
Regression Techniques
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Regression

• Most of you should be familiar with Linear Regression / Least Squares

– What is the purpose?
– What are the model assumptions?

• Are there any other kinds of regression?

Course: Regression Techniques

• This course is not about linear regression!

• We will

– Try to refine what we understand by the term “regression” (linear regression is only a special case)

– Learn alternative approaches to solve the “regression” problem

– Learn how to identify and address modeling errors

• Most techniques we will learn require non-trivial programming

– We will learn and use the R language for computation

– Room 11 (ground floor) is a computer lab (usually locked, but security guards at the main gate
will open it when you ask them)

– There are two more (smaller) computer labs in teh ground floor of the Faculty Building

– You can use your own laptops as well

Evaluation scheme

• Midterm examination: 30%

• Final examination: 50%

• Assignments / Projects: 20%

What is Regression?

• Consider bivariate data (X,Y ) with some distribution

• Interested in “predicting” Y for a fixed value of X = x

• In probability terms, want the conditional distribution of

Y |X = x
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• In general

– Y could be numeric or categorical
– X could also be numeric or categorical

• The “Regression Problem”: when Y is numeric

• The “Classification Problem”: when Y is categorical

• A more modern approach is to view both as special cases of the “Learning Problem”

Example: Height and Weight Data

data(Davis, package = "carData")
Davis[1:20, ]

sex weight height repwt repht
1 M 77 182 77 180
2 F 58 161 51 159
3 F 53 161 54 158
4 M 68 177 70 175
5 F 59 157 59 155
6 M 76 170 76 165
7 M 76 167 77 165
8 M 69 186 73 180
9 M 71 178 71 175
10 M 65 171 64 170
11 M 70 175 75 174
12 F 166 57 56 163
13 F 51 161 52 158
14 F 64 168 64 165
15 F 52 163 57 160
16 F 65 166 66 165
17 M 92 187 101 185
18 F 62 168 62 165
19 M 76 197 75 200
20 F 61 175 61 171

• Interested in predicting weight distribution as a function of height

• How should we proceed?

xyplot(weight ~ height, data = Davis)
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xyplot(weight ~ height, data = Davis, groups = sex, auto.key = list(columns = 2))
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Example: Survey of Labour and Income Dynamics

data(SLID, package = "carData")
str(SLID)

'data.frame': 7425 obs. of 5 variables:
$ wages : num 10.6 11 NA 17.8 NA ...
$ education: num 15 13.2 16 14 8 16 12 14.5 15 10 ...
$ age : int 40 19 49 46 71 50 70 42 31 56 ...
$ sex : Factor w/ 2 levels "Female","Male": 2 2 2 2 2 1 1 1 2 1 ...
$ language : Factor w/ 3 levels "English","French",..: 1 1 3 3 1 1 1 1 1 1 ...

head(SLID, 10)

wages education age sex language
1 10.56 15.0 40 Male English
2 11.00 13.2 19 Male English
3 NA 16.0 49 Male Other
4 17.76 14.0 46 Male Other
5 NA 8.0 71 Male English
6 14.00 16.0 50 Female English
7 NA 12.0 70 Female English
8 NA 14.5 42 Female English
9 8.20 15.0 31 Male English
10 NA 10.0 56 Female English

• Interested in predicting wage
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xyplot(wages ~ education, data = SLID)

xyplot(wages ~ jitter(round(education)), data = SLID, groups = sex, auto.key = list(columns = 2))
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xyplot(wages ~ jitter(round(education)) | sex, data = SLID)
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xyplot(wages ~ jitter(age) | sex, data = SLID, subset = !is.na(wages))
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Example: Prestige vs Average income (Canada, 1971)

data(Prestige, package = "carData")
Prestige[1:20, ]

education income women prestige census type
gov.administrators 13.11 12351 11.16 68.8 1113 prof
general.managers 12.26 25879 4.02 69.1 1130 prof
accountants 12.77 9271 15.70 63.4 1171 prof
purchasing.officers 11.42 8865 9.11 56.8 1175 prof
chemists 14.62 8403 11.68 73.5 2111 prof
physicists 15.64 11030 5.13 77.6 2113 prof
biologists 15.09 8258 25.65 72.6 2133 prof
architects 15.44 14163 2.69 78.1 2141 prof
civil.engineers 14.52 11377 1.03 73.1 2143 prof
mining.engineers 14.64 11023 0.94 68.8 2153 prof
surveyors 12.39 5902 1.91 62.0 2161 prof
draughtsmen 12.30 7059 7.83 60.0 2163 prof
computer.programers 13.83 8425 15.33 53.8 2183 prof
economists 14.44 8049 57.31 62.2 2311 prof
psychologists 14.36 7405 48.28 74.9 2315 prof
social.workers 14.21 6336 54.77 55.1 2331 prof
lawyers 15.77 19263 5.13 82.3 2343 prof
librarians 14.15 6112 77.10 58.1 2351 prof
vocational.counsellors 15.22 9593 34.89 58.3 2391 prof
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ministers 14.50 4686 4.14 72.8 2511 prof

xyplot(prestige ~ income, Prestige, grid = TRUE)

Example: UN National Statistics

data(UN, package = "carData")
UN[1:20, ]

region group fertility ppgdp lifeExpF pctUrban infantMortality
Afghanistan Asia other 5.968 499.0 49.49 23 124.53500
Albania Europe other 1.525 3677.2 80.40 53 16.56100
Algeria Africa africa 2.142 4473.0 75.00 67 21.45800
American Samoa <NA> <NA> NA NA NA NA 11.29389
Angola Africa africa 5.135 4321.9 53.17 59 96.19100
Anguilla Caribbean other 2.000 13750.1 81.10 100 NA
Argentina Latin Amer other 2.172 9162.1 79.89 93 12.33700
Armenia Asia other 1.735 3030.7 77.33 64 24.27200
Aruba Caribbean other 1.671 22851.5 77.75 47 14.68700
Australia Oceania oecd 1.949 57118.9 84.27 89 4.45500
Austria Europe oecd 1.346 45158.8 83.55 68 3.71300
Azerbaijan Asia other 2.148 5637.6 73.66 52 37.56600
Bahamas Caribbean other 1.877 22461.6 78.85 84 14.13500
Bahrain Asia other 2.430 18184.1 76.06 89 6.66300
Bangladesh Asia other 2.157 670.4 70.23 29 41.78600
Barbados Caribbean other 1.575 14497.3 80.26 45 12.28400
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Belarus Europe other 1.479 5702.0 76.37 75 6.49400
Belgium Europe oecd 1.835 43814.8 82.81 97 3.73900
Belize Latin Amer other 2.679 4495.8 77.81 53 16.20000
Benin Africa africa 5.078 741.1 58.66 42 76.67400

• Interested in predicting pctUrban using ppgdp

Example: UN Data

xyplot(pctUrban ~ ppgdp, data = UN)

xyplot(pctUrban ~ log(ppgdp), data = UN)
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Review of Linear Regression

• Interested in “predicting” Y for a fixed value of X = x

• In probability terms, want the conditional distribution of

Y |X = x

• Important special case: linear regression

– Appropriate under certain model assumptions

– Essential component in more general procedures

– You will learn theory in Linear Model course

– We will review basics

Conditional distribution

Y |X = x

• In general, the conditional distribution can be anything

• If (X,Y ) is jointly Normal, then
Y |X = x ∼ N(α+ βx, σ2)

for some α, β, σ2
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• This is the motivation for Linear Regression

Correlation: Measuring linear dependence

• Suppose E(X) = µX and E(Y ) = µY

• The covariance of X and Y is defined by

Cov (X,Y ) = E
(
(X − µX)(Y − µY )

)
= E(XY )− µX µY

• The correlation coefficient ρ (X,Y ) of X and Y is defined by

ρ(X,Y ) = Cov (X,Y )√
V ar (X)V ar (Y )

Properties of Correlation Coefficient

• −1 ≤ ρ ≤ 1

• ρ = −1: perfect decreasing linear relation

• ρ = 1: perfect increasing linear relation

• ρ = 0: no linear relation

Sample Correlation

• Sample analog of correlation

r(X,Y ) =
∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2∑
i(yi − ȳ)2

• Closely related with regression

• Correlation between height and weight (Davis data): 0.19

• Correlation between reported height and weight (Davis data): 0.762

• Correlations in labour dynamics data

wages education age
wages 1.000 0.307 0.361
education 0.307 1.000 -0.298
age 0.361 -0.298 1.000

12



Warning! Correlation only measures linear relation!

(Multiple) Linear Regression

In general form, the regression model assumes

E(Y |X1 = x1, X2 = x2, . . . , Xp = xp) = β0 +
p∑
j=1

βjxj

V ar(Y |X1 = x1, X2 = x2, . . . , Xp = xp) = σ2

where

• β0, β1, . . . , βp, σ
2 > 0 are unknown parameters

• X1, X2, . . . , Xp are (conditionally) fixed covariates

• X1, X2, . . . , Xp may be derived from a smaller set of predictors, e.g.,

– X2 = Z1 (linear term for Z1)
– X3 = Z2 (linear term for Z2)
– X4 = Z2

1 (quadratic term for Z1)
– X5 = Z2

2 (quadratic term for Z2)
– X6 = Z1Z2 (interaction term)
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• In vector notation (incorporating intercept term in X)

E(Y |X = x) = xTβ

V ar(Y |X = x) = σ2

• Alternatively

Y = xTβ + ε where

E(ε) = 0, V ar(ε) = σ2

Sample version: n independent observations from this model

• For ith sample point, let

– Yi = response
– xi = p-dimensional vector of predictors

• We assume that

Yi = xTi β + εi,

where εi are independent and

E(εi) = 0, V ar(εi) = σ2

In matrix notation

Y = Xβ + ε

• where

Y =

 Y1
...
Yn

 , X =

 xT1
...

xTn

 , ε =

 ε1
...
εn


• Y and ε are n× 1

• X is n× p

• Columns of X are assumed to be linearly independent (rank(X) = p)

• βp×1 and σ2 > 0 are unknown parameters

Problem: How to estimate β and σ2

• Least squares approach: minimize sum of squared errors

β̂ = arg min
β
q(β)

where
q(β) =

∑
(Yi − xTi β)2 = (Y−Xβ)T (Y−Xβ)
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• Set gradient with respect to β to 0.

∇q(β) = 2XT (Y−Xβ) = 2(XTY−XTXβ) = 0

• This leads to Normal Equations:

XTXβ = XTY

• Estimate of β assuming that XTX has full rank (OLS estimator):

β̂ = (XTX)−1XTY

The OLS estimator in practice

fm1 <- lm(weight ~ height, data = Davis)
xyplot(weight ~ height, data = Davis, grid = TRUE, type = c("p", "r"))

fm1 <- lm(repwt ~ repht, data = Davis)
xyplot(repwt ~ repht, data = Davis, grid = TRUE, type = c("p", "r"))
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xyplot(prestige ~ income, Prestige, grid = TRUE, type = c("p", "r"))
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xyplot(pctUrban ~ log(ppgdp), data = UN, grid = TRUE, type = c("p", "r"))
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Alternative approach: maximum likelihood

• Less arbitrary, but needs model assumption: Multivariate Normality

• To indicate that Y follows n-dimensional Multivariate Normal Distribution with mean vector µ and
covariance matrix Σ, we write

Y ∼ Nn (µ,Σ)

• When Σ has full rank (positive definite), Y has joint density function (pdf)

f (y) = (2π)−n/2 |Σ|−1/2 exp
{
−1

2(y− µ)TΣ−1(y− µ)
}

• Note that this function has the two worst things in matrices, the determinant and the inverse of a
matrix.

• Fortunately, the situation is simpler for the regression model

Y ∼ Nn(Xβ, σ2I)

with probability density function

f(y) = (2π)−n/2 (σ2)−n/2 exp
{
− 1

2σ2 ‖y−Xβ‖2
}
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• Therefore the likelihood for this model is

L
(
β, σ2) = (2π)−n/2 (

σ2)−n/2 exp
{
− 1

2σ2 ‖Y−Xβ‖2
}

• Maximizing L
(
β, σ2) w.r.t. β is equivalent to minimizing ‖Y−Xβ‖2

Is this a good estimator?

• To answer this, we need some more tools

• Mean and Covariance of a random vector Y

µ =

 µ1
...
µn

 , Σ =

 Σ11 · · · Σ1n
...

. . .
...

Σn1 · · · Σnn


where

µi = EYi,

and

Σij =
{
V ar(Yi) for i = j

Cov(Yi, Yj) for i 6= j

Properties of mean and covariance

• The covariance matrix is symmetric

• For any n× n matrix A and n× 1 vector b

E (AY + b) = AE(Y) + b,

Cov(AY + b) = ACov(Y)AT

• Variance of a linear combination

0 ≤ V ar(aTY) = aTCov(Y)a

which implies that the covariance matrix is non-negative definite.

Properties of the OLS estimator β̂

• Mean:
Eβ̂ =

(
XTX

)−1 XTEY =
(
XTX

)−1 XTXβ = β

• Covariance:
Cov(β̂) =

(
XTX

)−1 XTσ2IX
(
XTX

)−1 = σ2 (XTX
)−1 = σ2M

• Property of Multivariate Normal:

If Y ∼ Nn(µ,Σ), then
AY + b ∼ N(Aµ+ b,AΣAT )
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• Therefore
β̂ ∼ Np

(
β, σ2M

)
• For the normal model, the OLS is the best unbiased estimator, i.e., it has smaller variance than any

other unbiased estimator.

• More precisely, `T β̂ is the best unbiased estimator of `Tβ for any linear combination `Tβ.

– E(`T β̂) = `Tβ

– V ar(`T β̂) = σ2`T
(
XTX

)−1
`

– Note that this conditional variance depends on X — does distribution of X matter?

• Prediction: Put ` = x for some future covariates x

• Even without assuming normality, the OLS estimator has smaller variance than any other linear
unbiased estimator.

• The OLS estimator is consistent (as long as X grows reasonably), i.e., β̂ → β as n→∞.

The unbiased estimator of σ2

• We typically estimate σ2 by
σ̂2 =

∥∥∥Y−Xβ̂
∥∥∥2
/ (n− p)

which is called the unbiased estimator of σ2

• Distribution of σ̂2:
(n− p) σ̂2

σ2 ∼ χ2
n−p

independently of β̂

Properties of σ̂2

• For the normal model σ̂2 is the best unbiased estimator.

• Even without normality, σ̂2 is unbiased.

• σ̂2 is consistent

The maximum likelihood estimator (MLE)

• To find MLE of σ2, differentiate logL(β̂, σ2) with respect to σ

• Easy to show that this gives
σ̂2
MLE = 1

n

∥∥∥Y−Xβ̂
∥∥∥2

• Note that the MLE is not unbiased, but is consistent.

• In general, neither the OLS estimator nor the MLE of σ2 minimize mean squared error (MSE)
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Testing

• We are often interested in coefficients βj
• Note that by properties given above

β̂j ∼ N(βj , σ2Mjj)

• “Standard error” of β̂j
σ̂
β̂j

= σ̂
√
Mjj

Testing: t-statistic

• Testing the null hypothesis H0 : βj = c

t = β̂j − c
σ̂
β̂j

∼ tn−p.

• Can be generalized to:

– any linear combination of βj
– more than one simultaneous restrictions (F -test)

t-tests in practice

fm1 <- lm(weight ~ height, data = Davis)
print(summary(fm1), signif.stars = FALSE)

Call:
lm(formula = weight ~ height, data = Davis)

Residuals:
Min 1Q Median 3Q Max

-23.696 -9.506 -2.818 6.372 127.145

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 25.26623 14.95042 1.690 0.09260
height 0.23841 0.08772 2.718 0.00715

Residual standard error: 14.86 on 198 degrees of freedom
Multiple R-squared: 0.03597, Adjusted R-squared: 0.0311
F-statistic: 7.387 on 1 and 198 DF, p-value: 0.007152

t-tests - computing p-values in R

2 * pt(2.718, df = 198, lower.tail = FALSE)

[1] 0.007150357
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Testing: F -statistic

Loosely speaking,

• Suppose we are interested in testing H0 vs H1, where H0 is a sub-model of H1

H0 ⊂ H1 (Hm : Y ∼ Nn(Xmβm, σ
2I))

• Let the sum of squared errors for the two models be S2
0 and S2

1

S2
m =

∥∥∥Y−Xmβ̂m

∥∥∥2
,m = 0, 1

• Let the number of parameters (length of β) in the two models be p0 and p1

• Then the test statistic

F =
S2

0−S
2
1

p1−p0

S2
1

n−p1

follows Fp1−p0,n−p1 under H0

(Cochran’s theorem, Linear Models course)
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F -tests in practice

fm2 <- lm(weight ~ height * sex, data = Davis)
summary(fm2)

Call:
lm(formula = weight ~ height * sex, data = Davis)

Residuals:
Min 1Q Median 3Q Max

-23.091 -6.331 -0.995 6.207 41.230

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 160.49748 13.45954 11.924 < 2e-16
height -0.62679 0.08199 -7.644 9.17e-13
sexM -261.82753 32.72161 -8.002 1.05e-13
height:sexM 1.62239 0.18644 8.702 1.33e-15

Residual standard error: 10.06 on 196 degrees of freedom
Multiple R-squared: 0.5626, Adjusted R-squared: 0.556
F-statistic: 84.05 on 3 and 196 DF, p-value: < 2.2e-16

anova(fm1, fm2)

Analysis of Variance Table

Model 1: weight ~ height
Model 2: weight ~ height * sex

Res.Df RSS Df Sum of Sq F Pr(>F)
1 198 43713
2 196 19831 2 23882 118.02 < 2.2e-16

Measuring Goodness of Fit: Coefficient of Determination

• Consider residual sum of squared errors

T 2 =
∑(

Yi − Ȳ
)2

and
S2 =

∑(
Yi − xTi β̂

)2
=
∥∥∥Y−Xβ̂

∥∥∥2

for intercept-only model and regression model

• We can think of these as measuring the “unexplained variation” in Y under these two models.

• Then the coefficient of determination R2 is defined by

R2 = T 2 − S2

T 2 = 1− S2

T 2

Note that
0 ≤ R2 ≤ 1
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R2

• T 2 − S2 is the amount of variation in the intercept-only model which has been explained by including
the extra predictors of the regression model and

• R2 is the proportion of the variation left in the intercept-only model which has been explained by
including the additional predictors.

• Link with correlation: It can be shown that for one predictor,

R2 = r2(X,Y )

Adjusted R2

• Note that

R2 =
T 2

n −
S2

n
T 2

n

• Possible alternative: substitute unbiased estimators

• Adjusted R2:

R2
a =

T 2

n−1 −
S2

n−p
T 2

n−1
= 1− n− 1

n− p
(1−R2)

Predictive R2: Leave-One-Out Cross-validation

• Disadvantage of R2 and adjusted R2

– Evaluates fit based on same data that is used to obtain fit
– Adding more covariates will always improve R2

• A better procedure is based on cross-validation.

• Delete the ith observation and compute β̂(−i) after excluding ith observation.

• Also compute the sample mean excluding the ith observation

Ȳ(−i) = 1
n− 1

∑
j 6=i

Yj

• Do this for all i.

• Define
T 2
p =

∑(
Yi − Ȳ(−i)

)2

and
S2
p =

∑(
Yi − xTi β̂(−i)

)2

• The predictive R2 is defined as

R2
p =

T 2
p − S2

p

T 2
p

• This computes the fit to the ith observation without using that observation

• Better measure of goodness of model fit than R2 or adjusted R2
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Beyond linear regression (topics of this course)

• Identifying violations of linear model assumptions

– Lack of fit (linearity)
– Heteroscedasticity
– Autocorrelation in errors
– Collinearity (not a violation, but still problematic)
– Discordant outliers and influential observations
– Non-normality of errors

• Possible solutions

– Nonparametric regression
– More flexible “linear” regression models (e.g., splines)
– Transformations
– Modeling heteroscedasticity
– Regularization (constrain parameters)
– Variable selection
– Robust Regression

First, get familiar with R

• Overview of R

• R Tutorials

• Many other online resources available
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