
Robust Regression

Deepayan Sarkar

Motivation

• Least squares regression is sensitive to violation of assumptions

• Individual high-leverage points can substantially influence inference

• Specifically, least squares is vulnerable when error distribution is heavy-tailed

• We have considered one possible remedy: detect influential observations

• This has several drawbacks:

– We cannot realistically expect users to always screen the data
– The binary decision to keep/reject suspicious observations seems extreme; we may instead prefer

to downweight such observations
– Finding outliers may be difficult in multivariate or structured data
– Rejecting outliers changes the sampling distribution of estimates; we should but usually do not

make adjustments.

• Another alternative is to consider procedures that systematically guard against outliers

Motivation: Location and scale

• A more familiar example before considering the regression problem:

X1, . . . , Xn ∼ N(µ, σ2)

(x <- rnorm(10, mean = 5, sd = 3))

[1] 4.2967261 0.8741864 7.7031483 -0.0853126 2.5003953 5.6141429 8.6149780 11.0482167 -1.9215526 -0.3005308

• Want to estimate location µ (as well as scale σ)

• Common estimators of location µ:

Mean mean(x) 3.8344398
Median median(x) 3.3985607
Trimmed mean mean(x, trim = 0.25) 3.4838811

Robust estimation of location

• How do these behave when data is “contaminated”?

• We know that

– Mean can be changed by an arbitrary amount by changing a single observation
– Median can be changed arbitrarily only by changing more than 50% observations

1

– But there is a cost: median is less “efficient”!

• Let us try to make these ideas formal

Relative efficiency

• Consider two estimators T1 and T2

• Define the relative efficiency of T1 w.r.t. T2 (for a given underlying distribution) as

RE(T1;T2) = V (T2)
V (T1)

• For biased estimators, variance could be replaced by MSE

• T2 is usually taken to be the optimal estimator, if one is available

• What are relative efficiencies of median and trimmed mean?

• Instead of trying to obtain variances theoretically (which is often difficult), we could use simulation to
get a rough idea

sampling.variance <- function(estimator, rfun, n, NREP = 10000)
{

var(replicate(NREP, estimator(rfun(n))))
}
trim.mean <- function(x) mean(x, trim = 0.25)
rdist <- function(n) rnorm(n, mean = 5, sd = 3)
var.mean <- sampling.variance(mean, rdist, n = 10)
var.median <- sampling.variance(median, rdist, n = 10)
var.tmean <- sampling.variance(trim.mean, rdist, n = 10)
round(100 * var.mean / var.median)

[1] 74

round(100 * var.mean / var.tmean)

[1] 91

Asymptotic relative efficiency

ARE(T1;T2) is the limiting value of relative efficiency as n→∞

rdist <- function(n) rnorm(n, mean = 5, sd = 3)
var.mean <- sampling.variance(mean, rdist, n = 5000)
var.median <- sampling.variance(median, rdist, n = 5000)
var.tmean <- sampling.variance(trim.mean, rdist, n = 5000)
round(100 * var.mean / var.median)

[1] 63

round(100 * var.mean / var.tmean)

[1] 84

• For comparison, the exact ARE of the median is 2
π = 63.6%

• This is when the data comes from a normal distribution

2

Relative efficiency for heavier tails

• Suppose errors are instead from t with 5 degrees of freedom

rdist <- function(n) 5 + 3 * rt(n, df = 5)
var.mean <- sampling.variance(mean, rdist, n = 5000)
var.median <- sampling.variance(median, rdist, n = 5000)
var.tmean <- sampling.variance(trim.mean, rdist, n = 5000)
round(100 * var.mean / var.median)

[1] 96

round(100 * var.mean / var.tmean)

[1] 121

Winsorized trimmed mean

• Similar to trimmed mean, but replaces trimmed observations by nearest untrimmed observation

win.mean <- function(x, trim = 0.25)
{

q <- quantile(x, c(trim, 1-trim))
x[x < q[1]] <- q[1]
x[x > q[2]] <- q[2]
mean(x)

}
rdist <- function(n) rnorm(n, mean = 5, sd = 3) # normal
var.mean <- sampling.variance(mean, rdist, n = 5000)
var.win.mean <- sampling.variance(win.mean, rdist, n = 5000)
round(100 * var.mean / var.win.mean)

[1] 91

rdist <- function(n) 5 + 3 * rt(n, df = 5) # t_5
var.mean <- sampling.variance(mean, rdist, n = 5000)
var.win.mean <- sampling.variance(win.mean, rdist, n = 5000)
round(100 * var.mean / var.win.mean)

[1] 117

Relative efficiency for contamination

• Another “departure” model: contamination

• Suppose data is a mixture of N(µ, σ2) with probability 1− ε and N(µ, 9σ2) with probability ε

rdist <- function(n) rnorm(n, mean = 5, sd = ifelse(runif(n) < 0.01, 3, 1)) # 1% contamination
var.mean <- sampling.variance(mean, rdist, n = 5000)
var.median <- sampling.variance(median, rdist, n = 5000)
var.tmean <- sampling.variance(trim.mean, rdist, n = 5000)
round(100 * var.mean / c(median = var.median, trim.mean = var.tmean))

median trim.mean
69 92

rdist <- function(n) rnorm(n, mean = 5, sd = ifelse(runif(n) < 0.05, 3, 1)) # 5% contamination
var.mean <- sampling.variance(mean, rdist, n = 5000)

3

var.median <- sampling.variance(median, rdist, n = 5000)
var.tmean <- sampling.variance(trim.mean, rdist, n = 5000)
round(100 * var.mean / c(median = var.median, trim.mean = var.tmean))

median trim.mean
82 108

Sensitivity / influence function

• How much does changing one observation change the estimate T?

• This is measured by the empirical influence function or sensitivity curve

SC(x;x1, . . . , xn−1, T) = T (x1, . . . , xn−1, x)− T (x1, . . . , xn−1)
1/n

• We are usually interested in limiting behaviour as n→∞

• The population version, independent of the sample x1, . . . , xn−1, is known as the influence function

IF (x;F, T) = lim
ε→0

T ((1− ε)F + εδx)− T (F)
ε

• Here δx is a point mass at x

• How does mean(c(x, xnew)) change as function of xnew?

• How do other estimates change?

n <- 50
x <- rnorm(n, mean = 0, sd = 1)
summary(x)

Min. 1st Qu. Median Mean 3rd Qu. Max.
-2.28099 -0.61800 -0.06070 -0.06727 0.51522 2.01596

xx <- seq(-5, 5, 0.01)
sensitivity <-

data.frame(xx = xx,
mean = n * (sapply(xx, function(xnew) mean(c(x, xnew))) - mean(x)),
median = n * (sapply(xx, function(xnew) median(c(x, xnew))) - median(x)),
tmean = n * (sapply(xx, function(xnew) trim.mean(c(x, xnew))) - trim.mean(x)),
wmean = n * (sapply(xx, function(xnew) win.mean(c(x, xnew))) - win.mean(x)))

xyplot(mean + median + tmean + wmean ~ xx, sensitivity, type = "l", outer = TRUE,
xlab = "Additional observation", ylab = "Sensitivity", grid = TRUE) +

layer(panel.rug(x = .GlobalEnv$x))

4

Breakdown point

• Defined as the proportion of the sample size that must be perturbed to make the estimate unbounded

• 50% is the best we can hope for

• For location, mean has 0% breakdown point (one out of n), median has 50%.

Estimators of scale

• We can similarly consider estimators of scale σ

• Common estimators:

– Sample standard deviation (sd in R)
– Mean absolute deviation from mean
– Median absolute deviation (MAD) from median (mad in R)
– Inter-quartile range (IQR in R)

• May need scaling for normal distribution:

T1 <- sd
T2 <- function(x, ...) mean(abs(x - mean(x))) / sqrt(2/pi)
T3 <- function(x, ...) median(abs(x - median(x))) / sqrt(qchisq(0.5, df = 1))
T4 <- function(x, ...) IQR(x) / diff(qnorm(c(0.25, 0.75)))

Relative efficiency for estimators of scale

rdist <- function(n) rnorm(n, mean = 5) # Normal
var.T1 <- sampling.variance(T1, rdist, n = 5000)
var.T2 <- sampling.variance(T2, rdist, n = 5000)
var.T3 <- sampling.variance(T3, rdist, n = 5000)
var.T4 <- sampling.variance(T4, rdist, n = 5000)
round(100 * var.T1 / c(mean.abs.dev = var.T2, median.abs.dev = var.T3, iqr = var.T4))

mean.abs.dev median.abs.dev iqr
89 38 38

rdist <- function(n) rnorm(n, mean = 5, sd = ifelse(runif(n) < 0.01, 3, 1)) # 1% Contamination
var.T1 <- sampling.variance(T1, rdist, n = 5000)

5

var.T2 <- sampling.variance(T2, rdist, n = 5000)
var.T3 <- sampling.variance(T3, rdist, n = 5000)
var.T4 <- sampling.variance(T4, rdist, n = 5000)
round(100 * var.T1 / c(mean.abs.dev = var.T2, median.abs.dev = var.T3, iqr = var.T4))

mean.abs.dev median.abs.dev iqr
152 70 70

M-estimators

• Most common location estimators can be expressed as M-estimators (MLE-like)

T (x1, . . . , xn) = arg min
θ

n∑
i=1

ρ(xi, θ)

• For MLE, ρ(xi, θ) is the negative log-density, but ρ need not correspond to a likelihood

• If ψ(xi, θ) = d
dθρ(xi, θ) exists, then T is the solution to the score equation

n∑
i=1

ψ(xi, θ) = 0

• We usually consider loss functions of the form ρ(x− θ)

• Corresponding ψ function is ψ(x− θ) = ρ′(x− θ) (disregarding change in sign)

• This easily generalizes to vector parameters

• Mean

ρ(x− θ) = (x− θ)2, ψ(x− θ) = 2(x− θ)

• Median (ignoring non-differentiability of |x| at 0)

ρ(x− θ) = |x− θ|, ψ(x− θ) = sign(x− θ)

• Trimmed mean (for some c, ignoring dependence of c on the data)

ρ(x− θ) =
{

(x− θ)2 |x− θ| ≤ c
c2 otherwise

ψ(x− θ) =
{

2(x− θ) |x− θ| ≤ c
0 otherwise

• Huber loss (similar to Winsorized trimmed mean)

ρ(x− θ) =
{

(x− θ)2 |x− θ| ≤ c
c(2|x− θ| − c) otherwise

ψ(x− θ) =

−2c x− θ < −c
2(x− θ) |x− θ| ≤ c
2c x− θ > c

6

• Can be thought of compromise between mean (squared error) and median (absolute error)

• Estimator reduces to mean as c→∞, median as c→ 0

• ρ is differentiable everywhere

• Exercise: What do plots of ρ and ψ look like?

Influence function revisited

xx <- seq(-3, 3, 0.01)
sensitivity <-

data.frame(xx = xx,
mean = 2 * xx,
median = sign(xx),
tmean = ifelse(abs(xx) < 1, 2 * xx, 0),
huber = ifelse(abs(xx) < 1, 2 * xx, 2 * sign(xx)))

xyplot(mean + median + tmean + huber ~ xx, sensitivity, type = "l", outer = TRUE,
xlab = "x", ylab = expression(psi(x)), grid = TRUE)

• Turns out that the corresponding influence functions have the same shape (but will not discuss why)

M-estimation: general approach for location

• Choose function ψ(x− θ)

• Find T by solving (for θ)

n∑
i=1

ψ(xi − θ) = 0

• We can rewrite this as

n∑
i=1

ψ(xi − θ)
(xi − θ)

(xi − θ) = 0

• This suggests an iterative approach using weighted least squares in each step:

1. Start with initial estimate θ̂
2. Obtain current weights wi = ψ(xi−θ̂)

(xi−θ̂)

3. Obtain new estimate of θ by solving
∑
i wi(xi − θ) = 0 =⇒ θ̂ =

∑
i wixi/

∑
i wi

• Of course, a black-box numerical optimizer (e.g., optim()) can also be used instead

7

Common robust loss function derivatives

• Absolute deviation ψ(x) = sign(x)

• Huber (same as Winsorized trimmed mean)

ψ(x) =

−c x < c

x |x| ≤ c
c x > c

• Trimmed mean

ψ(x) =
{
x |x| ≤ c
0 otherwise

• Tukey bisquare

ψ(x) = x
[
1− (x/R)2]2

+ for ρ(x) =
{
R2 [1− (1− (x/R)2)

]3 |x| ≤ R
R2 otherwise

• For the last three, choice of scale (c, R) is a tuning parameter

xx <- seq(-2, 2, 0.01)
c <- 1; R <- 1
psi <-

data.frame(xx = xx,
median = sign(xx),
huber = ifelse(abs(xx) <= c, xx, c * sign(xx)),
tmean = ifelse(abs(xx) <= c, xx, 0),
bisquare = xx * pmax(0, (1 - (xx/R)^2))^2)

xyplot(median + huber + tmean + bisquare ~ xx, psi, type = "l", outer = TRUE,
ylab = expression(psi(x)), xlab = "x", grid = TRUE)

• The last two functions are examples of “redescending” influence functions

• Corresponding loss function ρ becomes flat beyond a threshold

• In effect, beyond this threshold, extreme observations are completely discounted

• In other words, they have zero/constant contribution to the total loss

• However, this does make the objective function (to be minimized) non-convex

8

• Let us see what the objective function looks like for various loss functions

huber.loss <- function(x, c = 1) ifelse(abs(x) < c, x^2, c * (2 * abs(x) - c))
bisquare.loss <- function(x, R = 1) ifelse(abs(x) < R, R^2 * (1 - (1 - (x/R)^2))^3, R^2)
x <- rnorm(10)
y <- c(x, 10.1, 10.2, 10.3) # add three extreme observations to x
t <- seq(-5, 15, 0.01)

Example: loss functions

SSE <- sapply(t, function(theta) sum((x - theta)^2))
SAD <- sapply(t, function(theta) sum(abs(x - theta)))
SH <- sapply(t, function(theta) sum(huber.loss(x - theta, c = 1)))
SBS <- sapply(t, function(theta) sum(bisquare.loss(x - theta, R = 1)))
xyplot(SSE + SAD + SH + SBS ~ t, type = "l", outer = TRUE,

ylab = "Loss", xlab = "theta", grid = TRUE, scales = list(y = "free")) +
layer(panel.rug(x = .GlobalEnv$x))

SSE <- sapply(t, function(theta) sum((y - theta)^2))
SAD <- sapply(t, function(theta) sum(abs(y - theta)))
SH <- sapply(t, function(theta) sum(huber.loss(y - theta, c = 1)))
SBS <- sapply(t, function(theta) sum(bisquare.loss(y - theta, R = 1)))
xyplot(SSE + SAD + SH + SBS ~ t, type = "l", outer = TRUE,

ylab = "Loss", xlab = "theta", grid = TRUE, scales = list(y = "free")) +
layer(panel.rug(x = .GlobalEnv$y))

• For non-convex loss functions, important to have good starting estimates

9

Other practical considerations

• Tuning parameters are arbitrary

• Natural to express tuning parameter in terms of scale σ (unknown) — scale invariance

• Common to take σ̂ to be a multiple of the median absolute deviation (MAD) from the median

• Tuning parameter can then be chosen to achieve some target asymptotic relative efficiency under
normality

• For example, Huber loss function with c = 1.345σ would give 95% ARE if σ was known

Standard errors

• M-estimators are consistent and asymptotically normal with variance τσ2/n, where

τ = E(ψ2(X))
[E(ψ′(X))]2

• Could be estimated by replacing X by fitted (standardized) residuals

τ̂ =
1
n

∑
i ψ

2(ei/σ̂)
[1
n

∑
i ψ
′(ei/σ̂)]2

• Not necessarily reliable in small samples

M-estimation for regression

• The ideas described above translate directly to linear regression

• Instead of minimizing least squared errors, minimize

n∑
i=1

ρ(yi − xTi β)

• Simple estimation approach: Iteratively (Re)Weighted Least Squares (IWLS / IRLS) with weights

w
(t+1)
i =

ψ
(
yi − xTi β̂(t)

)
yi − xTi β̂(t)

= ψ(e(t)
i)

e
(t)
i

> 0

• Implemented in the rlm() function (in the MASS package) among others

• By default, scale is estimated using MAD of residuals (updated for each iteration)

M-estimation example: Bisquare

library(MASS)
fm <- rlm(weight ~ height, data = Davis, psi = psi.bisquare)
xyplot(weight ~ height, Davis, type = c("p", "r"), grid = TRUE) + layer(panel.abline(fm, col = "red"))

10

M-estimation example: Huber

library(MASS)
fm <- rlm(weight ~ height, data = Davis, psi = psi.huber)
xyplot(weight ~ height, Davis, type = c("p", "r"), grid = TRUE) + layer(panel.abline(fm, col = "red"))

M-estimation example: Least absolute deviation (using optim())

L <- function(p) with(Davis, sum(abs(weight - p[1] - p[2] * height)))
bhat <- optim(coef(fm), L)$par
xyplot(weight ~ height, Davis, type = c("p", "r"), grid = TRUE) + layer(panel.abline(bhat, col = "red"))

11

M-estimation example: multiple regression

fm1 <- lm(prestige ~ income + education, data = Duncan, na.action = na.exclude)
fm2 <- rlm(prestige ~ income + education, data = Duncan, psi = psi.bisquare, na.action = na.exclude)
fm3 <- rlm(prestige ~ income + education, data = Duncan, psi = psi.huber, na.action = na.exclude)
coefficients(summary(fm1))

Estimate Std. Error t value Pr(>|t|)
(Intercept) -6.0646629 4.27194117 -1.419650 1.630896e-01
income 0.5987328 0.11966735 5.003310 1.053184e-05
education 0.5458339 0.09825264 5.555412 1.727192e-06

coefficients(summary(fm2))

Value Std. Error t value
(Intercept) -7.4121192 3.87702087 -1.911808
income 0.7902166 0.10860468 7.276082
education 0.4185775 0.08916966 4.694169

coefficients(summary(fm3))

Value Std. Error t value
(Intercept) -7.1107028 3.88131509 -1.832034
income 0.7014493 0.10872497 6.451593
education 0.4854390 0.08926842 5.437970

M-estimation example: weights as diagnostics

• IWLS weights give an alternative measure of influence

wts <- fm2$w # bisquare
id <- which(wts < 0.6)
xyplot(wts ~ seq_along(wts)) +

layer(panel.text(x[id], y[id], labels = rownames(Duncan)[id], pos = 4, col = "grey50"))

12

• IWLS weights give an alternative measure of influence

wts <- fm3$w # Huber
id <- which(wts < 0.6)
xyplot(wts ~ seq_along(wts)) +

layer(panel.text(x[id], y[id], labels = rownames(Duncan)[id], pos = 4, col = "grey50"))

Does M-estimation ensure high breakdown point?

• Example: Number of phone calls (in millions) in Belgium

• Data available in the MASS package

• For 1964–1969, length of calls (in minutes) had been recorded instead of number

13

data(phones, package = "MASS")
fm2 <- rlm(calls ~ year, data = phones, psi = psi.huber, maxit = 100)
fm3 <- rlm(calls ~ year, data = phones, psi = psi.bisquare)
xyplot(calls ~ year, data = phones, grid = TRUE, type = c("p", "r"), pch = 16) +

layer(panel.abline(fm2, col = "red")) + layer(panel.abline(fm3, col = "black"))

An artificial example

x <- c(1:10, 18)
y <- c(1:10, 18 + 10)
fm.h <- rlm(y ~ x, psi = psi.huber, maxit = 100)
fm.bs <- rlm(y ~ x, psi = psi.bisquare)
xyplot(y ~ x, pch = 16) + layer(panel.abline(fm.h, col = "red")) + layer(panel.abline(fm.bs, col = "black"))

14

x <- c(1:10, 19)
y <- c(1:10, 19 + 10)
fm.h <- rlm(y ~ x, psi = psi.huber, maxit = 200)
fm.bs <- rlm(y ~ x, psi = psi.bisquare, maxit = 200)
xyplot(y ~ x, pch = 16) + layer(panel.abline(fm.h, col = "red")) + layer(panel.abline(fm.bs, col = "black"))

x <- c(1:10, 20)
y <- c(1:10, 20 + 10)
fm.h <- rlm(y ~ x, psi = psi.huber, maxit = 100)
fm.bs <- rlm(y ~ x, psi = psi.bisquare)
xyplot(y ~ x, pch = 16) + layer(panel.abline(fm.h, col = "red")) + layer(panel.abline(fm.bs, col = "black"))

15

Why does this happen?

• M-estimation approach can ensure high breakdown point for univariate location estimation

• This is not automatically true for regression

• Increasing loss function (LAD, Huber): sufficiently high-leverage outlier can always attract optimum
line

• Loss functions that flatten out (Bisquare): result depends on choice of c (which is estimated)

• In general, no guarantee that M-estimation approach has bounded influence in regression

Resistant regression

• Resistant alternatives exist, but are much more difficult to fit computationally

• We will mention two examples: LMS and LTS regression

• Least Median of Squares (LMS) regression: Find β̂ as

arg min
β

median
{

(yi − xTi β)2; i = 1, . . . , n
}

• More generally, LQS minimizes some quantile of the squared errors

• Least Trimmed Squares (LTS) regression: Find β̂ as

arg min
β

q∑
i=1

(yi − xTi β)2
(i)

• Here the objective is the sum of the q smallest error terms

• The recommended value of q is b(n+ p+ 1)/2c

Resistant regression: LMS and LTS

• Both LMS/LQS and LTS have high resistance (breakdown point) but low efficiency

• LMS/LQS has lower efficiency than LTS, and there is no reason to prefer LMS over LTS

• Computation of both are difficult

• The MASS package provides one implementation in lmsreg() and ltsreg()

Example: Number of phone calls (in millions) in Belgium

data(phones, package = "MASS")
fm2 <- lmsreg(calls ~ year, data = phones)
fm3 <- ltsreg(calls ~ year, data = phones)
xyplot(calls ~ year, data = phones, grid = TRUE, type = c("p", "r"), pch = 16) +

layer(panel.abline(fm2, col = "red")) + layer(panel.abline(fm3, col = "black"))

16

Efficiency comparison: simulation study (normal)

simulateCoefN <- function(n)
{

x <- runif(n, 0, 1)
y <- x + 0.5 * rnorm(n)
fm1 <- lm(y ~ x)
fm2 <- rlm(y ~ x, psi = psi.bisquare)
fm3 <- ltsreg(y ~ x)
data.frame(rbind(coef(fm1), coef(fm2), coef(fm3)),

model = c("LSE", "Bisquare", "LTS"))
}
sim.coefsn <- replicate(1000, simulateCoefN(100), simplify = FALSE)
sim.coefsn.df <- do.call(rbind, sim.coefsn)
names(sim.coefsn.df) <- c("alpha.hat", "beta.hat", "model")

xyplot(beta.hat ~ alpha.hat | model, data = sim.coefsn.df, grid = TRUE)

17

Efficiency comparison: simulation study (t3)

simulateCoefT <- function(n)
{

x <- runif(n, 0, 1)
y <- x + 0.5 * rt(n, df = 3)
fm1 <- lm(y ~ x)
fm2 <- rlm(y ~ x, psi = psi.bisquare)
fm3 <- ltsreg(y ~ x)
data.frame(rbind(coef(fm1), coef(fm2), coef(fm3)),

model = c("LSE", "Bisquare", "LTS"))
}
sim.coefst <- replicate(1000, simulateCoefT(100), simplify = FALSE)
sim.coefst.df <- do.call(rbind, sim.coefst)
names(sim.coefst.df) <- c("alpha.hat", "beta.hat", "model")

xyplot(beta.hat ~ alpha.hat | model, data = sim.coefst.df, grid = TRUE)

18

MM-estimation

• M-estimation with Bisquare error has reasonable efficiency

• Should have high breakdown point if scale is “correctly” estimated

• High breakdown potentially fails if initial scale estimate is too high

• MM-estimation tries to ensure high breakdown point with high efficiency of Bisquare loss

• First step is to obtain a better scale estimate using S-estimation (will not discuss)

• This is followed by M-estimation with Bisquare loss function calibrated by estimated scale

• Implemented in rlm() with method = "MM"

Efficiency comparison: simulation study (normal)

simulateCoefMM <- function(n)
{

x <- runif(n, 0, 1)
y <- x + 0.5 * rnorm(n)
fm1 <- lm(y ~ x)
fm2 <- rlm(y ~ x, method = "MM")
fm3 <- ltsreg(y ~ x)
data.frame(rbind(coef(fm1), coef(fm2), coef(fm3)),

model = c("LSE", "MM", "LTS"))
}
sim.coefsmm <- replicate(1000, simulateCoefMM(100), simplify = FALSE)
sim.coefsmm.df <- do.call(rbind, sim.coefsmm)
names(sim.coefsmm.df) <- c("alpha.hat", "beta.hat", "model")

xyplot(beta.hat ~ alpha.hat | model, data = sim.coefsmm.df, grid = TRUE)

19

https://www.researchgate.net/publication/243632692_Robust_Regression_by_Means_of_S-Estimators

Efficiency comparison: simulation study (t3)

simulateCoefMMt <- function(n)
{

x <- runif(n, 0, 1)
y <- x + 0.5 * rt(n, df = 3)
fm1 <- lm(y ~ x)
fm2 <- rlm(y ~ x, method = "MM")
fm3 <- ltsreg(y ~ x)
data.frame(rbind(coef(fm1), coef(fm2), coef(fm3)),

model = c("LSE", "MM", "LTS"))
}
sim.coefsmmt <- replicate(1000, simulateCoefMMt(100), simplify = FALSE)
sim.coefsmmt.df <- do.call(rbind, sim.coefsmmt)
names(sim.coefsmmt.df) <- c("alpha.hat", "beta.hat", "model")

xyplot(beta.hat ~ alpha.hat | model, data = sim.coefsmmt.df, grid = TRUE)

20

Artificial example revisited

x <- c(1:10, 20)
y <- c(1:10 + rnorm(10, sd = 0.00001), 20 + 10)
fm.mm <- rlm(y ~ x, method = "MM")
fm.bs <- rlm(y ~ x, psi = psi.bisquare)
xyplot(y ~ x, pch = 16) + layer(panel.abline(fm.mm, col = "red")) + layer(panel.abline(fm.bs, col = "black"))

Software implementations in R

• The MASS package implements basic robust regression approaches

21

• For more comprehensive implementations, see the Robust Statistical Methods Task View on CRAN

22

https://cran.r-project.org/web/views/Robust.html

	Motivation
	Motivation: Location and scale
	Robust estimation of location
	Relative efficiency
	Asymptotic relative efficiency
	Relative efficiency for heavier tails
	Winsorized trimmed mean
	Relative efficiency for contamination
	Sensitivity / influence function
	Breakdown point
	Estimators of scale
	Relative efficiency for estimators of scale
	M-estimators
	Influence function revisited
	M-estimation: general approach for location
	Common robust loss function derivatives
	Example: loss functions
	Other practical considerations
	Standard errors
	M-estimation for regression
	M-estimation example: Bisquare
	M-estimation example: Huber
	M-estimation example: Least absolute deviation (using optim())
	M-estimation example: multiple regression
	M-estimation example: weights as diagnostics
	Does M-estimation ensure high breakdown point?
	An artificial example
	Why does this happen?
	Resistant regression
	Resistant regression: LMS and LTS
	Example: Number of phone calls (in millions) in Belgium
	Efficiency comparison: simulation study (normal)
	Efficiency comparison: simulation study (t_3)
	MM-estimation
	Efficiency comparison: simulation study (normal)
	Efficiency comparison: simulation study (t_3)
	Artificial example revisited
	Software implementations in R

