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Violation of assumptions in a linear regression model

• Systematic violations

– Non-normality of errors
– Nonconstant error variance
– Lack of fit (nonlinearity)
– Autocorrelation in errors

• Discordant outliers and influential observations

• For now, we will focus on indentifying such observations

• Outline

– Motivation and description of diagnostic measures
– Cutoffs for diagnostics (mostly heuristic)
– Mathematical details

• References

– Cook and Weisberg (1982) Residuals and influence in regression.
– Belsley, Kuh, Welsh (1980) Regression diagnostics: Identifying influential data and sources of
collinearity

– Chatterjee and Hadi (1988) Sensitivity analysis in linear regression

Important concepts

• Regression Outlier : Conditional distribution of Yi|Xi is unusual (discrepancy)
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• Covariate Outlier : Xi value is unusual w.r.t. other values of X (may also be a regression outlier)

• Leverage : Potential ability of an observation to affect (influence) regression
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• Leverage : Potential ability of an observation to affect (influence) regression

• Leverage : Potential ability of an observation to affect (influence) regression

3



General principle: outliers, leverage, and influence

• Covariate outliers have high leverage (potentially influential)

• Whether a discrepant observation (regression outlier) actually influences fit depends on whether it also
has high leverage

• Roughly, influence = leverage × discrepancy

• We want to be able to identify high-leverage observations, regression outliers, and influential observations

• Relatively simple for single predictor, but want general methods that work with many predictors

Leverage: hat-values

In the linear model, β̂ is a linear function of y:

β̂ = (XTX)−1XTy

So is the vector of fitted values:

ŷ = Xβ̂ = X(XTX)−1XTy = Hy

where H = X(XTX)−1XT is known as the “hat matrix”

In scalar notation,

ŷj =
n∑
i=1

hjiyi =
n∑
i=1

hijyi

• hij-s depend on X, not y

• hij captures contribution of yi on ŷj (larger values means potentially larger impact)
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• Hat-values (summarize leverage of yi on all fitted values):

hi ≡ hii =
n∑
j=1

h2
ij

• The last result follows because H is symmetric and idempotent (H2 = H)

• Corollary: V (ŷ) = σ2H and V (ê) = σ2(I−H), where ei = yi − ŷi

Properties of hat-values hi

• 0 ≤ hi ≤ 1

• In fact, hi ≥ 1/n if the model includes the constant term

– Easy to check if other columns are orthogonal to 1 (mean zero)
– Enough to verify that H remains unchanged (exercise)

• h̄ = p/n where p is the rank of X

– Proof follows from property of idempotent / projection matrices: rank = trace

For simple linear regression with one predictor, hi simplifies to

hi = 1
n

+ (xi − x̄)2∑
j(xj − x̄)2

In general, with X̃ denoting “centered” X (mean zero columns),

hi = 1
n

+ x̃Ti (X̃T X̃)−1x̃i

So hi essentially measures (up to scaling) the Mahalanobis distance of xi from the centroid (mean vector) of
the covariates (taking their correlation structure into account)

fm <- lm(weight ~ repwt, Davis, na.action = na.exclude)
xyplot(hatvalues(fm) ~ repwt, Davis, ylab = "Hat-values")
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fm <- lm(prestige ~ education + income, Duncan, na.action = na.exclude)
id <- which(hatvalues(fm) > 0.15)
levelplot(hatvalues(fm) ~ education + income, Duncan, main = "Hat-values", cex = 1.5,

panel = panel.levelplot.points, prepanel = prepanel.default.xyplot) +
layer(panel.text(x[id], y[id], labels = rownames(Duncan)[id], pos = 4, col = "grey50"))

Detecting outliers: standardized and Studentized residuals

• Regression outliers have high discrepancy, i.e., high εi
• Unfortunately, corresponding ε̂i may not be large

• As noted earlier, V (ei) = σ2(1− hi)

• Define standardized residual :

ri = ei

σ̂
√

1− hi

Unfortunately, numerator and denominator are not independent.

Deletion models

• Natural fix: estimate σ from model fitted without observation (deletion model)

• Define Studentized residual

ti = ei

σ̂(−i)
√

1− hi
• May be more natural to define the deleted Studentized residual
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t̃i =
ei(−i)

V̂ (ei(−i))

• V̂ (ei(−i)) needs to be computed, but involves unknown σ, which is replaced by σ̂(−i)

• In fact, even though this is not immediately obvious,

– t̃i and ti are actually the same

– Under null hypothesis (no outliers), each ti has a tn−p−1 distribution

More formal approach: the mean-shift outlier model

• Consider a model that allows the ith observation to be fit separately

• Additional “predictor” uk — k-th unit vector in Rn

uki =
{

1 if i = k

0 otherwise

• Model

y = Xβ + ukδ + ε

• Can test for H0 : δ = 0 (k-th observation not outlier)

Easy to see that for this model, ek = 0, ŷk = yk

More importantly,

• β̂ is same as β̂(−k) for original model

• δ̂ is same as ek(−k) for original model

• RSS is same as RSS(−k) for original model; so

• σ̂2 = RSS
n−p−1 is same as σ̂2

(−k) = RSS(−k)
(n−1)−p

• Test statistic for H0 : δ = 0 :

Tk = δ̂

s.e.(δ̂)

• Claim: V (δ̂) = σ2

1−hk

• It easily follows that

Tk =
ek(−k)

√
1− hk

σ̂(−k)
= t̃k (by definition)

Proof of claim requires a basic inversion formula for symmetric partitioned matrices:

[
A B
BT D

]−1
=
[
A−1 + FE−1FT −FE−1

−E−1FT E−1

]
where E = D −BTA−1B and F = A−1B (we only need to compute E−1)

• It turns out that it is also true that
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• The equality ti = t̃i follows because

ek = ek(−k)(1− hk)

• Proof: exercise. Possibly useful matrix result: For u, v column vectors

(A+ uvT )−1 = A−1 − A−1uvTA−1

1 + vTA−1u

Testing for outliers in linear models

• ti can be used to test if observation i is an outlier

• Makes sense if we suspected that the ith observation was an outlier

• Usually we don’t know in advance, and want to test for all i

• This leads to a multiple testing situation

• Expect αn tests to be rejected even if no outliers (assuming independent tests)

Testing for outliers in linear models: usual strategies

• Examine graphically (Q-Q plot comparing to tn−p−1)

• Simulate the largest (absolute) ti from the null model (distribution does not depend on β or σ2 —
exercise)

• If we assume independence, the smallest p-value has a Beta distribution

– p-values are all independent U(0, 1) under null
– Interested in the distribution of the smallest of these, follows Beta(1, n)
– CDF easily computed as F (u) = 1− (1− u)n

• Another solution (without assuming independence): Bonferroni adjustment

– Boole’s inequality: P (∪Ai) ≤
∑
P (Ai)

– Bonferroni correction: H0 : pi ∼ U(0, 1) is rejected if npi < α, for i = 1, . . . , n
– Then, under the combined null hypothesis where all pi ∼ U(0, 1),

P (at least one rejection) = P (∪{npi < α}) ≤
∑

P
(
pi <

α

n

)
≤
∑ α

n
= n

α

n
= α

• Both these procedures can be viewed as an adjustment to the original p-values

• Test i is rejected if the adjusted pi is less than α

• The Bonferroni adjustment is p′i = npi

• Adjustment with independent tests is p′i = 1− (1− pi)n

• p.adjust() implements various p-value adjustment procedures in R
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Testing for outliers: examples

fm <- lm(weight ~ height * sex, Davis)
ri <- rstandard(fm)
ti <- rstudent(fm)
pi <- 2 * pt(-abs(ti), df = fm$df.residual - 1)
qqmath(ti, distribution = function(p) qt(p, df = fm$df.residual - 1), grid = TRUE, aspect = "iso")

n <- with(fm, rank + df.residual)
names(which(ti > 4))

[1] "12" "21"

names(which(1 - (1-pi)^n < 0.05))

[1] "12" "21"

names(which(n * pi < 0.05))

[1] "12" "21"

fm <- lm(prestige ~ education + income, Duncan)
ri <- rstandard(fm)
ti <- rstudent(fm)
pi <- 2 * pt(-abs(ti), df = fm$df.residual - 1)
qqmath(ti, distribution = function(p) qt(p, df = fm$df.residual - 1), grid = TRUE, aspect = "iso")
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n <- with(fm, rank + df.residual)
names(which(ti > 4))

character(0)

names(which(1 - (1-pi)^n < 0.05))

character(0)

names(which(n * pi < 0.05))

character(0)

head(sort(pi))

minister reporter contractor insurance.agent machinist store.clerk
0.003177202 0.021170298 0.047432955 0.060427645 0.066248120 0.085783008

A useful relationship

• As already noted, ei(−i) = ei/(1− hi)

• This means that to compute ei(−i), we do not actually need to re-fit model

• In particular, leave-one-out cross-validation SSE can be calculated without actually re-fitting models

• There is a similar exact relationship between ri and ti

ti = ri

√
n− p− 1
n− p− r2

i

p <- fm$rank
tfun <- function(r) r * sqrt((n-p-1) / (n-p-r^2))
xyplot(ti ~ ri, grid = TRUE, aspect = "iso", abline = list(c(0, 1), col = "grey50")) +

layer_(panel.curve(expr = tfun(x), col = "grey50"))
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xyplot(I(ti - ri) ~ ri, grid = TRUE, abline = list(h = 0, col = "grey50")) +
layer_(panel.curve(expr = tfun(x) - x, col = "grey50"))

Measures of influence

• We are typically more interested in influential observations

• Direct measure of the influence of objervation i on coefficient βj is (for i = 1, . . . , n; j = 1, . . . , p)

DFBETAij = dij = β̂j − β̂j(−i)
• It is common to standardize this:
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DFBETASij = d∗ij = dij

SE(−i)(β̂j)

• Drawback: there can be many of them (np in total).

• When p is small, it is useful to plot DFBETAij (or DFBETASij) against i separately for each j.

• It is also common to look at a summary influence measure for each observation.

Cook’s distance

• Think of testing the “hypothesis” that β = β̂(−i)

• Consider the “F -statistic” for this test, recalculated for each i (though not really meaningful)

• This is known as Cook’s distance Di. It can be shown that

Di = ri
2

p
× hi

1− hi
• Di can be viewed as a combination of discrepancy and leverage.

• Observations with high values of Di are considered influential

DFFITS

• A similar measure is

DFFITSi = ti ×
√

hi
1− hi

• In most cases (since ti ≈ ri)

Di ≈
DFFITS2

i

p

• A graphical alternative is to plot hi vs ti and look for unusual extreme values.

Measures of influence: examples

fm <- lm(weight ~ height * sex, Davis)
dfb <- dfbetas(fm); cooksd <- cooks.distance(fm)
id <- cooksd > 10
xyplot(cooksd ~ seq_along(cooksd), grid = TRUE) +

layer(panel.text(x[id], y[id], labels = rownames(Davis)[id], pos = 4, col = "grey50"))
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xyplot(hatvalues(fm) ~ rstudent(fm), grid = TRUE)

fm <- lm(prestige ~ education + income, Duncan, na.action = na.exclude)
dfb <- dfbetas(fm); cooksd <- cooks.distance(fm)
id <- cooksd > 0.1
xyplot(cooksd ~ seq_along(cooksd), grid = TRUE) +

layer(panel.text(x[id], y[id], labels = rownames(Duncan)[id], pos = 4, col = "grey50"))
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splom(cbind(Index = seq_along(cooksd), dfb), grid = TRUE)

xyplot(hatvalues(fm) ~ rstudent(fm), grid = TRUE)
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Influence on standard errors

• Individual observations can also influence standard errors

• For example, standard error for estimated slope in simple linear regression y = α+ βx+ ε

s.e.(β̂) = σ̂√∑
i(xi − x̄)2

• High leverage + low discrepancy: may decrease standard error without influencing estimated coefficients

• Generally, we could measure influence by effect on size of joint confidence region of β̂

• Measure proposed by Belsley et al (1980)

COV RATIOi =
|σ̂2

(−i)(XTX)−1
(−i)|

|σ̂2(XTX)−1|

= 1
(1− hi)

×

(
σ̂2

(−i)

σ̂2

)p
= 1

(1− hi)
(
n−p−1+t2

i

n−p

)p
• Observations that increase precision have COV RATIOi > 1

• Observations that decrease precision have COV RATIOi < 1

• Look for values that differ from 1

Measures of influence: examples

fm <- lm(weight ~ height * sex, Davis)
covr <- covratio(fm)
id <- which(abs(covr-1) > 0.2)
xyplot(covr ~ seq_along(covr), grid = TRUE) +

layer(panel.text(x[id], y[id], labels = rownames(Davis)[id], pos = 4, col = "grey50"))
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fm <- lm(prestige ~ education + income, Duncan, na.action = na.exclude)
covr <- covratio(fm)
id <- which(abs(covr-1) > 0.2)
xyplot(covr ~ seq_along(covr), grid = TRUE) +

layer(panel.text(x[id], y[id], labels = rownames(Duncan)[id], pos = 4, col = "grey50"))

Numerical cutoffs

• Blindly following numerical cutoffs is not recommended

• Most regression diagnostics are designed for graphical examination

• Still, numerical cutoffs can be a useful complement

• Particularly useful to indicate a “cutoff line” on a graph
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• Hat values: 2× p
n or 3× p

n for small samples

• Studentized residuals: ±2 (adjusted p-value for more formal test)

• DFBETASij

– As these are standardized, an absolute cutoff of 1 or 2 is reasonable
– For large n, a size adjusted cutoff 2/

√
n is suggested by Belsley et al

• Cook’s distance D: analogy with F -test gives a natural cutoff (Chatterjee and Hadi, 1988)

Di >
4

n− p
• Translates to cutoff for DFFITS using approximate relation with Di

DFFITSi > 2
√

p

n− p

Jointly influential observations

• Subsets of observations can be jointly influential, or can offset each other

• Subsets of observations can be jointly influential, or can offset each other
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• Subsets of observations can be jointly influential, or can offset each other
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Jointly influential observations: possible strategies

• Find most influential observation

• If considered unusual, remove, re-fit model, and consider next most influential observation

• Can often work, but is not always successful

• Alternatively, extend Cook’s distance to subsets of observations

• Number of possible subsets can become large

Graphical alternative: partial regression / added variable plots

• Insight: Jointly influential observations easy to detect visually for single covariate

• Can we reduce multiple regression to simple regression?

• Partial regression plots can do this, provided we focus on influence on one coefficient at a time

Partial regression

Question: What is the interpretation of βj in the Mutiple regression model

y = β01 + β1x(1) + · · ·+ βjx(j) + · · ·+ βpx(p)

(where x(j) represents j-th column of X)

• βj is effect of j-th covariate x(j) on response y

• t-test for βj = 0 tests significance of βj in the presence of other covariates

• Significance determined by amount of reduction in total sum of squares

Partial regression: example

Davis$dsex <- ifelse(Davis$sex == "M", 1, 0)
fm.full <- lm(weight ~ 1 + height + dsex, Davis)
fm.partial <- lm(weight ~ 1 + height, Davis)
sum(residuals(fm.full)^2)

[1] 27493.32

coef(fm.full)

(Intercept) height dsex
109.1141967 -0.3129827 22.4980107

coef(fm.partial)

(Intercept) height
25.2662278 0.2384059

Can we recover the additional effect of βj from the partial model?

e.partial <- residuals(fm.partial)
fm.marginal <- lm(e.partial ~ dsex, Davis)
sum(residuals(fm.marginal)^2)
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[1] 33166.05

coef(fm.marginal)

(Intercept) dsex
-6.436995 14.629534

Can we recover the additional effect of βj from the partial model?

e.partial <- residuals(fm.partial)
fm.marginal <- lm(e.partial ~ 0 + residuals(lm(dsex ~ 1 + height)), Davis)
sum(residuals(fm.marginal)^2)

[1] 27493.32

coef(fm.marginal)

residuals(lm(dsex ~ 1 + height))
22.49801

Partial regression / added variable plot for βj

• Denote X excluding its j-th column by X(−j)

• Regress y on X(−j), denote residual vector by y(j)

• Regress j-th column of X on X(−j), denote residual vector by X(j)

• In other words

– y(j) = (I−HX(−j))y

– X(j) = (I−HX(−j))X∗j
• Plot y(j) against X(j)

• This is useful because the coefficient of this regression is the same as β̂j

Example: Duncan data

library(car)
fm <- lm(prestige ~ education + income, Duncan)
avPlot(fm, "education")
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library(car)
fm <- lm(prestige ~ education + income, Duncan)
avPlot(fm, "income")

Example: Davis data

fm <- lm(weight ~ 0 + sex + height:sex, Davis)
avPlots(fm)
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What should we do with unusual data?

• Easy solution: discard

• This is sometimes the right thing to do, but should not be done automatically

• Unusual data may provide insight (e.g., Duncan’s prestige data)

• It may indicate data recording errors (e.g., Davis data has values switched)

sex weight height repwt repht
10 M 65 171 64 170
11 M 70 175 75 174
12 F 166 57 56 163
13 F 51 161 52 158
14 F 64 168 64 165

• Finally, can try alternatives to least squares: robust regression
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