<ロト < 個ト < 目ト < 目ト = 目 の < @

Image Restoration: Richardson Lucy Algorithm

Arijit Dutta Aurindam Dhar Kaustav Nandy

November 1, 2010

<ロ> <日 > < 同 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

BASIC IDEA

- Restoration of digital images from their degraded measurement has always been a problem of great interest.
- A specific solution to the problem of image restoration is generally determined by the nature of degradation phenomena.
- So, it is highly dependent of the nature of the noise present there.
- O Obviously, one has to determine the nature of the noise first.

BASIC IDEA

- O Restoration of digital images from their degraded measurement has always been a problem of great interest.
- A specific solution to the problem of image restoration is generally determined by the nature of degradation phenomena.
- \bigcirc So, it is highly dependent of the nature of the noise present there.
- O Obviously, one has to determine the nature of the noise first.

<ロ> <同> <目> <目> <目> <目> <目> <目> <目> <目> <目> <日</p>

BASIC IDEA

- O Restoration of digital images from their degraded measurement has always been a problem of great interest.
- O A specific solution to the problem of image restoration is generally determined by the nature of degradation phenomena.
- \bigcirc So, it is highly dependent of the nature of the noise present there.
- O Obviously, one has to determine the nature of the noise first.

<ロ> <同> <目> <目> <目> <目> <目> <目> <目> <目> <目> <日</p>

BASIC IDEA

- O Restoration of digital images from their degraded measurement has always been a problem of great interest.
- O A specific solution to the problem of image restoration is generally determined by the nature of degradation phenomena.
- ${\rm O}\,$ So, it is highly dependent of the nature of the noise present there.
- O Obviously, one has to determine the nature of the noise first.

BASIC IDEA

- O Restoration of digital images from their degraded measurement has always been a problem of great interest.
- O A specific solution to the problem of image restoration is generally determined by the nature of degradation phenomena.
- ${\rm O}\,$ So, it is highly dependent of the nature of the noise present there.
- O Obviously, one has to determine the nature of the noise first.

CONTINUED...

What is an Image?

- An image is nothing but a huge matrix of numbers.
- Those numbers are just the pixel values of the corresponding points in the image.

Point Spread Function

CONTINUED...

What is an Image?

An image is nothing but a huge matrix of numbers.

Those numbers are just the pixel values of the corresponding points in the image.

Point Spread Function

<ロ> <同> <目> <目> <目> <目> <目> <目> <目> <目> <目> <日</p>

CONTINUED...

What is an Image?

- An image is nothing but a huge matrix of numbers.
- Those numbers are just the pixel values of the corresponding points in the image.

Point Spread Function

<ロ> <日 > < 同 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

CONTINUED...

What is an Image?

- An image is nothing but a huge matrix of numbers.
- Those numbers are just the pixel values of the corresponding points in the image.

Point Spread Function

Model

Algorithm

Computer Implementation

<ロ> < (目) < (目) < (目) < (日) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (1) < (

POINT SPREAD FUNCTION(PSF)

Figure: Example of PSF

Model

Algorithm

Computer Implementation

- O Given the point spread function, Richardson-Lucy Algorithm provides an iterative method of image restoration.
- O This algorithm was introduced by W.H. Richardson (1972) and L.B. Lucy (1974).
- O This is also known as Richardson-Lucy Deconvolution.
- This is a Bayesian Based Iterative Method of image restoration.

Model

Algorithm

Computer Implementation

*ロ * * @ * * ミ * ミ * ・ ミ * の ()

- O Given the point spread function, Richardson-Lucy Algorithm provides an iterative method of image restoration.
- O This algorithm was introduced by W.H. Richardson $\left(1972\right)$ and L.B. Lucy $\left(1974\right).$
- O This is also known as Richardson-Lucy Deconvolution.
- O This is a Bayesian Based Iterative Method of image restoration.

Model

Algorithm

Computer Implementation

*ロ * * @ * * ミ * ミ * ・ ミ * の ()

- O Given the point spread function, Richardson-Lucy Algorithm provides an iterative method of image restoration.
- O This algorithm was introduced by W.H. Richardson (1972) and L.B. Lucy (1974).
- O This is also known as Richardson-Lucy Deconvolution.
- O This is a Bayesian Based Iterative Method of image restoration.

Model

Algorithm

Computer Implementation

*ロ * * @ * * ミ * ミ * ・ ミ * の ()

- O Given the point spread function, Richardson-Lucy Algorithm provides an iterative method of image restoration.
- O This algorithm was introduced by W.H. Richardson (1972) and L.B. Lucy (1974).
- O This is also known as Richardson-Lucy Deconvolution.
- O This is a Bayesian Based Iterative Method of image restoration.

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

BRIEF DESCRIPTION

Suppose,

- $Y: \mathsf{Degraded} \mathsf{Image},$
- Λ : Original Image,
- P: Point Spread Function,
- * : Operation of Convolution.

Then,

$$Y = \Lambda * P$$

🖾 Comment

Numerical values of Y,Λ and P can be considered as a measure of frequency at that point.

<ロ> <日 > < 同 > < 日 > < 日 > < 日 > < 日 > < 日 > < 0 < 0

BRIEF DESCRIPTION

Suppose,

- $Y: \mathsf{Degraded} \mathsf{Image},$
- Λ : Original Image,
- P: Point Spread Function,
- * : Operation of Convolution.

Then,

$$Y = \Lambda \ast P$$

⁄ Comment

Numerical values of Y,Λ and P can be considered as a measure of frequency at that point.

Introduction	Model	Algorithm	Computer Implementation
Cont	INUED		
In th	ie model,	$Y = \Lambda * P$	

🖾 Comment

For simplicity, we may assume that d = n, i.e. the observed and the true images contain the same number of pixels.

Introduction	Model	Algorithm	Computer Implementation
Continued			
In the model,		$Y = \Lambda * P$	
• $P = \left(\left(p(i \circ \Lambda = (\lambda_1, \dots \circ Y = (y_1, $	$(j,j) \Big) \Big), \ p(i,j), \lambda_n \Big) (\lambda_n) (\lambda_n)$	(j) = P[Photon emitted] = True pixel value at the observed pixel value	l at i is seen at j] he i^{th} point. at the j^{th} point.

For simplicity, we may assume that d = n, i.e. the observed and the true images contain the same number of pixels.

Introduction	Model	Algorithm	Computer Implementation
CONTINUED			
In the model,		$Y = \Lambda * P$	

🖾 Comment

For simplicity, we may assume that d = n, i.e. the observed and the true images contain the same number of pixels.

Introduction	Model	Algorithm	Computer Implementation
CONTINUED			

In the model,

$$Y = \Lambda * P$$

•
$$P = ((p(i,j)))$$
, $p(i,j) = P[Photon emitted at i is seen at j]$
• $\Lambda = (\lambda_1, \dots, \lambda_n)'$, $\lambda_i = True pixel value at the i^{th} point.
• $Y = (y_1, \dots, y_d)'$, $y_j = Observed pixel value at the j^{th} point.$$

🖾 Comment

For simplicity, we may assume that d = n, i.e. the observed and the true images contain the same number of pixels.

<ロト < 個ト < 目ト < 目ト < 目 > のへの

Introduction	Model	Algorithm	Computer Implementation
CONTINUED			

In the model,

$$Y = \Lambda * P$$

•
$$P = ((p(i,j)))$$
, $p(i,j) = P[Photon emitted at i is seen at j]$
• $\Lambda = (\lambda_1, \dots, \lambda_n)'$, $\lambda_i = True pixel value at the i^{th} point.
• $Y = (y_1, \dots, y_d)'$, $y_j = Observed pixel value at the j^{th} point.$$

🖾 Comment

For simplicity, we may assume that d = n, i.e. the observed and the true images contain the same number of pixels.

メロト 不得 トイヨト イヨト 一日 うらの

Model

Algorithm

Computer Implementation

DISTRIBUTIONS: OBSERVED PIXELS

Notice that y_j is nothing but the count of the photon seen at j.
 So y_j has a Poisson distribution.

 $y_j \sim \mathsf{Poisson}(\mu_j)$

where,

 $\mu_j = \sum_{i=1}^n \lambda_i \ p(i,j)$

▲日 ▼ ▲目 ▼ ▲目 ▼ ▲目 ▼ ▲ ● ◆ ●

Model

Algorithm

Computer Implementation

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ 二回 - のへの

DISTRIBUTIONS: OBSERVED PIXELS

 $\ensuremath{\mathbb{R}}$ Notice that y_j is nothing but the count of the photon seen at j.

 \square So y_j has a Poisson distribution.

🖙 In fact,

 $y_j \sim \mathsf{Poisson}(\mu_j)$

where,

Model

Algorithn

Computer Implementation

<ロト < 個ト < 目ト < 目ト < 目 > うへで

DISTRIBUTIONS: OBSERVED PIXELS

Notice that y_j is nothing but the count of the photon seen at j.

 \square So y_j has a Poisson distribution.

🖙 In fact,

 $y_j \sim \mathsf{Poisson}(\mu_j)$

where,

Introduction	Model	Algorithm	Computer Implemen

DISTRIBUTIONS: OBSERVED PIXELS

- Notice that y_j is nothing but the count of the photon seen at j.
- So y_j has a Poisson distribution.
- 🖙 In fact,

 $y_j \sim \mathsf{Poisson}(\mu_j)$

where,

$$\mu_j = \sum_{i=1}^n \lambda_i \ p(i,j)$$

メロト 不得 トイヨト イヨト 一日 うらの

Model

Algorithm

Computer Implementation

メロト 不得 トイヨト イヨト 一日 うらの

DISTRIBUTION: SPREAD FUNCTION

- The distribution of spread function may vary from problem to problem.
- In our problem, we have taken Gaussian spread function which is given by:

$$p(i,j) = exp\left(-\frac{d(i,j)^2}{\sigma^2}\right)$$

where, d(i,j) = Distance between i and j

∕∕∞Remark

DISTRIBUTION: SPREAD FUNCTION

The distribution of spread function may vary from problem to problem.

In our problem, we have taken Gaussian spread function which is given by:

$$p(i,j) = exp\left(-\frac{d(i,j)^2}{\sigma^2}\right)$$

where, d(i,j) = Distance between i and j

∕∕∞Remark

メロト 不得 トイヨト イヨト 一日 うらの

DISTRIBUTION: SPREAD FUNCTION

- The distribution of spread function may vary from problem to problem.
- In our problem, we have taken Gaussian spread function which is given by:

$$p(i,j) = exp\left(-\frac{d(i,j)^2}{\sigma^2}\right)$$

where, d(i,j) = Distance between i and j

∕∕∞Remark

DISTRIBUTION: SPREAD FUNCTION

- The distribution of spread function may vary from problem to problem.
- In our problem, we have taken Gaussian spread function which is given by:

$$p(i,j) = exp\left(-\frac{d(i,j)^2}{\sigma^2}\right)$$

where, d(i,j) = Distance between i and j

∕∞Remark

Model

Algorithm

Computer Implementation

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Description of the Algorithm

• Define, the contribution of λ_i on y_j as

$$z(i,j) \sim \mathsf{Poisson}\Big(\lambda_i \, p(i,j)\Big)$$

• Then,

 $y_j = \sum_{i=1}^n z(i,j)$

and

$$\frac{\lambda_i \ p(i,j)}{\sum_k \lambda_k \ p(k,j)}$$

is the proportion of y_j emitted by i.

Model

Algorithm

Computer Implementation

メロト 不得 トイヨト イヨト 一日 うらの

DESCRIPTION OF THE ALGORITHM

 $\bullet\,$ Define, the contribution of λ_i on y_j as

$$z(i,j) \sim \mathsf{Poisson}\Big(\lambda_i \ p(i,j)\Big)$$

Then,

 $y_j = \sum_{i=1}^n z(i,j)$

and

$$\frac{\lambda_i \ p(i,j)}{\sum_k \lambda_k \ p(k,j)}$$

is the proportion of y_j emitted by i.

Model

Algorithm

Computer Implementation

・ロト ・ 目 ・ ・ ヨト ・ ヨト ・ りゃく

Description of the Algorithm

 $\bullet\,$ Define, the contribution of λ_i on y_j as

$$z(i,j) \sim \mathsf{Poisson}\Big(\lambda_i \ p(i,j)\Big)$$

• Then,

$$y_j = \sum_{i=1}^n z(i,j)$$

and

$$\frac{\lambda_i \ p(i,j)}{\sum_k \lambda_k \ p(k,j)}$$

is the proportion of y_j emitted by *i*.

Introduction	Model	Algorithm	Computer Implementation
Continued	•		

• If we know Λ then $\boldsymbol{z}(i,j)$ is estimated by:

$$\hat{z}(i,j) = \frac{y_j \lambda_i p(i,j)}{\sum_k \lambda_k p(k,j)}$$

• Given $\hat{z}(i,j)$, λ_i is estimated by:

$$\hat{\lambda_i} = \sum_{j=1}^d \hat{z}(i,j)$$

・ロト ・ 聞 ト ・ 国 ト ・ 国 ・ の へ ()・

Continued		

• If we know Λ then $\boldsymbol{z}(i,j)$ is estimated by:

$$\hat{z}(i,j) = \frac{y_j \lambda_i p(i,j)}{\sum_k \lambda_k p(k,j)}$$

• Given $\hat{z}(i, j)$, λ_i is estimated by:

$$\hat{\lambda_i} = \sum_{j=1}^d \hat{z}(i,j)$$

×ロト < 目 > < 目 > < 目 > < 目 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 0 < 0</p>

<ロト < ■ト < 目ト < 目ト = 目 = のへで

CONTINUED...

So, ultimately it gives an iterative procedure:

$$\lambda_{i}^{(t+1)} = \lambda_{i}^{(t)} \sum_{j=1}^{d} \frac{y_{j} \, p(i,j)}{\sum_{k} \lambda_{k}^{(t)} p(k,j)} \qquad \dots \dots (\clubsuit)$$

▲ Back

Introduction Model Algorithm Computer Implementation

E-M AND RICHARDSON LUCY ALGORITHMS

• Here, z(i,j)'s are complete data and y_j 's are random.

• So,
$$z(i,j) \mid y_j \sim \mathsf{Bin}\Big(y_j, p_*(i,j)\Big)$$
, where $p_*(i,j) = \frac{\lambda_i p(i,j)}{\sum_k \lambda_k p(k,j)}$

- p(i,j)'s are given to us; our aim is to estimate λ_i 's.
- By E-M algorithm, first we will calculate

$$\arg \max_{\lambda} E\Big[\log f_{z(i,j)}(\underline{\lambda}) \mid y_j, \underline{\lambda}^0\Big]$$

= $\arg \max_{\lambda} E\Big[\Big\{\log\Big(\frac{y_i}{z(i,j)}\Big) + z(i,j)\log p_*^0(i,j) + (y_i - z(i,j))\log(1 - p_*^0(i,j))\Big\} \mid y_j, \underline{\lambda}^0\Big]$

where $\underline{\lambda}^0$ is some initial estimate of $\underline{\lambda}$.

Model

Algorithm

Computer Implementation

CONTINUED...

- Now, $E[z(i,j) \mid y_j, \underline{\lambda}] = y_j \ p_*(i,j) = \hat{z}(i,j)$, say.
- Also,

$$\sum_{j=1}^d z(i,j) \sim \mathsf{Poisson}(\lambda_i) \quad \operatorname{since} \sum_{j=1}^d p(i,j) = 1$$

- So, we can have an estimate of λ_i as $\hat{\lambda}_i = \sum_{j=1}^d \hat{z}(i,j)$.
- Following similar steps, at the $(t+1)^{th}$ iteration, we will have,

$$\hat{\lambda}_{i}^{(t+1)} = \sum_{j=1}^{d} \hat{z}^{(t)}(i,j) = \hat{\lambda}_{i}^{(t)} \sum_{j=1}^{d} \frac{y_{j} p(i,j)}{\sum_{k} \hat{\lambda}_{k}^{(t)} p(k,j)}$$

• The above is exactly what we have obtained from Richardson Lucy algorithm.

n1	۲r	\sim	а	\sim	•	0	n
		0	J				

Model

Algorithm

Computer Implementation

*ロ * * @ * * ミ * ミ * ・ ミ * の ()

COMPUTER IMPLEMENTATION PROBLEMS

- * Suppose, we are given a square image of size $M \times M$.
- ***** Then there is a total of M^2 pixels.
- * For each of the pixels, we have to apply the algorithm.
- ***** To compute the denominator of *****, we have to run a loop over all M^2 pixels.
- This denominator is to be calculated for each of the M^2 terms in the outer most sum of *****.
- So, for a single iteration step, complexity will be $M^2 \times M^2 \times M^2 = M^6$.
- ★ Now, even a small image is of 256×256 or 512×512 . So, first we have to reduce the complexity.

▶ R-L algorithm

Model

Algorithm

Computer Implementation

<ロ> <同> <目> <目> <目> <目> <目> <目> <目> <目> <目> <日</p>

- First, notice that photon emitted from a particular point affects the nearby points most.
- In fact, as the distance between i and j increases, p(i, j) tends to 0.
- So, for a fixed i, we should run the loop over only the range of j for which p(i, j) > 0.
- This will reduce the complexity significantly.
- We have implemented this algorithm in C.

Model

Algorithm

Computer Implementation

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ の

REDUCING COMPLEXITY

- First, notice that photon emitted from a particular point affects the nearby points most.
- * In fact, as the distance between i and j increases, p(i,j) tends to 0.

So, for a fixed i, we should run the loop over only the range of j for which p(i, j) > 0.

- This will reduce the complexity significantly.
- igstarrow We have implemented this algorithm in ${f C}.$

Model

Algorithm

Computer Implementation

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ の

- First, notice that photon emitted from a particular point affects the nearby points most.
- * In fact, as the distance between i and j increases, p(i, j) tends to 0.
- So, for a fixed *i*, we should run the loop over only the range of *j* for which p(i, j) > 0.
- This will reduce the complexity significantly.
- igstarrow We have implemented this algorithm in ${f C}.$

Model

Algorithm

Computer Implementation

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ の

- First, notice that photon emitted from a particular point affects the nearby points most.
- ***** In fact, as the distance between i and j increases, p(i, j) tends to 0.
- So, for a fixed *i*, we should run the loop over only the range of *j* for which p(i, j) > 0.
- * This will reduce the complexity significantly.
- We have implemented this algorithm in C.

Model

Algorithm

Computer Implementation

・ロト ・ 目 ・ ・ ヨ ト ・ ヨ ・ ・ ク へ の

- First, notice that photon emitted from a particular point affects the nearby points most.
- ***** In fact, as the distance between i and j increases, p(i, j) tends to 0.
- So, for a fixed *i*, we should run the loop over only the range of *j* for which p(i, j) > 0.
- * This will reduce the complexity significantly.
- * We have implemented this algorithm in C.

Output

Figure: Blurred Image

Figure: Restored Image

<ロト < ■ト < 目ト < 目ト = 目 = のへで

Computer Implementation

COMPARISON

Figure: Restored Image

Figure: Original Image

<ロト < 個ト < 目ト < 目ト < 目 > うへで

OUTPUT

Figure: Blurred Image

Figure: Restored Image

<ロト < ■ト < 目ト < 目ト = 目 = のへで

Computer Implementation

COMPARISON

Figure: Restored Image

Figure: Original Image

<ロト < 個ト < 目ト < 目ト < 目 > うへで

< □ > < 同 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

PROBLEM THAT REMAINS

- *▲* The restoration is mediocre.
- To be more specific, it is very bad near the portion where there is high contrast.
- *▲* The implemented algorithm takes a lot of time to run.

<ロト < ■ト < 目ト < 目ト = 目 = のへで

Acknowledgement

- Dr. Deepayan Sarkar, ISI Delhi.
- Wikipedia

<ロト <回ト < 巨ト < 巨ト < 巨ト 三 三 の Q ()

THANK YOU