorname{Var}\left(Y_{i}\right) & \text { for } i=j \\ \operatorname{Cov}\left(Y_{i}, Y_{j}\right) & \text { for } i \neq j\end{cases}
$$

Properties of mean and covariance

- The covariance matrix is symmetric
- For any $n \times n$ matrix \mathbf{A} and $n \times 1$ vector \mathbf{b}

$$
\begin{gathered}
E(\mathbf{A} \mathbf{Y}+\mathbf{b})=\mathbf{A} E(\mathbf{Y})+\mathbf{b} \\
\operatorname{Cov}(\mathbf{A Y}+\mathbf{b})=\mathbf{A} \operatorname{Cov}(\mathbf{Y}) \mathbf{A}^{T}
\end{gathered}
$$

- Variance of a linear combination

$$
0 \leq \operatorname{Var}\left(\mathbf{a}^{T} \mathbf{Y}\right)=\mathbf{a}^{T} \operatorname{Cov}(\mathbf{Y}) \mathbf{a}
$$

which implies that the covariance matrix is non-negative definite.

Properties of the OLS estimator $\widehat{\beta}$

- Mean:

$$
E \widehat{\beta}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} E \mathbf{Y}=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \mathbf{X} \beta=\beta
$$

- Covariance:

$$
\operatorname{Cov}(\widehat{\beta})=\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \mathbf{X}^{T} \sigma^{2} \mathbf{I} \mathbf{X}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\sigma^{2}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1}=\sigma^{2} \mathbf{M}
$$

- Property of Multivariate Normal:

If $\mathbf{Y} \sim N_{n}(\mu, \Sigma)$, then

$$
\mathbf{A Y}+\mathbf{b} \sim N\left(\mathbf{A} \mu+\mathbf{b}, \mathbf{A} \Sigma \mathbf{A}^{T}\right)
$$

- Therefore

$$
\widehat{\beta} \sim N_{p}\left(\beta, \sigma^{2} \mathbf{M}\right)
$$

- For the normal model, the OLS is the best unbiased estimator, i.e., it has smaller variance than any other unbiased estimator.
- More precisely, $\ell^{T} \widehat{\beta}$ is the best unbiased estimator of $\ell^{T} \beta$ for any linear combination $\ell^{T} \beta$.
- $E\left(\ell^{T} \widehat{\beta}\right)=\ell^{T} \beta$
$-\operatorname{Var}\left(\ell^{T} \widehat{\beta}\right)=\sigma^{2} \ell^{T}\left(\mathbf{X}^{T} \mathbf{X}\right)^{-1} \ell$
- Note that this conditional variance depends on \mathbf{X} - does distribution of \mathbf{X} matter?
- Prediction: Put $\ell=\mathbf{x}$ for some future covariates \mathbf{x}
- Even without assuming normality, the OLS estimator has smaller variance than any other linear unbiased estimator.
- The OLS estimator is consistent (as long as \mathbf{X} grows reasonably), i.e., $\widehat{\beta} \rightarrow \beta$ as $n \rightarrow \infty$.

The unbiased estimator of σ^{2}

- We typically estimate σ^{2} by

$$
\widehat{\sigma}^{2}=\|\mathbf{Y}-\mathbf{X} \widehat{\beta}\|^{2} /(n-p)
$$

which is called the unbiased estimator of σ^{2}

- Distribution of $\widehat{\sigma}^{2}$:

$$
\frac{(n-p) \widehat{\sigma}^{2}}{\sigma^{2}} \sim \chi_{n-p}^{2}
$$

independently of $\widehat{\beta}$

Properties of $\widehat{\sigma}^{2}$

- For the normal model $\widehat{\sigma}^{2}$ is the best unbiased estimator.
- Even without normality, $\widehat{\sigma}^{2}$ is unbiased.
- $\widehat{\sigma}^{2}$ is consistent

The maximum likelihood estimator (MLE)

- To find MLE of σ^{2}, differentiate $\log L\left(\widehat{\beta}, \sigma^{2}\right)$ with respect to σ
- Easy to show that this gives

$$
\widehat{\sigma}_{M L E}^{2}=\frac{1}{n}\|\mathbf{Y}-\mathbf{X} \widehat{\beta}\|^{2}
$$

- Note that the MLE is not unbiased, but is consistent.
- In general, neither the OLS estimator nor the MLE of σ^{2} minimize mean squared error (MSE)

Testing

- We are often interested in coefficients β_{j}
- Note that by properties given above

$$
\widehat{\beta}_{j} \sim N\left(\beta_{j}, \sigma^{2} M_{j j}\right)
$$

- "Standard error" of $\widehat{\beta}_{j}$

$$
\widehat{\sigma}_{\widehat{\beta}_{j}}=\widehat{\sigma} \sqrt{M_{j j}}
$$

Testing: t-statistic

- Testing the null hypothesis $H_{0}: \beta_{j}=c$

$$
t=\frac{\widehat{\beta}_{j}-c}{\widehat{\sigma}_{\widehat{\beta}_{j}}} \sim t_{n-p}
$$

- Can be generalized to:
- any linear combination of β_{j}
- more than one simultaneous restrictions (F-test)

t-tests in practice

```
fm1 <- lm(weight ~ height, data = Davis)
print(summary(fm1), signif.stars = FALSE)
Call:
lm(formula = weight ~ height, data = Davis)
Residuals:
        Min 1Q Median 3Q Max
-23.696 -9.506 -2.818 6.372 127.145
```

Coefficients:
Estimate Std. Error t value $\operatorname{Pr}(>|t|)$
(Intercept) $25.2662314 .95042 \quad 1.690 \quad 0.09260$
$\begin{array}{llllll}\text { height } & 0.23841 & 0.08772 & 2.718 & 0.00715\end{array}$
Residual standard error: 14.86 on 198 degrees of freedom
Multiple R-squared: 0.03597, Adjusted R-squared: 0.0311
F-statistic: 7.387 on 1 and 198 DF, p-value: 0.007152

t-tests - computing p-values in \mathbf{R}

```
2 * pt(2.718, df = 198, lower.tail = FALSE)
```

[1] 0.007150357

Testing: F-statistic

Loosely speaking,

- Suppose we are interested in testing H_{0} vs H_{1}, where H_{0} is a sub-model of H_{1}

$$
H_{0} \subset H_{1} \quad\left(H_{m}: \mathbf{Y} \sim N_{n}\left(\mathbf{X}_{m} \beta_{m}, \sigma^{2} \mathbf{I}\right)\right)
$$

- Let the sum of squared errors for the two models be S_{0}^{2} and S_{1}^{2}

$$
S_{m}^{2}=\left\|\mathbf{Y}-\mathbf{X}_{m} \widehat{\beta}_{m}\right\|^{2}, m=0,1
$$

- Let the number of parameters (length of β) in the two models be p_{0} and p_{1}
- Then the test statistic

$$
F=\frac{\frac{S_{0}^{2}-S_{1}^{2}}{p_{1}-p_{0}}}{\frac{S_{1}^{2}}{n-p_{1}}} \text { follows } F_{p_{1}-p_{0}, n-p_{1}} \text { under } H_{0}
$$

(Cochran's theorem, Linear Models course)

F-tests in practice

```
fm2 <- lm(weight ~ height * sex, data = Davis)
summary(fm2)
Call:
lm(formula = weight ~ height * sex, data = Davis)
Residuals:
\begin{tabular}{rrrrr} 
Min & \(1 Q\) & Median & 3Q & Max \\
-23.091 & -6.331 & -0.995 & 6.207 & 41.230
\end{tabular}
Coefficients:
\begin{tabular}{lrrrr} 
& Estimate & Std. Error \(t\) value \(\operatorname{Pr}(>|t|)\) \\
(Intercept) & 160.49748 & 13.45954 & 11.924 & \(<2 \mathrm{e}-16\) \\
height & -0.62679 & 0.08199 & -7.644 & \(9.17 \mathrm{e}-13\) \\
sexM & -261.82753 & 32.72161 & -8.002 & \(1.05 \mathrm{e}-13\) \\
height:sexM & 1.62239 & 0.18644 & 8.702 & \(1.33 \mathrm{e}-15\)
\end{tabular}
Residual standard error: 10.06 on 196 degrees of freedom
Multiple R-squared: 0.5626, Adjusted R-squared: 0.556
F-statistic: 84.05 on 3 and 196 DF, p-value: < 2.2e-16
anova(fm1, fm2)
Analysis of Variance Table
Model 1: weight ~ height
Model 2: weight ~ height * sex
    Res.Df RSS Df Sum of Sq F F Pr(>F)
1 19843713
2 196 19831 2 23882 118.02< 2.2e-16
```


Measuring Goodness of Fit: Coefficient of Determination

- Consider residual sum of squared errors

$$
T^{2}=\sum\left(Y_{i}-\bar{Y}\right)^{2}
$$

and

$$
S^{2}=\sum\left(Y_{i}-\mathbf{x}_{i}^{T} \widehat{\beta}\right)^{2}=\|\mathbf{Y}-\mathbf{X} \widehat{\beta}\|^{2}
$$

for intercept-only model and regression model

- We can think of these as measuring the "unexplained variation" in \mathbf{Y} under these two models.
- Then the coefficient of determination R^{2} is defined by

$$
R^{2}=\frac{T^{2}-S^{2}}{T^{2}}=1-\frac{S^{2}}{T^{2}}
$$

Note that

$$
0 \leq R^{2} \leq 1
$$

- $T^{2}-S^{2}$ is the amount of variation in the intercept-only model which has been explained by including the extra predictors of the regression model and
- R^{2} is the proportion of the variation left in the intercept-only model which has been explained by including the additional predictors.
- Link with correlation: It can be shown that for one predictor,

$$
R^{2}=r^{2}(X, Y)
$$

Adjusted R^{2}

- Note that

$$
R^{2}=\frac{\frac{T^{2}}{n}-\frac{S^{2}}{n}}{\frac{T^{2}}{n}}
$$

- Possible alternative: substitute unbiased estimators
- Adjusted R^{2} :

$$
R_{a}^{2}=\frac{\frac{T^{2}}{n-1}-\frac{S^{2}}{n-p}}{\frac{T^{2}}{n-1}}=1-\frac{n-1}{n-p}\left(1-R^{2}\right)
$$

Predictive R^{2} : Leave-One-Out Cross-validation

- Disadvantage of R^{2} and adjusted R^{2}
- Evaluates fit based on same data that is used to obtain fit
- Adding more covariates will always improve R^{2}
- A better procedure is based on cross-validation.
- Delete the i th observation and compute $\widehat{\beta}_{(-i)}$ after excluding i th observation.
- Also compute the sample mean excluding the i th observation

$$
\bar{Y}_{(-i)}=\frac{1}{n-1} \sum_{j \neq i} Y_{j}
$$

- Do this for all i.
- Define

$$
T_{p}^{2}=\sum\left(Y_{i}-\bar{Y}_{(-i)}\right)^{2}
$$

and

$$
S_{p}^{2}=\sum\left(Y_{i}-\mathbf{x}_{i}^{T} \widehat{\beta}_{(-i)}\right)^{2}
$$

- The predictive R^{2} is defined as

$$
R_{p}^{2}=\frac{T_{p}^{2}-S_{p}^{2}}{T_{p}^{2}}
$$

- This computes the fit to the i th observation without using that observation
- Better measure of goodness of model fit than R^{2} or adjusted R^{2}

Beyond linear regression (topics of this course)

- Identifying violations of linear model assumptions
- Lack of fit (linearity)
- Heteroscedasticity
- Autocorrelation in errors
- Collinearity (not a violation, but still problematic)
- Discordant outliers and influential observations
- Non-normality of errors
- Possible solutions
- Nonparametric regression
- More flexible "linear" regression models (e.g., splines)
- Transformations
- Modeling heteroscedasticity
- Regularization (constrain parameters)
- Variable selection
- Robust Regression

First, get familiar with R

- Overview of R
- R Tutorials
- Many other online resources available

