
Diagnosing Systematic Model Violations

Deepayan Sarkar

Violation of assumptions in a linear regression model

• Systematic violations

– Non-normality of errors
– Nonconstant error variance
– Lack of fit (nonlinearity)
– (Autocorrelation in errors — later)

Non-normality of errors

• Why do we care? LSE is Best Linear Unbiased Estimator under assumptions of

– linearity
– constant variance
– uncorrelated errors

• Even if LSE is valid, it may not be efficient, especially with heavy tailed errors (outliers)

• LSE estimates conditional mean f(x) = E(Y |X = x)

– Justified when distribution of Y |X = x is symmetric

– May not be appropriate measure of central tendency if distribution of Y |X = x is skewed

• Multimodal error distribution usually indicates presense of latent covariate

Graphical techniques

• Although formal tests exist, we will focus on graphical techniques

• More useful in practice because they can pinpoint nature of violation

SLID <- na.omit(SLID[-5])
fm <- lm(wages ~ education + age + sex, data = SLID) # no interaction for now
e <- rstudent(fm) # should have t-distribution (not independent)
plot(density(e, bw = 0.1))
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qqmath(e, distribution = function(p) qt(p, df = fm$df.residual - 1),
grid = TRUE, aspect = "iso")

• But is there a reference to compare to?

Confidence bounds for QQ-plots using Parametric Bootstrap

• Dependence structure in Studentized residuals can be replicated using simulation:

– simulate y ∼ N(Xβ̂, σ̂2I)
– calculate Studentized residuals for simulated response
– provides replicates from null distribution (free of β and σ2)

• Empirical (simulation) distribution of i-th order statistic gives pointwise interval

yhat <- fitted(fm)
sigma.hat <- summary(fm)$sigma
n <- length(yhat)
sime <- function()
{
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SLID$ysim <- rnorm(n, mean = yhat, sd = sigma.hat)
sort(rstudent(lm(ysim ~ education + age + sex, data = SLID)))

}
esim <- replicate(5000, sime())
qsim <- apply(esim, 1, quantile, probs = c(0.005, 0.995)) # 99% pointwise

xyplot(sort(rstudent(fm)) ~ qt(ppoints(n), df = fm$df.residual - 1), grid = TRUE, aspect = "iso") +
layer_(panel.polygon(c(x, rev(x)), c(qsim[1,], rev(qsim[2,])), col = "grey", border = NA))

How can we address non-Normality?

• Sometimes, a more general model may be appropriate (e.g., GLMs, to be studied later)

• Often, transforming the response can prove useful

• E.g., variance stabilizing transformations (depending on distributions)

– √y for Poisson
– sin−1(√y) for Binomial

• log y for positive-valued data (especially economic data)

• Logit transform log(p/(1− p)) for proportions

Power transformations

• Generally useful family: power transformations

• Box-Cox family (remains increasing for negative powers, incorporates log as limit)

gλ(y) =
{
yλ−1
λ λ 6= 0

log y λ = 0

bc <- function(x, lambda) { if (lambda == 0) log(x) else (x^lambda - 1) / lambda }
y <- rlnorm(500)
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densityplot(~ y + bc(y, 1/3) + bc(y, 1/2) + bc(y, 0) + bc(y, -1/2) + bc(y, -1),
plot.points = FALSE, outer = TRUE, xlab = NULL, scales = list(x = "free"))

x <- runif(500, -3, 3)
y <- rlnorm(500, mean = x, sd = 1)
xyplot(y + bc(y, 1/3) + bc(y, 1/2) + bc(y, 0) + bc(y, -1/2) + bc(y, -1) ~ x,

plot.points = FALSE, outer = TRUE, xlab = NULL, scales = list(y = "free"))

• Generally useful family: power transformations

• Box-Cox family (remains increasing for negative powers, incorporates log as limit)

gλ(y) =
{
yλ−1
λ λ 6= 0

log y λ = 0
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• λ can be “estimated” using a formal approach (will discuss later)

• More common to guess based on context

• In this case, error distribution is right-skewed, so could try log, square root, cube root, etc.

• Important to note that (non-linear) transformations affect many aspects together:

– Distribution of errors
– Linearity
– Nonconstant error variance

Modeling transformed data

e.2 <- rstudent(fm.2 <- lm(bc(wages, 1/2) ~ education + age + sex, data = SLID))
e.3 <- rstudent(fm.3 <- lm(bc(wages, 1/3) ~ education + age + sex, data = SLID))
e.log <- rstudent(fm.log <- lm(log(wages) ~ education + age + sex, data = SLID))
densityplot(~ e + e.2 + e.3 + e.log, bw = 0.1, plot.points = FALSE, outer = TRUE,

xlab = NULL, scales = list(x = "free"))

xyplot(sort(rstudent(fm)) + sort(rstudent(fm.2)) + sort(rstudent(fm.3)) +
sort(rstudent(fm.log)) ~ qt(ppoints(n), df = fm$df.residual - 1),
outer = TRUE, grid = TRUE, aspect = "iso", ylab = "Studentized residuals") +

layer_(panel.polygon(c(x, rev(x)), c(qsim[1,], rev(qsim[2,])), col = "grey", border = NA))
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The same confidence bounds work for all cases! (exercise)

Formal tests: Kolmogorov-Smirnoff

ks.test(e, pnorm)

One-sample Kolmogorov-Smirnov test

data: e
D = 0.063411, p-value = 1.91e-14
alternative hypothesis: two-sided

ks.test(e.log, pnorm)

One-sample Kolmogorov-Smirnov test

data: e.log
D = 0.025792, p-value = 0.009588
alternative hypothesis: two-sided

ks.test(e.3, pnorm)

One-sample Kolmogorov-Smirnov test

data: e.3
D = 0.015434, p-value = 0.2946
alternative hypothesis: two-sided

Formal tests: Shapiro-Wilk test

shapiro.test(e)

Shapiro-Wilk normality test
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data: e
W = 0.95974, p-value < 2.2e-16

shapiro.test(e.log)

Shapiro-Wilk normality test

data: e.log
W = 0.99431, p-value = 1.844e-11

shapiro.test(e.3)

Shapiro-Wilk normality test

data: e.3
W = 0.99662, p-value = 7.311e-08

More details: Kolmogorov-Smirnoff test

• Null hypothesis: X1, . . . , Xn ∼ i.i.d. F0 (where F0 is a completely specified absolutely continuous
CDF)

• Empirical CDF

F̂n(x) = 1
n

∑
i

1{Xi ≤ x}

• Test statistic:

T (X1, . . . , Xn) = sup
x∈R
|F̂n(x)− F0(x)|

• Note that
– null distribution of T does not depend on F0 (use Ui = F0(Xi) ∼ i.i.d. U(0, 1) instead)
– Intuitively, large value of T indicates departure from null, so reject when T is large
– p-value can be approximated using simulation
– Can also be estimated conservatively using the DKW inequality

More details: Shapiro-Wilk test

• Null hypothesis: X1, . . . , Xn ∼ i.i.d. N(µ, σ2) for some µ, σ2

• Test statistic

W =
(
∑
i aiX(i))2∑

i(Xi − X̄)2

• where

a = mTV√
mTV−1V−1m

• with m and V the mean vector and variance-covariance matrix of (Z(1), . . . , Z(n))T , where Z1, . . . , Zn ∼
i.i.d. N(0, 1)
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• The motivation (and implementation) for this test is slightly complicated, but the basic idea is that∑
i aiX(i) estimates the slope of the Normal Q-Q plot (which is an estimate of σ). See Shapiro and

Wilk, 1965 for details.

Summary

• log, square root, cube root all reasonable (graphically)

• Formal tests are sometimes too sensitive (especially for large data)

• Formal tests useful, but should not be taken too seriously

Nonconstant error variance

• No obvious way to detect unless there is a systematic pattern

• Typical patterns:

– V (Y |X = x) depends on E(Y |X = x)

– V (Y |X = x) depends on x

• Graphical methods: plot residuals against fitted values / covariates

Plotting Residuals vs fitted values

• Residuals (y− ŷ) are uncorrelated with fitted values (ŷ) (but not with y)

• Residuals have unequal variances, so preferable to plot Studentized residuals

• If true error variances depend on E(Y |X = x), we expect to see the same dependence in plot

• More useful to plot absolute Studentized residuals (|ti|) along with a non-parametric smoother

Studentized residuals vs fitted values

fm <- lm(wages ~ education + age + sex, data = SLID)
xyplot(rstudent(fm) ~ fitted(fm), type = c("p", "smooth"), grid = TRUE,

col.line = "black", abline = list(h = 0, col = "grey50"))
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Absolute Studentized residuals vs fitted values

xyplot(abs(rstudent(fm)) ~ fitted(fm), type = c("p", "smooth"), grid = TRUE, col.line = "black")

Spread-level plots

• Suppose (most) fitted values are positive

• We can plot both absolute residuals and fitted values in log scales

• A linear relationship in this plot suggests a power transformation
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xyplot(abs(rstudent(fm)) ~ fitted(fm), type = c("p", "r", "smooth"), grid = TRUE,
col.line = "black", scales = list(log = TRUE, equispaced.log = FALSE))

Spread-level plots and power transformations

• Let µ = E(Y ) and suppose V (Y ) = h(µ) = (aµb)2

• What is the variance stabilizing transformation?

• Empirical rule: g(Y ) has approximately constant variance where

g(y) =
∫

C√
h(y)

dy = C

∫
y−bdy = Cy1−b

• On the other hand, errors ε = Y − µ satisfy

– E|ε| ∝ aµb
– logE|ε| ≈ log c+ b logµ

• Thus b can be estimated from spread-level plot

lm(log(abs(rstudent(fm))) ~ log(fitted(fm)))

Call:
lm(formula = log(abs(rstudent(fm))) ~ log(fitted(fm)))

Coefficients:
(Intercept) log(fitted(fm))

-3.284 0.948

• Suggested power transform Y (1−b) ≈ Y 0.05 ≈ log Y
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Residuals vs fitted values (after transforming)

fm <- lm(log(wages) ~ education + age + sex, data = SLID)
xyplot(rstudent(fm) ~ fitted(fm), type = c("p", "smooth"), grid = TRUE,

col.line = "black", abline = list(h = 0, col = "grey50"))

xyplot(abs(rstudent(fm)) ~ fitted(fm), type = c("p", "smooth"), grid = TRUE, col.line = "black")

Spread-level plot (after transforming)

xyplot(abs(rstudent(fm)) ~ fitted(fm), type = c("p", "r", "smooth"), grid = TRUE,
col.line = "black", scales = list(log = TRUE, equispaced.log = FALSE))
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Residuals vs covariates

fm <- lm(log(wages) ~ education + age + sex, data = SLID)
xyplot(abs(rstudent(fm)) ~ education + age, data = SLID, type = c("p", "smooth"),

grid = TRUE, col.line = "black", outer = TRUE, xlab = "Covariate",
scales = list(x = "free"))

Weighted least-squares estimation

• Suppose we can find known weights wi such that E(yi|xi) = xTi β and V (yi|xi) = σ2/w2
i

• Let W be a diagonal matrix with entries w2
i and Σ = σ2W−1. Then
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y ∼ N(Xβ,Σ)

• The likelihood function is given by

L(β, σ2) = 1
(2π)n/2|Σ|1/2 exp

[
−1

2(y−Xβ)TΣ−1(y−Xβ)
]

(1)

= 1
(2πσ2)n/2|W|1/2 exp

[
− 1

2σ2

n∑
i=1

w2
i (yi − xTi β)2

]
(2)

• Maximum likelihood estimators are easily seen (exercise) to be given by

β̂ = (XTWX)−1XTWy , σ̂2 = 1
n

∑
w2
i (yi − xTi β̂)2

• In R, lm() supports weighted least squares through the weights argument

Effect of non-constant variance on OLS estimates

• Let E(y) = Xβ and V (y) = Σ = diag{σ2
1 , . . . , σ

2
n}

• Suppose we ignore non-constant variance and estimate β using OLS.

• β̂ is still unbiased:

E(β̂) = (XTX)−1XTE(y) = (XTX)−1XTXβ = β

• Variance is given by

V (β̂) = (XTX)−1XTΣX(XTX)−1

• For a linear function

V (`T β̂) = `T (XTX)−1XTΣX(XTX)−1`

• WLS may not be worth the effort if more or less same as OLS standard error

Detecting need for addressing non-constant variance

• How can we quickly assess need for WLS?

• Suppose we don’t know structural form of Σ (e.g., which covariates affect variance)

• We still know that E(ε2
i ) = σ2

i

• Natural estimate of σ2
i after fitting OLS model: e2

i or e2
i(−i), giving Σ̂

• This gives White’s “sandwich estimator”

V̂ (β̂) = (XTX)−1XT Σ̂X(XTX)−1

• White (1980) shows that this is consistent with σ̂2
i = e2

i

• Long and Erwin (2000) show that σ̂2
i = e2

i(−i) performs better in small samples
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How does this help?

• We have two alternative estimates of V (β̂): the OLS and the sandwich estimator

• Can obtain corresponding standard errors for `T β̂ (in particular for t-tests for βj-s)

• General strategy:

– If the standard errors using the two methods are substantially similar, OLS is sufficient
– Otherwise, need to address non-constant variance
– This does not suggest any particular remedy: usual approach is to try transformations

• Example: SLID data

library(car) # for hccm
fm <- lm(log(wages) ~ education + age + sex, data = SLID)
summary(fm) # Q: does the standard errors of estimated coefficients change?

Call:
lm(formula = log(wages) ~ education + age + sex, data = SLID)

Residuals:
Min 1Q Median 3Q Max

-2.36252 -0.27716 0.01428 0.28625 1.56588

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.1168632 0.0385480 28.97 <2e-16 ***
education 0.0552139 0.0021891 25.22 <2e-16 ***
age 0.0176334 0.0005476 32.20 <2e-16 ***
sexMale 0.2244032 0.0132238 16.97 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.4187 on 4010 degrees of freedom
Multiple R-squared: 0.3094, Adjusted R-squared: 0.3089
F-statistic: 598.9 on 3 and 4010 DF, p-value: < 2.2e-16

• Example: SLID data

vcov(fm)

(Intercept) education age sexMale
(Intercept) 1.485945e-03 -6.903578e-05 -1.278690e-05 -9.428603e-05
education -6.903578e-05 4.792018e-06 1.275037e-07 7.454834e-07
age -1.278690e-05 1.275037e-07 2.999080e-07 -7.403851e-08
sexMale -9.428603e-05 7.454834e-07 -7.403851e-08 1.748681e-04

sqrt(diag(vcov(fm)))

(Intercept) education age sexMale
0.0385479539 0.0021890678 0.0005476385 0.0132237691

• Example: SLID data

hccm(fm, type = "hc0") # uses residuals

(Intercept) education age sexMale
(Intercept) 1.493908e-03 -7.018477e-05 -1.374008e-05 -7.108659e-05
education -7.018477e-05 4.946819e-06 1.370821e-07 6.523566e-07
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age -1.374008e-05 1.370821e-07 3.420460e-07 -7.115594e-07
sexMale -7.108659e-05 6.523566e-07 -7.115594e-07 1.750330e-04

sqrt(diag(hccm(fm, type = "hc0")))

(Intercept) education age sexMale
0.038651104 0.002224144 0.000584847 0.013230005

• Example: SLID data

hccm(fm, type = "hc3") # uses deleted residuals

(Intercept) education age sexMale
(Intercept) 1.499263e-03 -7.045519e-05 -1.378453e-05 -7.136218e-05
education -7.045519e-05 4.964996e-06 1.377771e-07 6.614334e-07
age -1.378453e-05 1.377771e-07 3.430706e-07 -7.121512e-07
sexMale -7.136218e-05 6.614334e-07 -7.121512e-07 1.753998e-04

sqrt(diag(hccm(fm, type = "hc3")))

(Intercept) education age sexMale
0.0387203216 0.0022282270 0.0005857223 0.0132438591

Formal tests for nonconstant variance

• Model σi-s are not constant, but have the form

σ2
i = V (εi) = g(γ0 + γ1Zi1 + · · ·+ γpZip)

• Here Zij-s are known (possibly same as Xij-s)

• In other words, variance is a function of a linear combination of known covariates

• Null hypothesis: γ1 = · · · = γp = 0

• Can be “tested” using an auxiliary regression with “response”

ui = e2
i

1
n

∑
k e

2
k

= e2
i

σ̂2
MLE

• Breusch-Pagan test: Regress ui-s on Zij-s:

ui = η0 + η1Zi1 + · · ·+ ηpZip + ωi

• Test statistic (with ûi fitted values from the regression):

S2
0 = 1

2
∑
i

(ûi − ū)2

• Under H0, S2
0 has an asymptotic χ2 distribution with p degrees of freedom (Breusch and Pagan, 1979)

• Choice of Zij-s depends on suspected pattern of heteroscedasticity; could be all covariates

• Special case (Cook and Weisberg, 1983): more specific form of σ2
i

σ2
i = η0 + η1(xTi β) + ωi

• Test by fitting the model
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ui = η0 + η1ŷi + ωi

• Test for H0 : η1 = 0 (one degree of freedom)

• More powerful test when heteroscedasticity follows this pattern

Formal tests for nonconstant variance: example

• SLID data, wages as response

fm <- lm(wages ~ education + age + sex, data = SLID)
ncvTest(fm) # Cook and Weisberg's 1 d.f. test

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 310.6546 Df = 1 p = 1.572642e-69

ncvTest(fm, var.formula = ~ education + age) # Breusch-Pagan test

Non-constant Variance Score Test
Variance formula: ~ education + age
Chisquare = 297.4689 Df = 2 p = 2.54358e-65

• SLID data, log(wages) as response

fm <- lm(log(wages) ~ education + age + sex, data = SLID)
ncvTest(fm)

Non-constant Variance Score Test
Variance formula: ~ fitted.values
Chisquare = 28.09925 Df = 1 p = 1.152505e-07

ncvTest(fm, var.formula = ~ education + age + sex)

Non-constant Variance Score Test
Variance formula: ~ education + age + sex
Chisquare = 38.44827 Df = 3 p = 2.271575e-08

Nonlinearity

• Non-linearity means the modeled expectation E(y) = Xβ is not adequate

• In multiple regression, with many predictors, this may be difficult to detect

• Usual strategy: look for indicative patterns in residuals for one predictor at a time

• Simplest option is to plot residuals against predictor

• But this may not be able to distinguish between monotone and non-monotone relationships

• Important to do so because monotone nonlinearity can often be corrected using transformation

Residual vs covariate: example

n <- 100; x <- runif(n)
y1 <- x^2 + rnorm(n, sd = 0.1)
y2 <- 1 - x + x^2 + rnorm(n, sd = 0.1)
fm1 <- lm(y1 ~ x)
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fm2 <- lm(y2 ~ x)
xyplot(residuals(fm1) + residuals(fm2) ~ x, type = c("p", "smooth"), outer = TRUE, ylab = "Residuals")

• Similar residual plots, but nature of models are different
• First model can be made linear by transformation (true model: y = α+ βx2 + ε)
• Second model is truly quadratic ((true model: y = α+ βx+ γx2 + ε)

Component plus residual plots

• X-axis: j-th covariate (more accurately, j-th column of X)

• Y-axis: partial residuals of y on X excluding j-th column:

e
(−j)
i = ei + β̂jXij

• In other words, add back the contribution of the j-th covariate
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• Similar to added-variable plots, but covariate is not adjusted

• Add non-parametric smoother to detect non-linearity

Component plus residual plots: example

fm <- lm(log(wages) ~ education + age + sex, data = SLID)
crPlots(fm, ~ education + age, layout = c(1, 2))

fm <- lm(log(wages) ~ I(education^2) + sqrt(age) + sex, data = SLID) # transform both age and education
crPlots(fm, ~ . - sex, layout = c(1, 2)) # all terms excluding sex

fm <- lm(log(wages) ~ I(education^2) + poly(age, 2) + sex, data = SLID) # quadratic age
crPlots(fm, ~ . - sex, layout = c(1, 2)) # multicolumn terms are handled gracefully
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Component plus residual plots: caveats

• Higher dimensional relationships in multiple regression models can be complicated

• Component plus residual plots are two dimensional projections

• May not always work: in particular, if covariates are non-linearly related

• See Mallows (1986) for an approach that accounts for quadratic relationships with other covariates

• See Cook (1993) for a more general approach (CERES plots)

Nonlinearity for discrete predictors

• As discussed earlier, discrete covariates (few unique values, many ties) allow us to fit “pure error”
models

• Pure error models represent a model with no restrictions on the mean function f(x) = E(Y |X = x)

• Can be used to test “lack of fit” for any more specific form of f(x)

• Example: GSSvocab (28867 observations)

– Response: vocab (Number of words out of 10 correct on a vocabulary test)
– Predictors: age (in years) and educ (years of education)

Example: GSSvocab data

bwplot(vocab ~ factor(educ), GSSvocab, varwidth = TRUE)
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fm1 <- lm(vocab ~ educ, GSSvocab) # linear regression model
mean.vocab <- aggregate(vocab ~ educ, GSSvocab, mean)
xyplot(vocab ~ educ, mean.vocab, grid = TRUE, pch = 16, type = "o") + layer(panel.abline(fm1))

fm2 <- lm(vocab ~ factor(educ), GSSvocab)
anova(fm1, fm2)

Analysis of Variance Table

Model 1: vocab ~ educ
Model 2: vocab ~ factor(educ)

Res.Df RSS Df Sum of Sq F Pr(>F)
1 27471 93895
2 27452 92906 19 989.32 15.386 < 2.2e-16 ***
---
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Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

• Even though there is significant lack of fit, the improvement is marginal

summary(fm1)$r.squared

[1] 0.2283162

summary(fm2)$r.squared

[1] 0.236447

• This is a common theme
– Statistical tests are more sensitive for large n
– Statistical significance does not necessarily mean the difference (effect) is important in practice

Example: SLID data

• We can do similar tests for multiple regression models

fm1 <- lm(log(wages) ~ I(education^2) + poly(age, 2) + sex, data = SLID)
fm2 <- lm(log(wages) ~ factor(education) + poly(age, 2) + sex, data = SLID)
fm3 <- lm(log(wages) ~ I(education^2) + factor(age) + sex, data = SLID)
fm4 <- lm(log(wages) ~ factor(education) + factor(age) + sex, data = SLID)

• R2 does not improve substantially

lapply(list(fm1 = fm1, fm2 = fm2, fm3 = fm3, fm4 = fm4), function(fm) summary(fm)$r.squared)

$fm1
[1] 0.384718

$fm2
[1] 0.4086884

$fm3
[1] 0.3996565

$fm4
[1] 0.423225

• Formal lack of fit tests

anova(fm1, fm4)

Analysis of Variance Table

Model 1: log(wages) ~ I(education^2) + poly(age, 2) + sex
Model 2: log(wages) ~ factor(education) + factor(age) + sex

Res.Df RSS Df Sum of Sq F Pr(>F)
1 4009 626.42
2 3834 587.21 175 39.204 1.4627 9.9e-05 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(fm2, fm4)

Analysis of Variance Table

Model 1: log(wages) ~ factor(education) + poly(age, 2) + sex
Model 2: log(wages) ~ factor(education) + factor(age) + sex
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Res.Df RSS Df Sum of Sq F Pr(>F)
1 3885 602.01
2 3834 587.21 51 14.8 1.8947 0.0001394 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

anova(fm3, fm4)

Analysis of Variance Table

Model 1: log(wages) ~ I(education^2) + factor(age) + sex
Model 2: log(wages) ~ factor(education) + factor(age) + sex

Res.Df RSS Df Sum of Sq F Pr(>F)
1 3958 611.21
2 3834 587.21 124 23.995 1.2634 0.02743 *
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Using pure error models to test for non-constant variance

• With discrete predictors, constant variance means within-group sample variances should be similar

S2
j = 1

nj − 1

nj∑
i=1

(yij − ȳj)2, j = 1, . . . , k

• Define the pooled variance

S2
p = 1

n− k

k∑
j=1

(nj − 1)S2
j , where n =

k∑
j=1

nj

• Then Bartlett’s test statistic is (an adjustment of the likelihood ratio test statistic)

T =
(n− k) logS2

p −
∑k
j=1(nj − 1) logS2

j

1 + 1
3(k−1) (

∑k
j=1

1
nj−1 −

1
n−k )

• Under the null distribution of constant variance, T follows a χ2 distribution with (k − 1) d.f.

• Example: GSSvocab data

sd.vocab <- aggregate(vocab ~ educ, GSSvocab, sd)
xyplot(vocab ~ educ, sd.vocab, grid = TRUE, pch = 16, type = "o")
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bartlett.test(vocab ~ factor(educ), data = GSSvocab)

Bartlett test of homogeneity of variances

data: vocab by factor(educ)
Bartlett's K-squared = 78.606, df = 20, p-value = 6.761e-09

• Bartlett’s test is not robust when errors are non-normal

• Levene’s test is a more robust alternative

leveneTest(vocab ~ factor(educ), data = GSSvocab)

Levene's Test for Homogeneity of Variance (center = median)
Df F value Pr(>F)

group 20 5.3673 6.42e-14 ***
27452

---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The Box-Cox transformation: a likelihood-based approach

• The Box-Cox transformation deals with non-normality, non-linearity, and non-constant variance

gλ(y) =
{
yλ−1
λ λ 6= 0

log y λ = 0

• Can we choose λ using a formal inference procedure?

• Suppose the assumptions of the normal linear model holds for the transformed response

gλ(yi) ∼ N(xTi β, σ2), i = 1, . . . , n

• To estimate λ by maximizing likelihood, we need the density of the untransformed response y in terms
of λ
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• The likelihood function based on the untransformed response is

`(λ, β, σ2 | y) = 1
(2π)n/2σn

e−
1

2σ2 ‖gλ(y)−Xβ‖2
J(λ; y)

• Here the Jacobian of the transformation is

J(λ; y) =
n∏
i=1
|g′λ(yi)| , where g′λ(yi) = d

dy

(
yλ − 1
λ

)
= yλ−1

• This also holds for λ = 0, as d
dy log y = y0−1. So,

J(λ; y) =
n∏
i=1

yλ−1
i

• For a particular choice of λ
– The likelihood is minimized when β and σ2 are MLEs for the model gλ(y) ∼ N(Xβ, σ2I)
– Corresponding profile log-likelihood is

log `(λ) = −n2 (log 2π + log σ̂2(λ) + 1) + (λ− 1)
∑
i

log yi

• The global joint optimum for (λ, β, σ2) can be obtained by maximizing this w.r.t. λ

• No closed-form solution, so usually solved numerically

• For specific choice λ0, H0 : λ = λ0 can be tested using LRT (asymptotically χ2
1)

• This test can be inverted to give a confidence interval for λ

• In practice, we choose a “simple” λ close to the optimum (for interpretability of the model)

The Box-Cox transformation: example

fm <- lm(wages ~ education + age + sex, data = SLID)
boxCox(fm, lambda = seq(-0.5, 0.5, 0.1), plotit = TRUE) # log is close enough to optimum
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The Box-Tidwell procedure for transforming covariates

• A similar likelihood approach can be used to estimate covariate transformations. Suppose

yi = α+
∑
j

βjX
γj
ij + εi, εi ∼ N(0, σ2)

• Likelihood is simpler as response is not transformed, but potentially large number of parameters

• No closed-form solution

• Box and Tidwell (1962) suggest an iterative procedure to obtain MLEs

• Linear approximation of the model:

yi = α+
∑
j

β′jXij + δjXij logXij + εi, εi ∼ N(0, σ2)

• This follows from the First-order Taylor series approximation

xγ ≈ x+ (γ − 1)x log x

• Iterative procedure

1. Regress yi on Xij to obtain β̂j

2. Regress yi on Xij and logXij to obtain β̂′j and δ̂j
3. Test H0 : δj = 0 to assess need for transformation

4. Preliminary estimate γ̃j = 1 + δ̂j

β̂j
(Note: not β̂′j)

• Transform Xij 7→ X
γ̃j
ij and iterate until estimates stabilize

• Exercise: If MLE γ̂j = 1, model fit should give δ̂j = 0

The Box-Tidwell procedure: example

boxTidwell(log(wages) ~ I(0.01+education) + age, data = SLID, other.x = ~ sex)

MLE of lambda Score Statistic (z) Pr(>|z|)
I(0.01 + education) 1.8696 4.396 1.103e-05 ***
age -1.6301 -21.772 < 2.2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

iterations = 9
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