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Basic Idea

Restoration of Images
m Restoration of digital images from their degraded

measurement has always been a problem of great interest.
m A specific solution to the problem of image restoration is

generally determined by the nature of degradation phenomena.
m So, it is highly dependent of the nature of the noise present

there.
m Obviously, one has to determine the nature of the noise first.
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Continued...

What is an Image?
à An image is nothing but a huge matrix of numbers.
à Those numbers are just the pixel values of the corresponding

points in the image.

Point Spread Function
à The Point Spread Function describes the response of an

imaging system to a point source or point object.
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Point Spread Function(PSF)

Figure: Example of PSF
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Richardson-Lucy Algorithm

m Given the point spread function, Richardson-Lucy Algorithm
provides an iterative method of image restoration.

m This algorithm was introduced by W.H. Richardson (1972)
and L.B. Lucy (1974).

m This is also known as Richardson-Lucy Deconvolution.

m This is a Bayesian Based Iterative Method of image
restoration.
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Brief Description

Suppose,
Y : Degraded Image,
Λ : Original Image,
P : Point Spread Function,
∗ : Operation of Convolution.

Then,
Y = Λ ∗ P

- Comment
Numerical values of Y ,Λ and P can be considered as a measure of
frequency at that point.
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Continued...

In the model,
Y = Λ ∗ P

P =
((

p(i, j)
))

, p(i, j) = P[Photon emitted at i is seen at j]

Λ = (λ1, . . . , λn)′, λi = True pixel value at the i th point.
Y = (y1, . . . , yd)′, yj = Observed pixel value at the j th point.

- Comment
For simplicity, we may assume that d = n, i.e. the observed and
the true images contain the same number of pixels.
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Distributions: Observed Pixels

+ Notice that yj is nothing but the count of the photon seen at
j.

+ So yj has a Poisson distribution.
+ In fact,

yj ∼ Poisson(µj)

where,

µj =
n∑

i=1
λi p(i, j)
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Distribution: Spread Function

+ The distribution of spread function may vary from problem to
problem.

+ In our problem, we have taken Gaussian spread function which
is given by:

p(i, j) = exp
(
− d(i, j)2

σ2

)

where, d(i, j) = Distance between i and j

-Remark
In case of multidimension, standard Euclidean norm is taken as a
measure of distance.
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Description of the Algorithm

Define, the contribution of λi on yj as

z(i, j) ∼ Poisson
(
λi p(i, j)

)
Then,

yj =
n∑

i=1
z(i, j)

and
λi p(i, j)∑
k λk p(k, j)

is the proportion of yj emitted by i.
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Continued...

If we know Λ then z(i, j) is estimated by:

ẑ(i, j) = yj λi p(i, j)∑
k λk p(k, j)

Given ẑ(i, j), λi is estimated by:

λ̂i =
d∑

j=1
ẑ(i, j)
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Given ẑ(i, j), λi is estimated by:

λ̂i =
d∑

j=1
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Continued...

So, ultimately it gives an iterative procedure:

λ
(t+1)
i = λ

(t)
i

d∑
j=1

yj p(i, j)∑
k λ

(t)
k p(k, j)

. . . . . . (Q)

Back
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E-M and Richardson Lucy Algorithms

Here, z(i, j)’s are complete data and yj ’s are random.

So, z(i, j) | yj ∼ Bin
(
yj , p∗(i, j)

)
, where p∗(i, j) = λi p(i,j)∑

k λk p(k,j)

p(i, j)’s are given to us; our aim is to estimate λi ’s.
By E-M algorithm, first we will calculate

arg max
λ

E
[

log fz(i,j)(λ˜) | yj , λ˜0
]

= arg max
λ

E
[{

log
( yi

z(i, j)

)
+ z(i, j) log p0

∗(i, j)

+
(
yi − z(i, j)

)
log

(
1− p0

∗(i, j)
)} ∣∣∣∣∣ yj , λ˜0

]

where λ˜0 is some initial estimate of λ˜.
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Continued...

Now, E [z(i, j) | yj , λ˜] = yj p∗(i, j) = ẑ(i, j), say.
Also,

d∑
j=1

z(i, j) ∼ Poisson(λi) since
d∑

j=1
p(i, j) = 1

So, we can have an estimate of λi as λ̂i =
∑d

j=1 ẑ(i, j).
Following similar steps, at the (t + 1)th iteration, we will have,

λ̂
(t+1)
i =

d∑
j=1

ẑ(t)(i, j) = λ̂
(t)
i

d∑
j=1

yj p(i, j)∑
k λ̂

(t)
k p(k, j)

The above is exactly what we have obtained from Richardson
Lucy algorithm.
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Computer Implementation
Problems

j Suppose, we are given a square image of size M ×M .
j Then there is a total of M 2 pixels.
j For each of the pixels, we have to apply the algorithm.
j To compute the denominator of Q, we have to run a loop over

all M 2 pixels.
j This denominator is to be calculated for each of the M 2 terms

in the outer most sum of Q.
j So, for a single iteration step, complexity will be

M 2 ×M 2 ×M 2 = M 6.
j Now, even a small image is of 256× 256 or 512× 512. So,

first we have to reduce the complexity.
R-L algorithm
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Reducing Complexity

j First, notice that photon emitted from a particular point
affects the nearby points most.

j In fact, as the distance between i and j increases, p(i, j)
tends to 0.

j So, for a fixed i, we should run the loop over only the range
of j for which p(i, j) > 0.

j This will reduce the complexity significantly.

j We have implemented this algorithm in C.
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Output

Figure: Blurred Image Figure: Restored Image
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Problem That Remains

w The restoration is mediocre.

w To be more specific, it is very bad near the portion where
there is high contrast.

w The implemented algorithm takes a lot of time to run.
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