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Abstract

In the Project ‘Confidence interval for Binomial Proportios’, we

deal with the problem of obtaining the confidence interval for parame-

ter p of Binomial distribution. We have used the Normal approximation

to Binomial, Bootstrap-t, Boostrap percentile to fulfill this purpose. We

have done this for different values of n and p and compared these con-

fidence intervals on the basis of length of the confidence interval and

observed coverage probability.

1 Introduction

We can obtain exact as well as approximate confidence interval for param-

eter p of Binomial Distribution. As Binomial distribution is a descrete one,

exact confidence intervals are conservative i.e. actual confidence coefficient

is greater than the nominal value and results into wider confidence inter-

vals than those obtained by using approximations. Approximate confidence

intervals can be easily calculated while exact confidence intervals can be ob-

tained if binomial-table values are available. Hence many a times we prefer

some good approximations. For some choices of n and p Normal approxi-

mation may not be a good approach and in such cases we can use Bootstrap

confidence intervals.

1.1 What is confidence interval?

Confidence interval is an interval estimate which signifies a range within

which the parameter is estimated to lie. Confidence interval is a measure of
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uncertainty involved in estimating unknown population parameter by using

sample information.

2 Methodology

2.1 Normal Approximation

Let X ∼ Binom(n, p). In order to obtain a confidence interval for p we

draw a randpm sample of size n from Binom(1, p) say X1, X2, ...., Xn and

calculate the sample proportion p̂ as it is an unbiased eatimate of p which is

nothing but sample mean and from the Large sample theory we know that

nX̄ ∼ AN(np, np(1 − p))

If p̂ is a sample proportion then

p̂ ∼ AN

(
p,

p(1 − p)

n

)

So, 95% confidence interval for p is

(
p̂− z0.025

√
var(p̂), p̂+ z0.025

√
var(p̂)

)
Where z0.025 is such that P (Z ≥ z0.025) = 0.025 , where Z ∼ N(0, 1)

2.2 Bootstrap

It is a resampling plan and was introduced by Efron in 1979.

It adresses the question of sampling distribution. In the Bootsrap world

the original sample X1, · · · , Xn represents the population and X∗
1 , · · · , X∗

n

is a random boostrap sample drawn with replacement. The bootstrap idea

is to estimate a desired property of a statistic by using an estimate of F

i.e. distribution function of the original sample. Boostrapping based on

empirical distribution function is called the nonparametric boostrap and

that based on parametric estimate of F is called the parametric boostrap.

Since we know the parametric form of the original sample from which the

sample is drawn, we apply parametric boostrap.

• Bootstrap-t: Given n and p, we draw a random sample of size n from

Binom(1, p) say X1, X2, ...., Xn and obtain a sample proportion p̂.We
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draw B bootstrap samples and obtain Bootsrtap pivot as

Z∗ =
p̂∗ − p̂√
var(p̂∗)

Where p̂∗ is the bootstrap estimate of p and var(p̂∗) is the bootstrap

variance estimate of the parameter p. In order to obtain var(p̂∗) gen-

erally we need nested bootsrtap smaples. Since statictic under consid-

eration is sample mean, the exact variance can be calculated and hence

nested bootstrap samples are not required. The exact expression for

the variance is
1

n2

n∑
i=1

(Xi − X̄)
2

=
p̂(1 − p̂)

n

Once we obtain Z∗
1 , · · · , Z∗

B, Let ĜZ∗ be the ecdf of Z∗
1 , · · · , Z∗

B. Then

boostrap-t confidence interval is

(p̂−G−1
Z∗(0.025)

√
var(p̂), p̂−G−1

Z∗(0.975)
√
var(p̂))

• Bootstrap-percentile : We gnerate B bootstrap samples and com-

pute sample proportion for each bootstrap sample say p∗1, · · · , p∗B. Let

Ĝp∗ be its ecdf. Then bootstrap percentile confidence interval is

[Ĝ−1
p∗(0.025), Ĝ−1

p∗(0.975)]

2.3 Comparison

Following are the two criteria based on which we have compared confidence

intervals obtained by applying these three methods.

• Coverage Probability : It is the probability that the true value

of the parameter lies in the confidence interval. Coverage probability

based on single confidence interval is either 0 or 1 which may lead

to underestimation or overestimation of the true coverage probability.

Hence we obtain N, say,confidence intervals. The proportion of con-

fidence intervals which include the true value of parameter gives the

coverage probability.
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• Length of CI : The lower and upper boundaries of a confidence in-

terval are confidence limits. They define the range of a confidence

interval. The length of the confidence interval is nothing but the dif-

ference between the upper and lower confidence limits. It is obvious

that the confidence intervals with smaller lengths are good interval

estimates. Hence, while comparing the methods in terms of the length

of the confidence interval, the method that results into comparatively

smaller length confidence intervals is considered as more efficient.
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3 Observation / Results

3.1 Comparison on the basis of coverage probability

The following tables give the coverage probability for different values of n

and p on the basis of 5000 confidence intervals.

1. for p = 0.05

n 10 20 50 100 500 1000

Normal 0.420 0.634 0.909 0.875 0.938 0.942

Boot-t 0.385 0.638 0.890 0.954 0.939 0.943

Boot-p 0.374 0.636 0.911 0.931 0.938 0.940

2. for p = 0.1

n 10 20 50 100 500 1000

Normal 0.6518 0.8748 0.8798 0.9344 0.9452 0.9552

Boot-t 0.6290 0.8540 0.9690 0.9440 0.9324 0.9312

Boot-p 0.6406 0.8810 0.9296 0.9370 0.9382 0.9328

3. for p = 0.25

n 10 20 50 100 500 1000

Normal 0.9236 0.90827 0.9400 0.9448 0.9402 0.9438

Boot-t 0.9002 0.9396 0.9456 0.9344 0.9188 0.9194

Boot-p 0.8716 0.9332 0.9028 0.9294 0.9256 0.9216
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4. for p = 0.5

n 10 20 50 100 500 1000

Normal 0.8874 0.9562 0.9344 0.9464 0.9452 0.9450

Boot-t 0.9930 0.9378 0.9342 0.9324 0.9320 0.9278

Boot-p 0.9382 0.9316 0.9366 0.9290 0.9274 0.9234

Dotplot corresponding to the above tables:
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Conclusions:

1. For large n i.e. n ≥ 50 coverage probability of confidence intervals

obatained by using Normal approximation to Binomial and Bootstrap-

t are almost same.

2. In case of small sample sizes, confidence intervals based on bootstrap

methods are comparatively better than those obtained using Normal

approximation to Binomial .

We can also conclude about the coverage probability of a given method

with the help of following grpahs.

Comparison of the coverage probability of these three methods for chosen

values n = 100, p = 0.5, B = 100.
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- for Normal
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Figure 1: Confidence intervals using Normal approximation

- for Bootstrap-t
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Figure 2: Boostrap-t confidence intervals
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- for Bootstrap-p
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Figure 3: Confidence intervals using bootstrap-percentile

3.2 Comparison on the basis of length of CI

The following tables give the average length of the 5000 confidence intervals.

1. for p = 0.05

n 10 20 50 100 500 1000

Normal 0.16 0.144 0.112 0.083 0.038 0.0269

Boot-t Inf Inf Inf Inf 0.041 0.0278

Boot-p 0.1225 0.114 0.0967 0.0757 0.0366 0.0261

2. for p = 0.1

n 10 20 50 100 500 1000

Normal 0.289 0.235 0.161 0.116 0.052 0.0371

Boot-t Inf Inf Inf Inf 0.0542 0.0377

Boot-p 0.2303 0.199 0.1477 0.1103 0.051 0.0362
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3. for p = 0.25

n 10 20 50 100 500 1000

Normal 0.487 0.365 0.237 0.169 0.0758 0.054

Boot-t Inf Inf Inf 0.1793 0.0764 0.0535

Boot-p 0.4258 0.34 0.228 0.1648 0.0746 0.0527

4. for p = 0.5

n 10 20 50 100 500 1000

Normal 0.5868 0.4265 0.2744 0.195 0.0875 0.0619

Boot-t Inf Inf 0.2844 0.197 0.0870 0.0614

Boot-p 0.5569 0.414 0.2703 0.1927 0.086 0.0612

• Conculsion-In almost all the cases Bootstrap-percentile method pro-

vides shorter length confidence intervals as compared to the rest.

9



Dotplot corresponding to the above tables:
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• Conclusion - All methods are almost equally efficient for large n.

4 Difficulties

When p is small, say 0.05, 0 is more likely to occur when a sample of size

n is drawn from Bernoulli distribution. It may happen that one or more

bootstrap sample(s) consist(s) enitrely of zeroes. In such cases, sample

proportion is zero and variance of sample proportion or sample mean i.e.

statistic is zero. While calculating empirical distribution of critical values

of boostrap confidence interval, this term is in the denominator. This leads

to one sided confidence interval with infinite length. The same problem en-

counters when the parent sample from which further boostrap smaples are

drawn, contains all zeroes.
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