Regression Techniques

Deepayan Sarkar

Regression

- Most of you should be familiar with Linear Regression / Least Squares
 - What is the purpose?
 - What are the model assumptions?
- Are there any other kinds of regression?

Course: Regression Techniques

- This course is **not** about linear regression!
- We will
 - Try to refine what we understand by the term "regression" (linear regression is only a special case)
 - Learn alternative approaches to solve the "regression" problem
 - Learn how to identify and address modeling errors
- Most techniques we will learn require non-trivial programming
 - We will learn and use the R language for computation
 - Room 11 (ground floor) is a computer lab (usually locked, but security guards at the main gate will open it when you ask them)
 - There are two more (smaller) computer labs in teh ground floor of the Faculty Building
 - You can use your own laptops as well

Evaluation scheme

- Midterm examination: 30%
- Final examination: 50%
- Assignments / Projects: 20%

What is Regression?

- Consider bivariate data (X, Y) with some distribution
- Interested in "predicting" Y for a fixed value of X = x
- In probability terms, want the *conditional distribution* of

Y|X=x

- In general
 - -Y could be numeric or categorical
 - X could also be numeric or categorical
- The "Regression Problem": when Y is numeric
- The "Classification Problem": when Y is categorical
- A more modern approach is to view both as special cases of the "Learning Problem"

Example: Height and Weight Data

```
data(Davis, package = "carData")
Davis[1:20, ]
   sex weight height repwt repht
            77
                    182
                            77
                                  180
1
     М
2
     F
            58
                    161
                            51
                                  159
3
     F
            53
                    161
                            54
                                  158
4
     М
            68
                    177
                            70
                                  175
5
      F
            59
                    157
                            59
                                  155
6
     М
            76
                    170
                            76
                                  165
7
      М
            76
                    167
                            77
                                  165
8
     М
            69
                    186
                            73
                                  180
9
            71
                    178
                            71
                                  175
      М
10
     М
            65
                    171
                            64
                                  170
            70
                    175
                            75
11
      М
                                  174
12
      F
           166
                    57
                            56
                                  163
      F
                            52
13
            51
                    161
                                  158
      F
14
            64
                    168
                            64
                                  165
      F
15
            52
                    163
                            57
                                  160
16
     F
            65
                    166
                            66
                                  165
17
     М
            92
                    187
                           101
                                  185
      F
18
             62
                    168
                            62
                                  165
19
      М
            76
                    197
                            75
                                  200
      F
20
            61
                    175
                            61
                                  171
```

- Interested in predicting weight distribution as a function of height
- How should we proceed?

```
xyplot(weight ~ height, data = Davis)
```


xyplot(weight ~ height, data = Davis, groups = sex, auto.key = list(columns = 2))

Example: Survey of Labour and Income Dynamics

```
data(SLID, package = "carData")
str(SLID)
'data.frame':
                7425 obs. of 5 variables:
           : num 10.6 11 NA 17.8 NA ...
 $ wages
 $ education: num 15 13.2 16 14 8 16 12 14.5 15 10 ...
            : int 40 19 49 46 71 50 70 42 31 56 ...
 $ age
 $ sex
            : Factor w/ 2 levels "Female", "Male": 2 2 2 2 2 1 1 1 2 1 ...
 $ language : Factor w/ 3 levels "English", "French",...: 1 1 3 3 1 1 1 1 1 ...
head(SLID, 10)
   wages education age
                          sex language
1
  10.56
              15.0 40
                         Male
                               English
2
  11.00
              13.2 19
                               English
                         Male
3
      NA
              16.0 49
                         Male
                                 Other
  17.76
4
              14.0 46
                         Male
                                 Other
5
      NA
               8.0 71
                         Male
                               English
6
   14.00
              16.0
                    50 Female
                               English
7
      NA
              12.0
                    70 Female
                               English
              14.5 42 Female
8
      NA
                               English
                               English
9
    8.20
              15.0 31
                         Male
10
      NA
              10.0 56 Female
                               English
```

• Interested in predicting wage

wages 0 education

xyplot(wages ~ jitter(round(education)), data = SLID, groups = sex, auto.key = list(columns = 2))

xyplot(wages ~ jitter(round(education)) | sex, data = SLID)

xyplot(wages ~ jitter(age) | sex, data = SLID, subset = !is.na(wages))

Example: Prestige vs Average income (Canada, 1971)

data(Prestige, package = "carData")
Prestige[1:20,]

	education	income	women	prestige	census	type
gov.administrators	13.11	12351	11.16	68.8	1113	prof
general.managers	12.26	25879	4.02	69.1	1130	prof
accountants	12.77	9271	15.70	63.4	1171	prof
purchasing.officers	11.42	8865	9.11	56.8	1175	prof
chemists	14.62	8403	11.68	73.5	2111	prof
physicists	15.64	11030	5.13	77.6	2113	prof
biologists	15.09	8258	25.65	72.6	2133	prof
architects	15.44	14163	2.69	78.1	2141	prof
civil.engineers	14.52	11377	1.03	73.1	2143	prof
mining.engineers	14.64	11023	0.94	68.8	2153	prof
surveyors	12.39	5902	1.91	62.0	2161	prof
draughtsmen	12.30	7059	7.83	60.0	2163	prof
computer.programers	13.83	8425	15.33	53.8	2183	prof
economists	14.44	8049	57.31	62.2	2311	prof
psychologists	14.36	7405	48.28	74.9	2315	prof
social.workers	14.21	6336	54.77	55.1	2331	prof
lawyers	15.77	19263	5.13	82.3	2343	prof
librarians	14.15	6112	77.10	58.1	2351	prof
vocational.counsellors	15.22	9593	34.89	58.3	2391	prof

ministers 14.50 4686 4.14 72.8 2511 prof
xyplot(prestige ~ income, Prestige, grid = TRUE)

Example: UN National Statistics

```
data(UN, package = "carData")
UN[1:20, ]
```

	region	group	fertility	ppgdp	lifeExpF	pctUrban	infantMortality
Afghanistan	Asia	other	5.968	499.0	49.49	23	124.53500
Albania	Europe	other	1.525	3677.2	80.40	53	16.56100
Algeria	Africa	africa	2.142	4473.0	75.00	67	21.45800
American Samoa	<na></na>	<na></na>	NA	NA	NA	NA	11.29389
Angola	Africa	africa	5.135	4321.9	53.17	59	96.19100
Anguilla	Caribbean	other	2.000	13750.1	81.10	100	NA
Argentina	Latin Amer	other	2.172	9162.1	79.89	93	12.33700
Armenia	Asia	other	1.735	3030.7	77.33	64	24.27200
Aruba	Caribbean	other	1.671	22851.5	77.75	47	14.68700
Australia	Oceania	oecd	1.949	57118.9	84.27	89	4.45500
Austria	Europe	oecd	1.346	45158.8	83.55	68	3.71300
Azerbaijan	Asia	other	2.148	5637.6	73.66	52	37.56600
Bahamas	Caribbean	other	1.877	22461.6	78.85	84	14.13500
Bahrain	Asia	other	2.430	18184.1	76.06	89	6.66300
Bangladesh	Asia	other	2.157	670.4	70.23	29	41.78600
Barbados	Caribbean	other	1.575	14497.3	80.26	45	12.28400

Belarus	Europe	other	1.479	5702.0	76.37	75	6.49400
Belgium	Europe	oecd	1.835	43814.8	82.81	97	3.73900
Belize	Latin Amer	other	2.679	4495.8	77.81	53	16.20000
Benin	Africa a	africa	5.078	741.1	58.66	42	76.67400

• Interested in predicting pctUrban using ppgdp

Example: UN Data

xyplot(pctUrban ~ ppgdp, data = UN)

xyplot(pctUrban ~ log(ppgdp), data = UN)

Review of Linear Regression

- Interested in "predicting" Y for a fixed value of X = x
- In probability terms, want the *conditional distribution* of

$$Y|X = x$$

- Important special case: *linear regression*
 - Appropriate under certain model assumptions
 - Essential component in more general procedures
 - You will learn theory in *Linear Model* course
 - We will review basics

Conditional distribution

Y|X = x

- In general, the conditional distribution can be anything
- If (X, Y) is jointly Normal, then

$$Y|X = x \sim N(\alpha + \beta x, \sigma^2)$$

for some α, β, σ^2

• This is the motivation for *Linear Regression*

Correlation: Measuring linear dependence

- Suppose $E(X) = \mu_X$ and $E(Y) = \mu_Y$
- The *covariance* of X and Y is defined by

$$Cov(X,Y) = E((X - \mu_X)(Y - \mu_Y)) = E(XY) - \mu_X \mu_Y$$

• The correlation coefficient $\rho(X, Y)$ of X and Y is defined by

$$\rho(X,Y) = \frac{Cov(X,Y)}{\sqrt{Var(X) Var(Y)}}$$

Properties of Correlation Coefficient

- $\bullet \ -1 \leq \rho \leq 1$
- $\rho = -1$: perfect decreasing linear relation
- $\rho = 1$: perfect increasing linear relation
- $\rho = 0$: no linear relation

Sample Correlation

• Sample analog of correlation

$$r(X,Y) = \frac{\sum_{i} (x_{i} - \bar{x})(y_{i} - \bar{y})}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2} \sum_{i} (y_{i} - \bar{y})^{2}}}$$

- Closely related with regression
- Correlation between height and weight (Davis data): 0.19
- Correlation between reported height and weight (Davis data): 0.762
- Correlations in labour dynamics data

	wages	education	age
wages	1.000	0.307	0.361
education	0.307	1.000	-0.298
age	0.361	-0.298	1.000

Warning! Correlation only measures *linear* relation!

All four of these datasets have same mean, SD, and correlation coefficient

(Multiple) Linear Regression

In general form, the regression model assumes

$$E(Y|X_1 = x_1, X_2 = x_2, \dots, X_p = x_p) = \beta_0 + \sum_{j=1}^p \beta_j x_j$$
$$Var(Y|X_1 = x_1, X_2 = x_2, \dots, X_p = x_p) = \sigma^2$$

where

- $\beta_0, \beta_1, \ldots, \beta_p, \sigma^2 > 0$ are unknown parameters
- X_1, X_2, \ldots, X_p are *(conditionally) fixed* covariates
- X_1, X_2, \ldots, X_p may be *derived* from a smaller set of *predictors*, e.g.,

 - $X_2 = Z_1$ (linear term for Z_1) $X_3 = Z_2$ (linear term for Z_2) $X_4 = Z_1^2$ (quadratic term for Z_1) $X_5 = Z_2^2$ (quadratic term for Z_2) $X_6 = Z_1 Z_2$ (interaction term)

• In vector notation (incorporating intercept term in **X**)

$$E(Y|\mathbf{X} = \mathbf{x}) = \mathbf{x}^T \beta$$
$$Var(Y|\mathbf{X} = \mathbf{x}) = \sigma^2$$

• Alternatively

$$Y = \mathbf{x}^T \boldsymbol{\beta} + \boldsymbol{\varepsilon} \text{ where}$$
$$E(\boldsymbol{\varepsilon}) = 0, Var(\boldsymbol{\varepsilon}) = \sigma^2$$

Sample version: n independent observations from this model

• For *i*th sample point, let

-
$$Y_i$$
 = response

- $-\mathbf{x}_i = p$ -dimensional vector of predictors
- We assume that

$$Y_i = \mathbf{x}_i^T \boldsymbol{\beta} + \boldsymbol{\varepsilon}_i,$$

where ε_i are independent and

$$E(\varepsilon_i) = 0, Var(\varepsilon_i) = \sigma^2$$

In matrix notation

• where

$$\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\varepsilon}$$

$$\mathbf{Y} = \begin{pmatrix} Y_1 \\ \vdots \\ Y_n \end{pmatrix}, \ \mathbf{X} = \begin{pmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_n^T \end{pmatrix}, \ \varepsilon = \begin{pmatrix} \varepsilon_1 \\ \vdots \\ \varepsilon_n \end{pmatrix}$$

- **Y** and ε are $n \times 1$
- **X** is $n \times p$
- Columns of **X** are assumed to be linearly independent $(\operatorname{rank}(\mathbf{X}) = p)$
- $\beta_{p \times 1}$ and $\sigma^2 > 0$ are unknown parameters

Problem: How to estimate β and σ^2

• Least squares approach: minimize sum of squared errors

$$\widehat{\beta} = \arg\min_{\beta} q(\beta)$$

where

$$q(\beta) = \sum (Y_i - \mathbf{x}_i^T \beta)^2 = (\mathbf{Y} - \mathbf{X}\beta)^T (\mathbf{Y} - \mathbf{X}\beta)$$

• Set gradient with respect to β to **0**.

$$\nabla q(\beta) = 2\mathbf{X}^T(\mathbf{Y} - \mathbf{X}\beta) = 2(\mathbf{X}^T\mathbf{Y} - \mathbf{X}^T\mathbf{X}\beta) = \mathbf{0}$$

• This leads to Normal Equations:

$$\mathbf{X}^T \mathbf{X} \boldsymbol{\beta} = \mathbf{X}^T \mathbf{Y}$$

• Estimate of β assuming that $\mathbf{X}^T \mathbf{X}$ has full rank (OLS estimator):

$$\widehat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{Y}$$

The OLS estimator in practice

```
fm1 <- lm(weight ~ height, data = Davis)
xyplot(weight ~ height, data = Davis, grid = TRUE, type = c("p", "r"))</pre>
```



```
fm1 <- lm(repwt ~ repht, data = Davis)
xyplot(repwt ~ repht, data = Davis, grid = TRUE, type = c("p", "r"))</pre>
```


xyplot(prestige ~ income, Prestige, grid = TRUE, type = c("p", "r"))

xyplot(pctUrban ~ log(ppgdp), data = UN, grid = TRUE, type = c("p", "r"))

Alternative approach: maximum likelihood

- Less arbitrary, but needs model assumption: Multivariate Normality
- To indicate that **Y** follows *n*-dimensional Multivariate Normal Distribution with mean vector μ and covariance matrix Σ , we write

$$\mathbf{Y} \sim N_n \left(\mu, \Sigma \right)$$

• When Σ has full rank (positive definite), **Y** has joint density function (pdf)

$$f(\mathbf{y}) = (2\pi)^{-n/2} |\Sigma|^{-1/2} \exp\left\{-\frac{1}{2}(\mathbf{y}-\mu)^T \Sigma^{-1}(\mathbf{y}-\mu)\right\}$$

- Note that this function has the two worst things in matrices, the determinant and the inverse of a matrix.
- Fortunately, the situation is simpler for the regression model

$$\mathbf{Y} \sim N_n(\mathbf{X}\beta, \sigma^2 \mathbf{I})$$

with probability density function

$$f(\mathbf{y}) = (2\pi)^{-n/2} \left(\sigma^2\right)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} \left\|\mathbf{y} - \mathbf{X}\beta\right\|^2\right\}$$

• Therefore the likelihood for this model is

$$L\left(\beta,\sigma^{2}\right) = \left(2\pi\right)^{-n/2} \left(\sigma^{2}\right)^{-n/2} \exp\left\{-\frac{1}{2\sigma^{2}} \left\|\mathbf{Y} - \mathbf{X}\beta\right\|^{2}\right\}$$

• Maximizing $L\left(\beta,\sigma^2\right)$ w.r.t. β is equivalent to minimizing $\left\|\mathbf{Y}-\mathbf{X}\beta\right\|^2$

Is this a good estimator?

- To answer this, we need some more tools
- Mean and Covariance of a random vector ${\bf Y}$

$$\mu = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}, \Sigma = \begin{pmatrix} \Sigma_{11} & \cdots & \Sigma_{1n} \\ \vdots & \ddots & \vdots \\ \Sigma_{n1} & \cdots & \Sigma_{nn} \end{pmatrix}$$

where

$$\mu_i = EY_i,$$

and

$$\Sigma_{ij} = \begin{cases} Var(Y_i) & \text{for } i = j\\ Cov(Y_i, Y_j) & \text{for } i \neq j \end{cases}$$

Properties of mean and covariance

- The covariance matrix is symmetric
- For any $n \times n$ matrix **A** and $n \times 1$ vector **b**

$$E\left(\mathbf{AY} + \mathbf{b}\right) = \mathbf{A}E(\mathbf{Y}) + \mathbf{b},$$

$$Cov(\mathbf{A}\mathbf{Y} + \mathbf{b}) = \mathbf{A}Cov(\mathbf{Y})\mathbf{A}^T$$

• Variance of a linear combination

$$0 \leq Var(\mathbf{a}^T \mathbf{Y}) = \mathbf{a}^T Cov(\mathbf{Y})\mathbf{a}$$

which implies that the covariance matrix is non-negative definite.

Properties of the OLS estimator $\hat{\beta}$

• Mean:

$$E\widehat{\beta} = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}E\mathbf{Y} = \left(\mathbf{X}^{T}\mathbf{X}\right)^{-1}\mathbf{X}^{T}\mathbf{X}\beta = \beta$$

• Covariance:

$$Cov(\widehat{\beta}) = \left(\mathbf{X}^T \mathbf{X}\right)^{-1} \mathbf{X}^T \sigma^2 \mathbf{I} \mathbf{X} \left(\mathbf{X}^T \mathbf{X}\right)^{-1} = \sigma^2 \left(\mathbf{X}^T \mathbf{X}\right)^{-1} = \sigma^2 \mathbf{M}$$

• Property of Multivariate Normal:

If $\mathbf{Y} \sim N_n(\mu, \Sigma)$, then

$$\mathbf{A}\mathbf{Y} + \mathbf{b} \sim N(\mathbf{A}\mu + \mathbf{b}, \mathbf{A}\Sigma\mathbf{A}^T)$$

• Therefore

$$\widehat{\beta} \sim N_p \left(\beta, \sigma^2 \mathbf{M} \right)$$

- For the normal model, the OLS is the *best unbiased estimator*, i.e., it has smaller variance than any other unbiased estimator.
- More precisely, $\ell^T \hat{\beta}$ is the best unbiased estimator of $\ell^T \beta$ for any linear combination $\ell^T \beta$.
 - $E(\ell^T \widehat{\beta}) = \ell^T \beta$

$$- Var(\ell^T \widehat{\beta}) = \sigma^2 \ell^T \left(\mathbf{X}^T \mathbf{X} \right)^{-1} \ell$$

- Note that this *conditional* variance depends on \mathbf{X} does distribution of \mathbf{X} matter?
- Prediction: Put $\ell = \mathbf{x}$ for some future covariates \mathbf{x}
- Even without assuming normality, the OLS estimator has smaller variance than any other *linear* unbiased estimator.
- The OLS estimator is consistent (as long as **X** grows reasonably), i.e., $\hat{\beta} \to \beta$ as $n \to \infty$.

The unbiased estimator of σ^2

• We typically estimate σ^2 by

$$\widehat{\sigma}^{2} = \left\| \mathbf{Y} - \mathbf{X}\widehat{\beta} \right\|^{2} / (n - p)$$

which is called the unbiased estimator of σ^2

• Distribution of $\hat{\sigma}^2$:

$$\frac{(n-p)\,\widehat{\sigma}^2}{\sigma^2} \sim \chi^2_{n-p}$$

independently of $\widehat{\beta}$

Properties of $\hat{\sigma}^2$

- For the normal model $\widehat{\sigma}^2$ is the best unbiased estimator.
- Even without normality, $\hat{\sigma}^2$ is unbiased.
- $\hat{\sigma}^2$ is consistent

The maximum likelihood estimator (MLE)

- To find MLE of σ^2 , differentiate $\log L(\hat{\beta}, \sigma^2)$ with respect to σ
- Easy to show that this gives

$$\widehat{\sigma}_{MLE}^2 = \frac{1}{n} \left\| \mathbf{Y} - \mathbf{X} \widehat{\beta} \right\|^2$$

- Note that the MLE is not unbiased, but is consistent.
- In general, neither the OLS estimator nor the MLE of σ^2 minimize mean squared error (MSE)

Testing

- We are often interested in coefficients β_i
- Note that by properties given above

$$\hat{\beta}_j \sim N(\beta_j, \sigma^2 M_{jj})$$

• "Standard error" of $\hat{\beta}_j$

$$\widehat{\sigma}_{\widehat{\beta}_i} = \widehat{\sigma} \sqrt{M_{jj}}$$

Testing: *t*-statistic

• Testing the null hypothesis $H_0: \beta_j = c$

$$t = \frac{\widehat{\beta}_j - c}{\widehat{\sigma}_{\widehat{\beta}_j}} \sim t_{n-p}.$$

- Can be generalized to:
 - any linear combination of β_j
 - more than one simultaneous restrictions (*F*-test)

t-tests in practice

fm1 <- lm(weight ~ height, data = Davis)
print(summary(fm1), signif.stars = FALSE)</pre>

Call: lm(formula = weight ~ height, data = Davis)

Residuals: <u>Min</u> 1Q Median 3Q Max -23.696 -9.506 -2.818 6.372 127.145

Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 25.26623 14.95042 1.690 0.09260 height 0.23841 0.08772 2.718 0.00715

Residual standard error: 14.86 on 198 degrees of freedom Multiple R-squared: 0.03597, Adjusted R-squared: 0.0311 F-statistic: 7.387 on 1 and 198 DF, p-value: 0.007152

t-tests - computing p-values in R

2 * pt(2.718, df = 198, lower.tail = FALSE) [1] 0.007150357

Testing: F-statistic

Loosely speaking,

• Suppose we are interested in testing H_0 vs H_1 , where H_0 is a sub-model of H_1

$$H_0 \subset H_1 \quad (H_m : \mathbf{Y} \sim N_n(\mathbf{X}_m \beta_m, \sigma^2 \mathbf{I}))$$

- Let the sum of squared errors for the two models be S_0^2 and S_1^2

$$S_m^2 = \left\| \mathbf{Y} - \mathbf{X}_m \widehat{\beta}_m \right\|^2, m = 0, 1$$

- Let the number of parameters (length of $\beta)$ in the two models be p_0 and p_1
- Then the test statistic

$$F = \frac{\frac{S_0^2 - S_1^2}{p_1 - p_0}}{\frac{S_1^2}{n - p_1}} \text{ follows } F_{p_1 - p_0, n - p_1} \text{ under } H_0$$

(Cochran's theorem, Linear Models course)

fm2 <- lm(weight ~ height * sex, data = Davis)</pre> summary(fm2) Call: lm(formula = weight ~ height * sex, data = Davis) Residuals: 1Q Median Min ЗQ Max -23.091 -6.331 -0.995 6.207 41.230 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 160.49748 13.45954 11.924 < 2e-16 height -0.62679 0.08199 -7.644 9.17e-13 sexM -261.82753 32.72161 -8.002 1.05e-13 height:sexM 1.62239 0.18644 8.702 1.33e-15 Residual standard error: 10.06 on 196 degrees of freedom Multiple R-squared: 0.5626, Adjusted R-squared: 0.556 F-statistic: 84.05 on 3 and 196 DF, p-value: < 2.2e-16 anova(fm1, fm2) Analysis of Variance Table Model 1: weight ~ height Model 2: weight ~ height * sex Res.Df RSS Df Sum of Sq Pr(>F) F 198 43713 1 2 196 19831 2 23882 118.02 < 2.2e-16

Measuring Goodness of Fit: Coefficient of Determination

• Consider residual sum of squared errors

$$T^2 = \sum \left(Y_i - \bar{Y}\right)^2$$

and

F-tests in practice

$$S^{2} = \sum \left(Y_{i} - \mathbf{x}_{i}^{T} \widehat{\boldsymbol{\beta}} \right)^{2} = \left\| \mathbf{Y} - \mathbf{X} \widehat{\boldsymbol{\beta}} \right\|^{2}$$

for intercept-only model and regression model

- We can think of these as measuring the "unexplained variation" in Y under these two models.
- Then the coefficient of determination R^2 is defined by

$$R^2 = \frac{T^2 - S^2}{T^2} = 1 - \frac{S^2}{T^2}$$

Note that

 $0 \leq R^2 \leq 1$

\mathbb{R}^2

- $T^2 S^2$ is the amount of variation in the intercept-only model which has been explained by including the extra predictors of the regression model and
- R^2 is the proportion of the variation left in the intercept-only model which has been explained by including the additional predictors.
- Link with correlation: It can be shown that for one predictor,

$$R^2 = r^2(X, Y)$$

Adjusted R^2

• Note that

$$R^2 = \frac{\frac{\overline{T}^2}{n} - \frac{S^2}{n}}{\frac{\overline{T}^2}{n}}$$

- Possible alternative: substitute unbiased estimators
- Adjusted R^2 :

$$R_a^2 = \frac{\frac{T^2}{n-1} - \frac{S^2}{n-p}}{\frac{T^2}{n-1}} = 1 - \frac{n-1}{n-p}(1-R^2)$$

Predictive R²: Leave-One-Out Cross-validation

- Disadvantage of \mathbb{R}^2 and adjusted \mathbb{R}^2
 - Evaluates fit based on same data that is used to obtain fit
 - Adding more covariates will always improve \mathbb{R}^2
- A better procedure is based on *cross-validation*.
- Delete the *i*th observation and compute $\hat{\beta}_{(-i)}$ after excluding *i*th observation.
- Also compute the sample mean excluding the *i*th observation

$$\bar{Y}_{(-i)} = \frac{1}{n-1} \sum_{j \neq i} Y_j$$

- Do this for all *i*.
- Define

and

$$T_p^2 = \sum \left(Y_i - \bar{Y}_{(-i)} \right)^2$$

$$S_p^2 = \sum \left(Y_i - \mathbf{x}_i^T \widehat{\beta}_{(-i)} \right)^2$$

• The predictive \mathbb{R}^2 is defined as

$$R_{p}^{2} = \frac{T_{p}^{2} - S_{p}^{2}}{T_{p}^{2}}$$

- This computes the fit to the *i*th observation without using that observation
- Better measure of goodness of model fit than R^2 or adjusted R^2

Beyond linear regression (topics of this course)

- Identifying violations of linear model assumptions
 - Lack of fit (linearity)
 - Heteroscedasticity
 - Autocorrelation in errors
 - Collinearity (not a violation, but still problematic)
 - Discordant outliers and influential observations
 - Non-normality of errors
- Possible solutions
 - Nonparametric regression
 - More flexible "linear" regression models (e.g., splines)
 - Transformations
 - Modeling heteroscedasticity
 - Regularization (constrain parameters)
 - Variable selection
 - Robust Regression

First, get familiar with R

- Overview of R
- R Tutorials
- Many other online resources available