Unusual and Influential Observations

Deepayan Sarkar

Violation of assumptions in a linear regression model

e Systematic violations

— Non-normality of errors

— Nonconstant error variance
Lack of fit (nonlinearity)

— Autocorrelation in errors

¢ Discordant outliers and influential observations
e For now, we will focus on indentifying such observations
¢ Outline

— Motivation and description of diagnostic measures
— Cutoffs for diagnostics (mostly heuristic)
— Mathematical details

o References

— Cook and Weisberg (1982) Residuals and influence in regression.

— Belsley, Kuh, Welsh (1980) Regression diagnostics: Identifying influential data and sources of
collinearity

— Chatterjee and Hadi (1988) Sensitivity analysis in linear regression

Important concepts

o Regression Outlier : Conditional distribution of Y;|X; is unusual (discrepancy)
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o Covariate Outlier : X; value is unusual w.r.t. other values of X (may also be a regression outlier)
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o Leverage : Potential ability of an observation to affect (influence) regression
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o Leverage : Potential ability of an observation to affect (influence) regression
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repwt

o Leverage : Potential ability of an observation to affect (influence) regression
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General principle: outliers, leverage, and influence

« Covariate outliers have high leverage (potentially influential)

o Whether a discrepant observation (regression outlier) actually influences fit depends on whether it also
has high leverage

¢ Roughly, influence = leverage x discrepancy
o We want to be able to identify high-leverage observations, regression outliers, and influential observations

e Relatively simple for single predictor, but want general methods that work with many predictors

Leverage: hat-values
In the linear model, B is a linear function of y:
f=X"X)"'X"y
So is the vector of fitted values:
¥ =X3 =XX"X)"'X"y = Hy

where H = X(XTX)~1X” is known as the “hat matrix”

In scalar notation,

n n
9= hjiyi = hijyi
i=1 i=1
e h;j-s depend on X, not y

 h;; captures contribution of y; on y; (larger values means potentially larger impact)



o Hat-values (summarize leverage of y; on all fitted values):

h;

hii = zn: h;
j=1

o The last result follows because H is symmetric and idempotent (H? = H)

o Corollary: V(3) = 0?H and V(&) = 02(I — H), where ¢; = y; — §;

Properties of hat-values h;

e 0<h; <1
 In fact, h; > 1/n if the model includes the constant term

— Easy to check if other columns are orthogonal to 1 (mean zero)
— Enough to verify that H remains unchanged (exercise)

o h =p/n where p is the rank of X
— Proof follows from property of idempotent / projection matrices: rank = trace
For simple linear regression with one predictor, h; simplifies to
1 ({EZ - ,f)Q

hi== =
no 3 —1)?

In general, with X denoting “centered” X (mean zero columns),
1 ~ o~
hi = — % (XTX) 7%

So h; essentially measures (up to scaling) the Mahalanobis distance of x; from the centroid (mean vector) of
the covariates (taking their correlation structure into account)

fm <- Im(weight ~ repwt, Davis, na.action = na.exclude)
xyplot (hatvalues(fm) ~ repwt, Davis, ylab = "Hat-values")
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https://en.wikipedia.org/wiki/Mahalanobis_distance

fm <- lm(prestige ~ education + income, Duncan, na.action = na.exclude)
id <- which(hatvalues(fm) > 0.15)
levelplot(hatvalues(fm) ~ education + income, Duncan, main = "Hat-values", cex =
panel = panel.levelplot.points, prepanel = prepanel.default.xyplot) +
layer(panel.text(x[id], y[id], labels = rownames(Duncan) [id], pos = 4, col =

Hat-values
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Detecting outliers: standardized and Studentized residuals

e Regression outliers have high discrepancy, i.e., high &;
e Unfortunately, corresponding &; may not be large

o As noted earlier, V(e;) = 0(1 — h;)

e Define standardized residual :

€i
ov1—h;

T, =

Unfortunately, numerator and denominator are not independent.

Deletion models

o Natural fix: estimate o from model fitted without observation (deletion model)

e Define Studentized residual

PO
eIk

e May be more natural to define the deleted Studentized residual



g Ci(—9)
V(ei-)
. V(ei(_i)) needs to be computed, but involves unknown o, which is replaced by &(_;
e In fact, even though this is not immediately obvious,
— t; and t; are actually the same

— Under null hypothesis (no outliers), each t; has a ¢,,_,_1 distribution

More formal approach: the mean-shift outlier model

e Consider a model that allows the ith observation to be fit separately

e Additional “predictor” uy — k-th unit vector in R™

{1 ifi=k
Uy =

0 otherwise

e Model

y=XB+upd+e¢
o Can test for Hy : 6 = 0 (k-th observation not outlier)
Easy to see that for this model, e, = 0,9, = yx
More importantly,

. B is same as B(_k) for original model

o 4 is same as ex(—k) for original model

+ RSS is same as RSS(_y, for original model; so

RSS(_k)
(n—1)—p

~2 _ _RSS ~2 —
© 07 = 7 issameas () =

o Test statistic for Hy: 6 =0 :

A

o Claim: V(§) = 12

o It easily follows that

_ e(-nV1- D, _

Ty -~
O(—k)

t1. (by definition)

Proof of claim requires a basic inversion formula for symmetric partitioned matrices:
A Bl [A'4FE'FT _FE!
BT D o —E7FT E-1

where E =D — BTA7'B and F = A~'B (we only need to compute E~1)

e It turns out that it is also true that



o The equality t; = #; follows because

€ = ek(_k)(l - hk)

e Proof: exercise. Possibly useful matrix result: For u,v column vectors

A luwT AL

TN—1 _ 4—1 _
(A4uw”) " =A T oTA T

Testing for outliers in linear models

e t; can be used to test if observation 7 is an outlier

e Makes sense if we suspected that the ith observation was an outlier
e Usually we don’t know in advance, and want to test for all ¢

e This leads to a multiple testing situation

« Expect an tests to be rejected even if no outliers (assuming independent tests)

Testing for outliers in linear models: usual strategies

» Examine graphically (Q-Q plot comparing to t,,—,_1)

o Simulate the largest (absolute) t; from the null model (distribution does not depend on 3 or o2 —

exercise)
e If we assume independence, the smallest p-value has a Beta distribution

— p-values are all independent U(0, 1) under null
— Interested in the distribution of the smallest of these, follows Beta(1,n)
— CDF easily computed as F(u) =1— (1 — u)"

o Another solution (without assuming independence): Bonferroni adjustment

— Boole’s inequality: P(UA;) <> P(A;)
— Bonferroni correction: Hy : p; ~ U(0, 1) is rejected if np; < a, fori =1,...,n
— Then, under the combined null hypothesis where all p; ~ U(0, 1),

P(at least one rejection) = P (U{np; < a}) < ZP (pi < %) < Z% = n% =«
e Both these procedures can be viewed as an adjustment to the original p-values
e Test i is rejected if the adjusted p; is less than «
o The Bonferroni adjustment is p; = np;
o Adjustment with independent tests is p, =1 — (1 — p;)"

e p.adjust() implements various p-value adjustment procedures in R



Testing for outliers: examples

fm <- Im(weight ~ height * sex, Davis)

ri <- rstandard(fm)

ti <- rstudent(fm)

pi <= 2 * pt(-abs(ti), df = fm$df.residual - 1)

qqmath(ti, distribution = function(p) qt(p, df = fm$df.residual - 1), grid = TRUE, aspect = "iso"

&

o

T T T T T T T
-3 -2 -1 o 1 2 3

function(p) qt(p, df = fm$df.residual - 1)

n <- with(fm, rank + df.residual)
names (which(ti > 4))

[1] "12v w21

names (which(1 - (1-pi)"n < 0.05))
[1] "12" "21"

names (which(n * pi < 0.05))

[1] "12v w21

fm <- Im(prestige ~ education + income, Duncan)

ri <- rstandard(fm)

ti <- rstudent(fm)

pi <- 2 * pt(-abs(ti), df = fm$df.residual - 1)

qgmath(ti, distribution = function(p) qt(p, df = fm$df.residual - 1), grid = TRUE, aspect = "iso")



function(p) qat(p, df = fm$df.residual - 1)

n <- with(fm, rank + df.residual)
names (which(ti > 4))

character (0)

names (which(1 - (1-pi)~n < 0.05))
character(0)

names (which(n * pi < 0.05))
character(0)

head(sort(pi))

minister
0.003177202

reporter

0.021170298 0.047432955

A useful relationship

 As already noted, e;(_; = e;/(1 — h;)

contractor insurance.agent
0.

store.clerk
0.085783008

machinist

060427645 0.066248120

e This means that to compute e;_;), we do not actually need to re-fit model

e In particular, leave-one-out cross-validation SSE can be calculated without actually re-fitting models

e There is a similar exact relationship between r; and t;

p <- fm$rank

tfun <- function(r) r * sqrt((n-p-1) / (n-p-r~2))

xyplot(ti ~ ri, grid = TRUE, aspect = "iso", abline
layer_(panel.curve(expr = tfun(x), col =

10

n—p—1
ti =T; — 5
n—p-—r;

list(c(0, 1), col = "grey50")) +

ngrey50n ) )



xyplot(I(ti - ri) ~ ri, grid = TRUE, abline = list(h = 0, col = "grey50")) +

layer_(panel.curve(expr = tfun(x) - x, col = "grey50"))
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Measures of influence
e We are typically more interested in influential observations
o Direct measure of the influence of objervation ¢ on coefficient 8; is (fori=1,...,n;j =1,...,p)

DFBETAij = dij = Bj - Bj(*i)

e It is common to standardize this:

11



di;
DFBETAS;; = dj; = ———
SE(5))

o Drawback: there can be many of them (np in total).

o When p is small, it is useful to plot DFBET A;; (or DFBETAS;;) against i separately for each j.

e It is also common to look at a summary influence measure for each observation.

Cook’s distance

e Think of testing the “hypothesis” that g = B(_i)
o Consider the “F-statistic” for this test, recalculated for each 4 (though not really meaningful)
e This is known as Cook’s distance D;. It can be shown that
7 hi
1—nh;

e D; can be viewed as a combination of discrepancy and leverage.

D; =

e Observations with high values of D; are considered influential

DFFITS

o A similar measure is

DFFITS; =t; x

1—h;

o In most cases (since t; =~ r;)

_DFFI TS?
' p
o A graphical alternative is to plot h; vs t; and look for unusual extreme values.

Measures of influence: examples

fm <- Im(weight ~ height * sex, Davis)
dfb <- dfbetas(fm); cooksd <- cooks.distance(fm)
id <- cooksd > 10
xyplot(cooksd ~ seq_along(cooksd), grid = TRUE) +
layer(panel.text(x[id], y[id], labels = rownames(Davis) [id], pos = 4, col = "grey50"))

12
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seq_along(cooksd)

xyplot(hatvalues(fm) ~ rstudent(fm), grid = TRUE)
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rstudent(fm)

fm <- lm(prestige ~ education + income, Duncan, na.action = na.exclude)
dfb <- dfbetas(fm); cooksd <- cooks.distance(fm)
id <- cooksd > 0.1
xyplot(cooksd ~ seq_along(cooksd), grid = TRUE) +
layer(panel.text(x[id], y[id], labels = rownames(Duncan) [id], pos = 4, col = "grey50"))

13
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Scatter Plot Mairix

xyplot (hatvalues(fm) ~ rstudent(fm), grid = TRUE)
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Influence on standard errors

o Individual observations can also influence standard errors

e For example, standard error for estimated slope in simple linear regression y = a4 Sz + ¢

N

> —x)?

o High leverage + low discrepancy: may decrease standard error without influencing estimated coefficients

s.e.(f) =

e Generally, we could measure influence by effect on size of joint confidence region of B

o Measure proposed by Belsley et al (1980)

6% (XTX)(_EZ-) |
ATIO; =
COVRATIO; ST

A2 p
_ b (%) 1
e N A e =
3 n—p
e Observations that increase precision have COVRATIO; > 1
e Observations that decrease precision have COVRATIO; < 1

e Look for values that differ from 1

Measures of influence: examples

fm <- Im(weight ~ height * sex, Davis)
covr <- covratio(fm)
id <- which(abs(covr-1) > 0.2)
xyplot(covr ~ seq_along(covr), grid = TRUE) +
layer(panel.text(x[id], y[id], labels = rownames(Davis) [id], pos = 4, col = "grey50"))

15
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seq_along(covr)

fm <- Im(prestige ~ education + income, Duncan, na.action = na.exclude)
covr <- covratio(fm)

id <- which(abs(covr-1) > 0.2)

xyplot(covr ~ seq_along(covr), grid = TRUE) +

layer(panel.text(x[id], y[id], labels = rownames(Duncan) [id], pos = 4, col = "grey50"))
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Numerical cutoffs

Blindly following numerical cutoffs is not recommended
e Most regression diagnostics are designed for graphical examination
e Still, numerical cutoffs can be a useful complement

o Particularly useful to indicate a “cutoff line” on a graph

16



+ Hat values: 2 x £ or 3 x £ for small samples
o Studentized residuals: +2 (adjusted p-value for more formal test)
« DFBETAS;;

— As these are standardized, an absolute cutoff of 1 or 2 is reasonable
— For large n, a size adjusted cutoff 2//n is suggested by Belsley et al

o Cook’s distance D: analogy with F-test gives a natural cutoff (Chatterjee and Hadi, 1988)

4
n—p
o Translates to cutoff for DFFITS using approximate relation with D;

DFFITS; > 2,/
n—p

Jointly influential observations

D; >

e Subsets of observations can be jointly influential, or can offset each other

response

T T T
5 0 5

predicior

e Subsets of observations can be jointly influential, or can offset each other

17



response

response

e Subsets of observations can be jointly influential, or can offset each other

T
0

predictor

T
0

predicior
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Jointly influential observations: possible strategies

e Find most influential observation

o If considered unusual, remove, re-fit model, and consider next most influential observation
e Can often work, but is not always successful

o Alternatively, extend Cook’s distance to subsets of observations

e Number of possible subsets can become large

Graphical alternative: partial regression / added variable plots

e Insight: Jointly influential observations easy to detect visually for single covariate
e Can we reduce multiple regression to simple regression?

e Partial regression plots can do this, provided we focus on influence on one coefficient at a time

Partial regression

Question: What is the interpretation of §; in the Mutiple regression model

y =Bl + BxM 4+ 4 ﬁjx(j) N Bpx(p)

(where x) represents j-th column of X)
o (3 is effect of j-th covariate z\9) on response y
o t-test for 3; = O tests significance of 3; in the presence of other covariates

e Significance determined by amount of reduction in total sum of squares

Partial regression: example

Davis$dsex <- ifelse(Davis$sex == "M", 1, 0)
fm.full <- Im(weight ~ 1 + height + dsex, Davis)
fm.partial <- Ilm(weight ~ 1 + height, Davis)
sum(residuals(fm.full) "2)

[1] 27493.32
coef (fm.full)

(Intercept) height dsex
109.1141967 -0.3129827 22.4980107

coef (fm.partial)

(Intercept) height
25.2662278  0.2384059

Can we recover the additional effect of 3; from the partial model?

e.partial <- residuals(fm.partial)
fm.marginal <- 1m(e.partial ~ dsex, Davis)
sum(residuals(fm.marginal) ~2)

19



[1] 33166.05
coef (fm.marginal)

(Intercept) dsex
-6.436995 14.629534

Can we recover the additional effect of 3; from the partial model?

e.partial <- residuals(fm.partial)
fm.marginal <- 1m(e.partial ~ 0 + residuals(lm(dsex ~ 1 + height)), Davis)
sum(residuals(fm.marginal) ~2)

[1] 27493.32
coef (fm.marginal)

residuals(lm(dsex ~ 1 + height))
22.49801

Partial regression / added variable plot for §;

« Denote X excluding its j-th column by X(=7)
e Regress y on X(7) denote residual vector by y?)
+ Regress j-th column of X on X(~7), denote residual vector by X
e In other words
-y = (- Hxe»)y
- XU = (I —Hyx)X,,
« Plot y¥) against X()

o This is useful because the coefficient of this regression is the same as Bj

Example: Duncan data
library(car)

fm <- Im(prestige ~ education + income, Duncan)
avPlot (fm, "education")

20



Added-Variable Plot: education
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library(car)

fm <- Im(prestige ~ education + income, Duncan)
avPlot (fm, "income"

Added-Variable Plot: income
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Example: Davis data

fm <- Im(weight ~ O + sex + height:sex, Davis)
avPlots (fm)
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What should we do with unusual data?

10
11
12
13
14

o Easy solution: discard

e This is sometimes the right thing to do, but should not be done automatically

o Unusual data may provide insight (e.g., Duncan’s prestige data)

o It may indicate data recording errors (e.g., Davis data has values switched)

sex weight height repwt repht

M 65 171 64 170
M 70 175 75 174
F 166 57 56 163
F 51 161 52 168
F 64 168 64 165

Finally, can try alternatives to least squares: robust regression

22
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