Robust Regression

Deepayan Sarkar

Motivation

o Least squares regression is sensitive to violation of assumptions

e Individual high-leverage points can substantially influence inference

e Specifically, least squares is vulnerable when error distribution is heavy-tailed
e We have considered one possible remedy: detect influential observations

o This has several drawbacks:

— We cannot realistically expect users to always screen the data

— The binary decision to keep/reject suspicious observations seems extreme; we may instead prefer
to downweight such observations

— Finding outliers may be difficult in multivariate or structured data

— Rejecting outliers changes the sampling distribution of estimates; we should but usually do not
make adjustments.

o Another alternative is to consider procedures that systematically guard against outliers

Motivation: Location and scale

e A more familiar example before considering the regression problem:

X1,..., X0~ N(u,0?)
(x <- rnorm(10, mean = 5, sd = 3))
[1] 4.2967261 0.8741864 7.7031483 -0.0853126 2.5003953 5.6141429 8.6149780 11.0482167 -1.9215526
o Want to estimate location u (as well as scale o)

o Common estimators of location u:

Mean mean (x) 3.8344398
Median median(x) 3.3985607
Trimmed mean mean(x, trim = 0.25) 3.4838811

Robust estimation of location

e« How do these behave when data is “contaminated”?
o We know that

— Mean can be changed by an arbitrary amount by changing a single observation
— Median can be changed arbitrarily only by changing more than 50% observations

— But there is a cost: median is less “efficient”!

e Let us try to make these ideas formal

Relative efficiency

e Consider two estimators 17 and 15

o Define the relative efficiency of 71 w.r.t. Ty (for a given underlying distribution) as

V(T»)
V(Ty)

o For biased estimators, variance could be replaced by MSE

RE(Tl; T2) =

e T5 is usually taken to be the optimal estimator, if one is available
o« What are relative efficiencies of median and trimmed mean?

« Instead of trying to obtain variances theoretically (which is often difficult), we could use simulation to
get a rough idea

sampling.variance <- function(estimator, rfun, n, NREP = 10000)

{

var (replicate (NREP, estimator(rfun(n))))
}
trim.mean <- function(x) mean(x, trim = 0.25)
rdist <- function(n) rnorm(n, mean = 5, sd = 3)
var.mean <- sampling.variance(mean, rdist, n = 10)
var.median <- sampling.variance(median, rdist, n = 10)
var.tmean <- sampling.variance(trim.mean, rdist, n = 10)
round (100 * var.mean / var.median)

[1] 74
round (100 * var.mean / var.tmean)

[1] 91

Asymptotic relative efficiency

ARE(Ty;Ty) is the limiting value of relative efficiency as n — oo

rdist <- function(n) rnorm(n, mean = 5, sd = 3)

var.mean <- sampling.variance(mean, rdist, n = 5000)
var.median <- sampling.variance(median, rdist, n = 5000)
var.tmean <- sampling.variance(trim.mean, rdist, n = 5000)
round (100 * var.mean / var.median)

[1] 63
round (100 * var.mean / var.tmean)
[1] 84
e For comparison, the exact ARFE of the median is % = 63.6%

e This is when the data comes from a normal distribution

Relative efficiency for heavier tails

e Suppose errors are instead from ¢ with 5 degrees of freedom

rdist <- function(n) 5 + 3 * rt(n, df = 5)

var.mean <- sampling.variance(mean, rdist, n = 5000)
var.median <- sampling.variance(median, rdist, n = 5000)
var.tmean <- sampling.variance(trim.mean, rdist, n = 5000)
round (100 * var.mean / var.median)

[1] 96
round (100 * var.mean / var.tmean)

[1] 121

Winsorized trimmed mean

e Similar to trimmed mean, but replaces trimmed observations by nearest untrimmed observation

win.mean <- function(x, trim = 0.25)

{
q <- quantile(x, c(trim, 1-trim))
x[x < q[11] <- q[1]
x[x > q[2]]1 <- q[2]
mean (x)
}

rdist <- function(n) rnorm(n, mean = 5, sd = 3) # normal
var.mean <- sampling.variance(mean, rdist, n = 5000)
var.win.mean <- sampling.variance(win.mean, rdist, n = 5000)
round(100 * var.mean / var.win.mean)

[11 91

rdist <- function(n) 5 + 3 * rt(n, df = 5) # t 5
var.mean <- sampling.variance(mean, rdist, n = 5000)
var.win.mean <- sampling.variance(win.mean, rdist, n
round (100 * var.mean / var.win.mean)

[1] 117

5000)

Relative efficiency for contamination

o Another “departure” model: contamination
« Suppose data is a mixture of N(u,0?) with probability 1 — € and N (u, 90%) with probability e

rdist <- function(n) rnorm(n, mean = 5, sd = ifelse(runif(n) < 0.01, 3, 1)) # 1/ contamination
var.mean <- sampling.variance(mean, rdist, n = 5000)

var.median <- sampling.variance(median, rdist, n = 5000)

var.tmean <- sampling.variance(trim.mean, rdist, n = 5000)

round (100 * var.mean / c(median = var.median, trim.mean = var.tmean))

median trim.mean
69 92

rdist <- function(n) rnorm(n, mean = 5, sd = ifelse(runif(n) < 0.05, 3, 1)) # 5/ contamination
var.mean <- sampling.variance(mean, rdist, n = 5000)

var.median <- sampling.variance(median, rdist, n = 5000)
var.tmean <- sampling.variance(trim.mean, rdist, n = 5000)
round (100 * var.mean / c(median = var.median, trim.mean = var.tmean))

median trim.mean
82 108

Sensitivity / influence function

e How much does changing one observation change the estimate T'7

e This is measured by the empirical influence function or sensitivity curve

T(x1,...,p—1,2) —T(T1,. .., Tp_1)
1/n

Sc(x;xla"'axn—laT) =

o We are usually interested in limiting behaviour as n — oo

e The population version, independent of the sample x1,...,x,_1, is known as the influence function

LF (s BT — ti DO = OF +) — T(F)

e—0 €

e Here 6, is a point mass at x
e How does mean(c(x, xnew)) change as function of xnew?

e How do other estimates change?

n <- 50
x <- rnorm(n, mean = 0, sd = 1)
summary (x)
Min. 1st Qu. Median Mean 3rd Qu. Max.

-2.28099 -0.61800 -0.06070 -0.06727 0.51522 2.01596

xx <- seq(-5, 5, 0.01)
sensitivity <-
data.frame(xx = xx,
mean = n * (sapply(xx, function(xnew) mean(c(x, xnew))) - mean(x)),
median = n * (sapply(xx, function(xnew) median(c(x, xnew))) - median(x)),
tmean = n * (sapply(xx, function(xnew) trim.mean(c(x, xnew))) - trim.mean(x)),
wmean = n * (sapply(xx, function(xnew) win.mean(c(x, xnew))) - win.mean(x)))

xyplot(mean + median + tmean + wmean ~ xx, sensitivity, type = "1", outer = TRUE,
xlab = "Additional observation", ylab = "Sensitivity", grid = TRUE) +
layer(panel.rug(x = .GlobalEnv$x))

-4 -2 o 2 4 -4 -2 o 2 4
I I 1

1 1 1
mean median tmean

Sensitivity
=]
L
~
~
T

: L Lhimu iy ; LLL ULy . ; LLL gy ; ; L L Ly
-2 0 2

4 -4 -2 0 2 4

Additional observation

Breakdown point

e Defined as the proportion of the sample size that must be perturbed to make the estimate unbounded
e 50% is the best we can hope for

« For location, mean has 0% breakdown point (one out of n), median has 50%.

Estimators of scale

e We can similarly consider estimators of scale o
e Common estimators:

— Sample standard deviation (sd in R)

— Mean absolute deviation from mean

— Median absolute deviation (MAD) from median (mad in R)
— Inter-quartile range (IQR in R)

e May need scaling for normal distribution:

T1 <- sd

T2 <- function(x, ...) mean(abs(x - mean(x))) / sqrt(2/pi)

T3 <- function(x, ...) median(abs(x - median(x))) / sqrt(qchisq(0.5, df = 1))
T4 <- function(x, ...) IQR(x) / diff(gnorm(c(0.25, 0.75)))

Relative efficiency for estimators of scale

rdist <- function(n) rnorm(n, mean = 5) # Normal
var.Tl <- sampling.variance(T1l, rdist, n = 5000)
var.T2 <- sampling.variance(T2, rdist, n = 5000)
var.T3 <- sampling.variance(T3, rdist, n = 5000)

var.T4 <- sampling.variance(T4, rdist, n = 5000)
round (100 * var.T1 / c(mean.abs.dev = var.T2, median.abs.dev = var.T3, iqr = var.T4))

mean.abs.dev median.abs.dev iqr
89 38 38

rdist <- function(n) rnorm(n, mean = 5, sd = ifelse(runif(n) < 0.01, 3, 1)) # 1/ Contamination
var.T1l <- sampling.variance(T1l, rdist, n = 5000)

var.T2 <- sampling.variance(T2, rdist, n = 5000)
var.T3 <- sampling.variance(T3, rdist, n = 5000)
var.T4 <- sampling.variance(T4, rdist, n = 5000)
round (100 * var.T1 / c(mean.abs.dev = var.T2, median.abs.dev = var.T3, iqr = var.T4))

mean.abs.dev median.abs.dev iqr
152 70 70

M-estimators
o Most common location estimators can be expressed as M-estimators (MLE-like)

T(x1,...,2n) = argmelrl;p(xi, 0)

o For MLE, p(x;,0) is the negative log-density, but p need not correspond to a likelihood

If ¢(2;,0) = & p(;,0) exists, then T is the solution to the score equation

n

Z¢($i, 0) =0

i=1
o We usually consider loss functions of the form p(z —)

o Corresponding 1 function is ¢ (xz — 0) = p’(x — 6) (disregarding change in sign)
e This easily generalizes to vector parameters

e Mean

ple —0) = (x—0) y(a—0)=2~0)
o Median (ignoring non-differentiability of |z| at 0)

plez—0) =lz—0], ¢(x—0)=sign(z—0)

o Trimmed mean (for some ¢, ignoring dependence of ¢ on the data)

c otherwise

{@;-9)2 lz—6|<c

2x—0) |lz—0]<c

0 otherwise

o Huber loss (similar to Winsorized trimmed mean)

onofirv, | ease

¢(2lx — 0] —¢) otherwise

—2c r—0< —c
Ye—0)=<2(z—-0) |[z—0<c
2¢ r—0>c

Can be thought of compromise between mean (squared error) and median (absolute error)

o Estimator reduces to mean as ¢ — oo, median as ¢ — 0
e p is differentiable everywhere

e FExercise: What do plots of p and 9 look like?

Influence function revisited

xx <- seq(-3, 3, 0.01)
sensitivity <-
data.frame(xx = xx,

mean = 2 * XX,
median = sign(xx),
tmean = ifelse(abs(xx) < 1, 2 * xx, 0),
huber = ifelse(abs(xx) < 1, 2 * xx, 2 * sign(xx)))

xyplot(mean + median + tmean + huber ~ xx, sensitivity, type = "1", outer = TRUE,

xlab = "x", ylab = expression(psi(x)), grid = TRUE)

2 2 1 0 1 2 3 2 2 1 0 1 2 3
1 1 Il 1 1 Il 1 1 1 1 L 1 1 1 L 1 1 1 L 1 Il 1 L 1
mean median tmean huber
6 - -
//
i P L
4 -
o
g
7 e 1 S T
—_ ~ ~ ~
0 L A g - o
> - s e
r yd //
- L - |
2 o
//
4 - =
//
-
P L
T T T T T T T T T T T T T T T T T T T T
3 2 1 0 1 2 3 3 2 1 0 1 2 3

o Turns out that the corresponding influence functions have the same shape (but will not discuss why)

M-estimation: general approach for location

o Choose function ¢(x — 6)
e Find T by solving (for 6)

o We can rewrite this as

- (xl—ﬁ ‘ _
; w 0) 0) =0

o This suggests an iterative approach using weighted least squares in each step:

1. Start with initial estimate &

2. Obtain current weights w; = 2@=%

(zi—0)
3. Obtain new estimate of # by solving >, w;i(z; —0) =0 = 0= Do wiri/ Y w;

o Of course, a black-box numerical optimizer (e.g., optim()) can also be used instead

Common robust loss function derivatives

Absolute deviation ¢ (x) = sign(x)

o Huber (same as Winsorized trimmed mean)

—c x<¢c
Yr)=<qz |z[]<c
C xTr > c

e Trimmed mean

|z <c

T
(@) = {0 otherwise

Tukey bisquare

3
2 R?[1-(1-(z/R)?*)]" |z|<R
z) =z [1— (x/R)? for p(x) = -
V(@) [(@/R) }+ Pe) {R2 otherwise
o For the last three, choice of scale (¢, R) is a tuning parameter
xx <- seq(-2, 2, 0.01)
c < 1; R<- 1
psi <-
data.frame(xx = xx,
median = sign(xx),
huber = ifelse(abs(xx) <= c, xx, ¢ * sign(xx)),
tmean = ifelse(abs(xx) <= c, xx, 0),
bisquare = xx * pmax(0, (1 - (xx/R)"2))72)
xyplot(median + huber + tmean + bisquare ~ xx, psi, type = "1", outer = TRUE,
ylab = expression(psi(x)), xlab = "x", grid = TRUE)
I me(lilan ! ‘ ‘ hu;)ar ‘ ‘ I lméan) ‘ blsgluare
0 /7 A
0.5 - / /
g / —/ L \/
/ / N4
-0.5 - /
_ /

e The last two functions are examples of “redescending” influence functions

e Corresponding loss function p becomes flat beyond a threshold

o In effect, beyond this threshold, extreme observations are completely discounted

o In other words, they have zero/constant contribution to the total loss

o However, this does make the objective function (to be minimized) non-convex

e Let us see what the objective function looks like for various loss functions

huber.loss <- function(x, c = 1) ifelse(abs(x) < c, x72, ¢ * (2 * abs(x) - c))
bisquare.loss <- function(x, R = 1) ifelse(abs(x) < R, R72 * (1 - (1 - (x/R)"2))73, R™2)
x <- rnorm(10)

y <= c(x, 10.1, 10.2, 10.3) # add three extreme observations to x

t <- seq(-5, 15, 0.01)

Example: loss functions

SSE <- sapply(t, function(theta) sum((x - theta) 2))
SAD <- sapply(t, function(theta) sum(abs(x - theta)))
SH <- sapply(t, function(theta) sum(huber.loss(x - theta, c = 1)))
SBS <- sapply(t, function(theta) sum(bisquare.loss(x - theta, R = 1)))
xyplot(SSE + SAD + SH + SBS ~ t, type = "1", outer = TRUE,
ylab = "Loss", xlab = "theta", grid = TRUE, scales = list(y = "free")) +
layer(panel.rug(x = .GlobalEnv$x))

1 1 1 1 1 1 1 Il 1 1 1
SSE SAD SH SBS
/ 8 &1 2710 [
a / o)
E /e i T
1] . { |
5 é- . © - \‘ ‘|‘
R g 1|
8 |
3 < ql‘
S~ L V
°] _IIH — - \IHH © |}HH - - - - \}IHl
5 0 5 10 15

SSE <- sapply(t, function(theta) sum((y - theta)~2))
SAD <- sapply(t, function(theta) sum(abs(y - theta)))
SH <- sapply(t, function(theta) sum(huber.loss(y - theta, ¢ = 1)))
SBS <- sapply(t, function(theta) sum(bisquare.loss(y - theta, R = 1)))
xyplot(SSE + SAD + SH + SBS ~ t, type = "1", outer = TRUE,
ylab = "Loss", xlab = "theta", grid = TRUE, scales = list(y = "free")) +

layer(panel.rug(x = .GlobalEnv$y))

I
.

L
.
r

1500 2000
|
\\
1

Loss

500 1000
1 1 I
50 100
I I
//
100 150 200 250 300
| 1 1
//
8 10
1 I
(

theta

e For non-convex loss functions, important to have good starting estimates

Other practical considerations

e Tuning parameters are arbitrary
o Natural to express tuning parameter in terms of scale o (unknown) — scale invariance
o Common to take & to be a multiple of the median absolute deviation (MAD) from the median

e Tuning parameter can then be chosen to achieve some target asymptotic relative efficiency under
normality

o For example, Huber loss function with ¢ = 1.3450 would give 95% ARE if o was known

Standard errors

o M-estimators are consistent and asymptotically normal with variance 702 /n, where

_ BuA(x)
[E(y'(X))]?
o Could be estimated by replacing X by fitted (standardized) residuals

%Zi ¢2(€i/a’)
[} 229/ (ei/8)]?

’f':

e Not necessarily reliable in small samples

M-estimation for regression

e The ideas described above translate directly to linear regression

e Instead of minimizing least squared errors, minimize

Z p(yi — XiTﬂ)
i=1

 Simple estimation approach: Iteratively (Re)Weighted Least Squares (IWLS / IRLS) with weights

. xT3®
WY — ¥ (yl x; B) _ l/f(ez('t)) >0
' yi —x[6O eV

(3

o Implemented in the r1m() function (in the MASS package) among others
o By default, scale is estimated using MAD of residuals (updated for each iteration)

M-estimation example: Bisquare
library (MASS)

fm <- rlm(weight ~ height, data = Davis, psi = psi.bisquare)
xyplot(weight ~ height, Davis, type = c("p", "r"), grid = TRUE) + layer(panel.abline(fm, col = "red"))

10

welght

M-estimation example: Huber

library (MASS)

height

fm <- rlm(weight ~ height, data = Davis, psi = psi.huber)

xyplot(weight ~ height, Davis, type

c(llpll’ Ilrll

, grid = TRUE)

+ layer(panel.abline(fm,

col "red"))

welght

helght

M-estimation example: Least absolute deviation (using optim())

L <- function(p) with(Davis, sum(abs(weight - p[1] - p[2] * height)))

bhat <- optim(coef (fm), L)$par
xyplot(weight ~ height, Davis, type = c("p",

"r"), grid = TRUE) + layer(panel.abline(bhat, col = "red")

11

welght

height

M-estimation example: multiple regression

fml <- lm(prestige ~ income + education, data = Duncan, na.action = na.exclude)

fm2 <- rlm(prestige ~ income + education, data = Duncan, psi = psi.bisquare, na.action = na.exclude)
fm3 <- rlm(prestige ~ income + education, data = Duncan, psi = psi.huber, na.action = na.exclude)
coefficients (summary(fml))

Estimate Std. Error t value Pr(>ltl)
(Intercept) -6.0646629 4.27194117 -1.419650 1.630896e-01
income 0.5987328 0.11966735 5.003310 1.053184e-05

education 0.5458339 0.09825264 5.555412 1.727192e-06
coefficients (summary(fm2))

Value Std. Error t value
(Intercept) -7.4121192 3.87702087 -1.911808
income 0.7902166 0.10860468 7.276082
education 0.4185775 0.08916966 4.694169

coefficients (summary(fm3))

Value Std. Error t value
(Intercept) -7.1107028 3.88131509 -1.832034
income 0.7014493 0.10872497 6.451593
education 0.4854390 0.08926842 5.437970

M-estimation example: weights as diagnostics

o ITWLS weights give an alternative measure of influence

wts <- fm2%w # bisquare
id <- which(wts < 0.6)
xyplot(wts ~ seq_along(wts)) +
layer(panel.text(x[id], y[id], labels = rownames(Duncan) [id], pos = 4, col = "grey50"))

12

08 - o ° F

0.6 -
© contractor o machinist

wis

oInsurance.agent
0.4 4 -
o conductor

© reporter

0.2+ [~

0.0 4 ominister L

seq_along(wts)

o IWLS weights give an alternative measure of influence

wts <- fm3$w # Huber
id <- which(wts < 0.6)
xyplot(wts ~ seq_along(wts)) +
layer(panel.text(x[id], y[id], labels = rownames(Duncan) [id], pos = 4, col = "grey50"))

1.0 4 o (=] o (=] o o o =] [e] o] e =] o
o
)
0.8 4 -
2 o
=
o
0.6 4 -
o machinist
o e Soniactor
o conductor oInsurance.agent
o reporter
0.4 i
ominister
T T J i '
0 10 20 30 40

seq_along(wis)

Does M-estimation ensure high breakdown point?

o Example: Number of phone calls (in millions) in Belgium
e Data available in the MASS package
o For 1964-1969, length of calls (in minutes) had been recorded instead of number

13

data(phones, package = "MASS")

fm2 <- rlm(calls ~ year, data = phones, psi = psi.huber, maxit = 100)

fm3 <- rlm(calls ~ year, data = phones, psi = psi.bisquare)

xyplot(calls ~ year, data = phones, grid = TRUE, type = c("p", "r"), pch = 16) +
layer(panel.abline(fm2, col = "red")) + layer(panel.abline(fm3, col = "black"))

200 -

year

An artificial example

x <- c(1:10, 18)

y <= c(1:10, 18 + 10)

fm.h <- rlm(y ~ x, psi = psi.huber, maxit = 100)

fm.bs <- rlm(y ~ x, psi = psi.bisquare)

xyplot(y ~ x, pch = 16) + layer(panel.abline(fm.h, col = "red")) + layer(panel.abline(fm.bs, col = "bla

25 - ~

20 r

14

x <= c(1:10, 19)
y <= c(1:10, 19 + 10)
fm.h <- rlm(y ~ x, psi = psi.huber, maxit = 200)

fm.bs <- rlm(y ~ x, psi = psi.bisquare, maxit =

200)
xyplot(y ~ x, pch = 16) + layer(panel.abline(fm.h,

col = "red")) + layer(panel.abline(fm.bs, col = "bla

25 -

20

x <= c(1:10, 20)
y <= c(1:10, 20 + 10)
fm.h <- rlm(y ~ x, psi = psi.huber, maxit

100)
fm.bs <- rlm(y ~ x, psi = psi.bisquare)
xyplot(y ~ x, pch = 16) + layer(panel.abline(fm.h,

col = "red")) + layer(panel.abline(fm.bs, col = "bla

25 -

20 o

15

Why does this happen?

M-estimation approach can ensure high breakdown point for univariate location estimation
This is not automatically true for regression

Increasing loss function (LAD, Huber): sufficiently high-leverage outlier can always attract optimum
line

Loss functions that flatten out (Bisquare): result depends on choice of ¢ (which is estimated)

In general, no guarantee that M-estimation approach has bounded influence in regression

Resistant regression

Resistant alternatives exist, but are much more difficult to fit computationally
We will mention two examples: LMS and LTS regression

Least Median of Squares (LMS) regression: Find B as

arg mﬂinmedian {(yl —xI'p)%i=1,... ,n}

More generally, LQS minimizes some quantile of the squared errors

Least Trimmed Squares (LTS) regression: Find 3 as

q
arg min > i —x!'B)E,
=1

Here the objective is the sum of the ¢ smallest error terms

The recommended value of ¢ is [(n+p+1)/2]

Resistant regression: LMS and LTS

Both LMS/LQS and LTS have high resistance (breakdown point) but low efficiency
LMS/LQS has lower efficiency than LTS, and there is no reason to prefer LMS over LTS
Computation of both are difficult

The MASS package provides one implementation in lmsreg() and ltsreg()

Example: Number of phone calls (in millions) in Belgium

data(phones, package = "MASS")

fm2
fm3

<- lmsreg(calls ~ year, data = phones)
<- ltsreg(calls ~ year, data = phones)

xyplot(calls ~ year, data = phones, grid = TRUE, type = c("p", "r"), pch = 16) +

layer(panel.abline(fm2, col = "red")) + layer(panel.abline(fm3, col = "black"))

16

calls

200

year

Efficiency comparison: simulation study (normal)

simulateCoefN <- function(n)

{

}

x <- runif(n, 0, 1)

y <= x + 0.5 * rnorm(n)

fml <- Im(y ~ x)

fm2 <- rlm(y ~ x, psi = psi.bisquare)

fm3 <- ltsreg(y ~ x)

data.frame(rbind(coef (fm1), coef(fm2), coef(fm3)),
model = c("LSE", "Bisquare", "LTS"))

sim.coefsn <- replicate(1000, simulateCoefN(100), simplify = FALSE)
sim.coefsn.df <- do.call(rbind, sim.coefsn)
names (sim.coefsn.df) <- c("alpha.hat", "beta.hat", "model")

xyplot(beta.hat ~ alpha.hat | model, data = sim.coefsn.df, grid = TRUE)

17

0.5 0.0 0.5

Il L
Bisquare LSE LTS

25

2.0

beta.hat

0.5

0.0

0.5 -

0.5 0.0 0.5 0.5 0.0 05
alpha.hat

Efficiency comparison: simulation study (t3)

simulateCoefT <- function(n)

{
x <- runif(n, 0, 1)
y <-x + 0.5 % rt(n, df = 3)
fml <- Im(y ~ x)
fm2 <- rlm(y ~ x, psi = psi.bisquare)
fm3 <- ltsreg(y ~ x)
data.frame(rbind(coef (fml1), coef(fm2), coef(fm3)),
model = c("LSE", "Bisquare", "LTS"))
}

sim.coefst <- replicate(1000, simulateCoefT(100), simplify = FALSE)
sim.coefst.df <- do.call(rbind, sim.coefst)
names (sim.coefst.df) <- c("alpha.hat", "beta.hat", "model")

xyplot(beta.hat ~ alpha.hat | model, data = sim.coefst.df, grid = TRUE)

18

-0.5 0.0 0.5 1.0

Il 1
Bisquare LSE LTS

2.0 4

beta.hat

0.5

0.0

0.5 -

alpha.hat

MM-estimation

e M-estimation with Bisquare error has reasonable efficiency

e Should have high breakdown point if scale is “correctly” estimated

o High breakdown potentially fails if initial scale estimate is too high

e MM-estimation tries to ensure high breakdown point with high efficiency of Bisquare loss
« First step is to obtain a better scale estimate using S-estimation (will not discuss)

o This is followed by M-estimation with Bisquare loss function calibrated by estimated scale

e Implemented in rim() with method = "MM"

Efficiency comparison: simulation study (normal)

simulateCoefMM <- function(n)

{
X <= runif(n, 0, 1)
y <= x + 0.5 * rnorm(n)
fml <- 1m(y ~ x)
fm2 <- rlm(y ~ x, method = "MM")
fm3 <- ltsreg(y ~ x)
data.frame(rbind(coef (fm1), coef(fm2), coef(fm3)),
model = c("LSE", "MM", "LTS"))
}

sim.coefsmm <- replicate(1000, simulateCoefMM(100), simplify = FALSE)
sim.coefsmm.df <- do.call(rbind, sim.coefsmm)
names (sim.coefsmm.df) <- c("alpha.hat", "beta.hat", "model")

xyplot(beta.hat ~ alpha.hat | model, data = sim.coefsmm.df, grid = TRUE)

19

https://www.researchgate.net/publication/243632692_Robust_Regression_by_Means_of_S-Estimators

2.5

2.0 A

beta.hat

0.5 o

0.0 o

LSE

x <- runif(n, 0, 1)

y <- x + 0.5 * rt(n, df

Im(y ~ x)

rlm(y ~ x, method = "MM")

ltsreg(y ~ x)

data.frame(rbind(coef (fml1), coef(fm2), coef(fm3)),
model = c("LSE", "MM", "LTS"))

fml <-
fm2 <-
fm3 <-

0.0

Efficiency comparison: simulation study (t3)

simulateCoefMMt <- function(n)

sim.coefsmmt <- replicate(1000, simulateCoefMMt(100), simplify = FALSE)
sim.coefsmmt.df <- do.call(rbind, sim.coefsmmt)
names (sim.coefsmmt.df) <- c("alpha.hat", "beta.hat", "model")

xyplot(beta.hat ~ alpha.hat | model, data

sim.coefsmmt.df, grid = TRUE)

25 r

2.0 4

beta.hat
s
1

0.5

0.0 4

0.5 - n
T T T T T T T T T
05 0.0 05 0.5 0.0 05

alpha.hat

Artificial example revisited

x <= c(1:10, 20)

y <= ¢(1:10 + rnorm(10, sd = 0.00001), 20 + 10)

fm.mm <- rlm(y ~ x, method = "MM")

fm.bs <- rlm(y ~ x, psi = psi.bisquare)

xyplot(y ~ x, pch = 16) + layer(panel.abline(fm.mm, col = "red")) + layer(panel.abline(fm.bs, col = "bl

25 = -

Software implementations in R

e The MASS package implements basic robust regression approaches

21

e For more comprehensive implementations, see the Robust Statistical Methods Task View on CRAN

22

https://cran.r-project.org/web/views/Robust.html

	Motivation
	Motivation: Location and scale
	Robust estimation of location
	Relative efficiency
	Asymptotic relative efficiency
	Relative efficiency for heavier tails
	Winsorized trimmed mean
	Relative efficiency for contamination
	Sensitivity / influence function
	Breakdown point
	Estimators of scale
	Relative efficiency for estimators of scale
	M-estimators
	Influence function revisited
	M-estimation: general approach for location
	Common robust loss function derivatives
	Example: loss functions
	Other practical considerations
	Standard errors
	M-estimation for regression
	M-estimation example: Bisquare
	M-estimation example: Huber
	M-estimation example: Least absolute deviation (using optim())
	M-estimation example: multiple regression
	M-estimation example: weights as diagnostics
	Does M-estimation ensure high breakdown point?
	An artificial example
	Why does this happen?
	Resistant regression
	Resistant regression: LMS and LTS
	Example: Number of phone calls (in millions) in Belgium
	Efficiency comparison: simulation study (normal)
	Efficiency comparison: simulation study (t_3)
	MM-estimation
	Efficiency comparison: simulation study (normal)
	Efficiency comparison: simulation study (t_3)
	Artificial example revisited
	Software implementations in R

