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Restoration of Images

O Restoration of digital images from their degraded
measurement has always been a problem of great interest.

O A specific solution to the problem of image restoration is
generally determined by the nature of degradation phenomena.

O So, it is highly dependent of the nature of the noise present
there.

O Obviously, one has to determine the nature of the noise first.
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What is an Image?
w An image is nothing but a huge matrix of numbers.

w Those numbers are just the pixel values of the corresponding
points in the image.

Point Spread Function

m The Point Spread Function describes the response of an
imaging system to a point source or point object.
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Figure: Example of PSF
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O Given the point spread function, Richardson-Lucy Algorithm
provides an iterative method of image restoration.

O This algorithm was introduced by W.H. Richardson (1972)
and L.B. Lucy (1974).

O This is also known as Richardson-Lucy Deconvolution.

O This is a Bayesian Based lterative Method of image
restoration.
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BRIEF DESCRIPTION

Suppose,

Y : Degraded Image,

A : Original Image,

P : Point Spread Function,

x : Operation of Convolution.
Then,

Y=AxP

Numerical values of Y, A and P can be considered as a measure of

frequency at that point.
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In the model,
Y=AxP

e P= ((p(i,j) )) p(i,j) = P[Photon emitted at 7 is seen at j]

o A=(A1,..., )", \i = True pixel value at the i** point.
© Y = (y1,...,yq), y; = Observed pixel value at the j™ point.

For simplicity, we may assume that d = n, i.e. the observed and
the true images contain the same number of pixels.
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1= Notice that y; is nothing but the count of the photon seen at

J-
15 So y; has a Poisson distribution.
iz |n fact,
y; ~ Poisson ()
where,

=1
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DISTRIBUTION: SPREAD FUNCTION

1= The distribution of spread function may vary from problem to
problem.

= |n our problem, we have taken Gaussian spread function which

is given by:
i {252 |

where, d(i,7) = Distance between 7 and j

#Remark

In case of multidimension, standard Euclidean norm is taken as a
measure of distance.
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@ Define, the contribution of A; on y; as

2(4,4) ~ Poisson <>\i p(i,j)) ’

@ Then,
i=1
and o
)\i p(%])
is the proportion of y; emitted by 4.
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o If we know A then z(i,j) is estimated by:

H00) = S5 i g ’

e Given 2(i,7), A; is estimated by:

d
Z%i] |

J=1
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So, ultimately it gives an iterative procedure:

d o o
Ay weld) (%)
=1 2k /\E:)P(k,j)
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E-M AND RICHARDSON LuUCcYy ALGORITHMS

o Here, 2(7,j)'s are complete data and y;'s are random.

- Y . ) .. - )\ip(@j)
° SO, Z(Z7]) | y] B|n<yj7p*(7’7]))a where p*(Za]) Zk)‘k p(k,j)
@ p(i,j)'s are given to us; our aim is to estimate A;'s.

e By E-M algorithm, first we will calculate

arg max E{logfz(i,j) (A) | v, 2\0}

= argmax E H log (z(fjj)) + 2(4, §) log p2(4, §)

Yj» 2\01

+ (yi — 2(4,4)) log (1 — pf(i,j))}

where \? is some initial estimate of ).
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o Now, E[z(4,7) | yj, Al = y; p«(4,5) = 2(4,7), say.
o Also,

d d

Zz(i,j) ~ Poisson(\;) sinceZp(i,j) =1

j=1 j=1

@ So, we can have an estimate of \; as A; = Z}izl 2(4, 7).

Following similar steps, at the (¢ + l)th iteration, we will have,
2 (t+1) d NG
AT =300 = K Z
j=1 glikkkp% 7)

@ The above is exactly what we have obtained from Richardson
Lucy algorithm.
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COMPUTER IMPLEMENTATION

PROBLEMS

'Y
s

Suppose, we are given a square image of size M x M.

>
143

Then there is a total of M? pixels.

" For each of the pixels, we have to apply the algorithm.

s To compute the denominator of %, we have to run a loop over
all M? pixels.

'* This denominator is to be calculated for each of the M? terms
in the outer most sum of %*.

' So, for a single iteration step, complexity will be
M? x M? x M? = MS.

" Now, even a small image is of 256 x 256 or 512 x 512. So,

first we have to reduce the complexity.
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First, notice that photon emitted from a particular point
affects the nearby points most.
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In fact, as the distance between ¢ and j increases, p(%,j)
tends to 0.

>
143

So, for a fixed 7, we should run the loop over only the range
of j for which p(i,j) > 0.

»
14'S

This will reduce the complexity significantly.

»
14'S

We have implemented this algorithm in C.
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PROBLEM THAT REMAINS

& The restoration is mediocre.

A To be more specific, it is very bad near the portion where
there is high contrast.

A The implemented algorithm takes a lot of time to run.
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