
Project

Project

Gursharn Smruti Shwetab Sagnika Kaustav

Indian Statistical Institute

August 27, 2010



Project

Random Numbers

The word “random” means apparent absence of cause,
planning, or design, “lack of method or system”, or
“accidental, haphazard.”
Statistically, it means inability to predict outcomes or to find
any pattern in a series of outcomes.
A random number is a number generated by a process,
whose outcome is unpredictable, and which cannot be
subsequentially reliably reproduced.



Project

Random Numbers

The word “random” means apparent absence of cause,
planning, or design, “lack of method or system”, or
“accidental, haphazard.”
Statistically, it means inability to predict outcomes or to find
any pattern in a series of outcomes.
A random number is a number generated by a process,
whose outcome is unpredictable, and which cannot be
subsequentially reliably reproduced.



Project

Random Numbers

The word “random” means apparent absence of cause,
planning, or design, “lack of method or system”, or
“accidental, haphazard.”
Statistically, it means inability to predict outcomes or to find
any pattern in a series of outcomes.
A random number is a number generated by a process,
whose outcome is unpredictable, and which cannot be
subsequentially reliably reproduced.



Project

Random Numbers

The word “random” means apparent absence of cause,
planning, or design, “lack of method or system”, or
“accidental, haphazard.”
Statistically, it means inability to predict outcomes or to find
any pattern in a series of outcomes.
A random number is a number generated by a process,
whose outcome is unpredictable, and which cannot be
subsequentially reliably reproduced.



Project

Difficulties

Generating true random numbers involves precise, accurate
and repeatable system measurements of non-deterministic
processes.
Such processes are almost unachievable in practice.
That is why we try to seek an alternative in the form of
pseudorandom numbers.



Project

Difficulties

Generating true random numbers involves precise, accurate
and repeatable system measurements of non-deterministic
processes.
Such processes are almost unachievable in practice.
That is why we try to seek an alternative in the form of
pseudorandom numbers.



Project

Difficulties

Generating true random numbers involves precise, accurate
and repeatable system measurements of non-deterministic
processes.
Such processes are almost unachievable in practice.
That is why we try to seek an alternative in the form of
pseudorandom numbers.



Project

Difficulties

Generating true random numbers involves precise, accurate
and repeatable system measurements of non-deterministic
processes.
Such processes are almost unachievable in practice.
That is why we try to seek an alternative in the form of
pseudorandom numbers.



Project

Pseudo Random number

Psedurandom sequences are outcomes of a deterministic
causal process.
Psedurandom processes can be used repeatedly to produce
exactly the same numbers.
Pseudorandom number generators are algorithms that use
mathematical formulae or simply precalculated tables to
produce sequences of numbers that appear random. For
example, linear congruential method.



Project

Pseudo Random number

Psedurandom sequences are outcomes of a deterministic
causal process.
Psedurandom processes can be used repeatedly to produce
exactly the same numbers.
Pseudorandom number generators are algorithms that use
mathematical formulae or simply precalculated tables to
produce sequences of numbers that appear random. For
example, linear congruential method.



Project

Pseudo Random number

Psedurandom sequences are outcomes of a deterministic
causal process.
Psedurandom processes can be used repeatedly to produce
exactly the same numbers.
Pseudorandom number generators are algorithms that use
mathematical formulae or simply precalculated tables to
produce sequences of numbers that appear random. For
example, linear congruential method.



Project

Pseudo Random number

Psedurandom sequences are outcomes of a deterministic
causal process.
Psedurandom processes can be used repeatedly to produce
exactly the same numbers.
Pseudorandom number generators are algorithms that use
mathematical formulae or simply precalculated tables to
produce sequences of numbers that appear random. For
example, linear congruential method.



Project

Characteristics of Pseudorandom numbers

PRNGs are efficient i.e. they can produce many numbers in a
short time.
They are deterministic in the sense that a given sequence of
numbers can be reproduced at a later stage if the starting
point in the sequence is known.
PRNGs are typically also periodic, which means that the
sequence will eventually repeat itself.
Several computational methods for random number
generation exist which lack true randomness.



Project

Characteristics of Pseudorandom numbers

PRNGs are efficient i.e. they can produce many numbers in a
short time.
They are deterministic in the sense that a given sequence of
numbers can be reproduced at a later stage if the starting
point in the sequence is known.
PRNGs are typically also periodic, which means that the
sequence will eventually repeat itself.
Several computational methods for random number
generation exist which lack true randomness.



Project

Characteristics of Pseudorandom numbers

PRNGs are efficient i.e. they can produce many numbers in a
short time.
They are deterministic in the sense that a given sequence of
numbers can be reproduced at a later stage if the starting
point in the sequence is known.
PRNGs are typically also periodic, which means that the
sequence will eventually repeat itself.
Several computational methods for random number
generation exist which lack true randomness.



Project

Characteristics of Pseudorandom numbers

PRNGs are efficient i.e. they can produce many numbers in a
short time.
They are deterministic in the sense that a given sequence of
numbers can be reproduced at a later stage if the starting
point in the sequence is known.
PRNGs are typically also periodic, which means that the
sequence will eventually repeat itself.
Several computational methods for random number
generation exist which lack true randomness.



Project

History of Random Number Generators

Rolling a die is a preliminary RNG which was being used in
anciant times in the games of chance.
The chinese were perhaps the earliest people to formalize odds
and chance 3000 years ago.
In the sixteenth century that Italian mathematicians began to
formalize the odds associated with various games of chance,
like Bingo.
Brownian motion arises from the aggregated effect of the
random collsions of many molecules with suspended objects.
Robert Brown claimed that it is one of very few that truely
can not be predicted or is truely random. But in 1905 Albert
Einstein suggested that this is not really random.



Project

History of Random Number Generators

Rolling a die is a preliminary RNG which was being used in
ancient times in the games of chance.
The chinese were perhaps the earliest people to formalize odds
and chance 3000 years ago.
In the sixteenth century that Italian mathematicians began to
formalize the odds associated with various games of chance,
like Bingo.
Brownian motion arises from the aggregated effect of the
random collsions of many molecules with suspended objects.
Robert Brown claimed that it is one of very few that truely
can not be predicted or is truely random. But in 1905 Albert
Einstein suggested that this is not really random.



Project

History of Random Number Generators

Rolling a die is a preliminary RNG which was being used in
anciant times in the games of chance.
The Chinese were perhaps the earliest people to formalize
odds and chance 3000 years ago.
In the sixteenth century that Italian mathematicians began to
formalize the odds associated with various games of chance,
like Bingo.
Brownian motion arises from the aggregated effect of the
random collsions of many molecules with suspended objects.
Robert Brown claimed that it is one of very few that truely
can not be predicted or is truely random. But in 1905 Albert
Einstein suggested that this is not really random.



Project

History of Random Number Generators

Rolling a die is a preliminary RNG which was being used in
anciant times in the games of chance.
The chinese were perhaps the earliest people to formalize odds
and chance 3000 years ago.
In the sixteenth century that Italian mathematicians began to
formalize the odds associated with various games of chance,
like Bingo.
Brownian motion arises from the aggregated effect of the
random collsions of many molecules with suspended objects.
Robert Brown claimed that it is one of very few that truely
can not be predicted or is truely random. But in 1905 Albert
Einstein suggested that this is not really random.



Project

History of Random Number Generators

Rolling a die is a preliminary RNG which was being used in
anciant times in the games of chance.
The chinese were perhaps the earliest people to formalize odds
and chance 3000 years ago.
In the sixteenth century that Italian mathematicians began to
formalize the odds associated with various games of chance,
like Bingo.
Brownian motion arises from the aggregated effect of the
random collsions of many molecules with suspended objects.
Robert Brown claimed that it is one of very few that truely
can not be predicted or is truely random. But in 1905 Albert
Einstein suggested that this is really random.



Project

Popular RNGs

Wichmann-Hill RNG:
* Invented in 1982.
* Periodicity: 6953607871644

Super-Duper:
* Invented in 1970.
* Periodicity 4.6× 1018

* Failed in MTUPLE test.
Marsaglia-Multicarry:

* Invented round 1985.
* Periodicity: More than 260



Project

Popular RNGs

Wichmann-Hill RNG:
* Invented in 1982.
* Periodicity: 6953607871644

Super-Duper:
* Invented in 1970.
* Periodicity 4.6× 1018

* Failed in MTUPLE test.
Marsaglia-Multicarry:

* Invented round 1985.
* Periodicity: More than 260



Project

Popular RNGs

Wichmann-Hill RNG:
* Invented in 1982.
* Periodicity: 6953607871644

Super-Duper:
* Invented in 1970.
* Periodicity 4.6× 1018

* Failed in MTUPLE test.
Marsaglia-Multicarry:

* Invented round 1985.
* Periodicity: More than 260



Project

Popular RNGs

Wichmann-Hill RNG:
* Invented in 1982.
* Periodicity: 6953607871644

Super-Duper:
* Invented in 1970.
* Periodicity 4.6× 1018

* Failed in MTUPLE test.
Marsaglia-Multicarry:

* Invented round 1985.
* Periodicity: More than 260



Project

Popular RNGs

Wichmann-Hill RNG:
* Invented in 1982.
* Periodicity: 6953607871644

Super-Duper:
* Invented in 1970.
* Periodicity 4.6× 1018

* Failed in MTUPLE test.
Marsaglia-Multicarry:

* Invented round 1985.
* Periodicity: More than 260



Project

Popular RNGs

Wichmann-Hill RNG:
* Invented in 1982.
* Periodicity: 6953607871644

Super-Duper:
* Invented in 1970.
* Periodicity 4.6× 1018

* Failed in MTUPLE test.
Marsaglia-Multicarry:

* Invented round 1985.
* Periodicity: More than 260



Project

Popular RNGs

Wichmann-Hill RNG:
* Invented in 1982.
* Periodicity: 6953607871644

Super-Duper:
* Invented in 1970.
* Periodicity 4.6× 1018

* Failed in MTUPLE test.
Marsaglia-Multicarry:

* Invented round 1985.
* Periodicity: More than 260



Project

Popular RNGs

Wichmann-Hill RNG:
* Invented in 1982.
* Periodicity: 6953607871644

Super-Duper:
* Invented in 1970.
* Periodicity 4.6× 1018

* Failed in MTUPLE test.
Marsaglia-Multicarry:

* Invented round 1985.
* Periodicity: More than 260



Project

Popular RNGs

Wichmann-Hill RNG:
* Invented in 1982.
* Periodicity: 6953607871644

Super-Duper:
* Invented in 1970.
* Periodicity 4.6× 1018

* Failed in MTUPLE test.
Marsaglia-Multicarry:

* Invented round 1985.
* Periodicity: More than 260



Project

Popular RNGs

Wichmann-Hill RNG:
* Invented in 1982.
* Periodicity: 6953607871644

Super-Duper:
* Invented in 1970.
* Periodicity 4.6× 1018

* Failed in MTUPLE test.
Marsaglia-Multicarry:

* Invented round 1985.
* Periodicity: More than 260



Project

Popular RNGs

Mersenne Twisler RNG:
* Invented by Matsumoto and Nishimura(1998).
* Periodicity: 219937 − 1.

Knuth TAOCP-2002: A 32 bits integer GFSR using lagged
Fibonacci sequence with substractiuon.

X [j] = (X [j − 100]−X [j − 37])mod232

* Periodicity: 2129



Project

Popular RNGs

Mersenne Twisler RNG:
* Invented by Matsumoto and Nishimura(1998).
* Periodicity: 219937 − 1.

Knuth TAOCP-2002: A 32 bits integer GFSR using lagged
Fibonacci sequence with substractiuon.

X [j] = (X [j − 100]−X [j − 37])mod232

* Periodicity: 2129



Project

Popular RNGs

Mersenne Twisler RNG:
* Invented by Matsumoto and Nishimura(1998).
* Periodicity: 219937 − 1.

Knuth TAOCP-2002: A 32 bits integer GFSR using lagged
Fibonacci sequence with substractiuon.

X [j] = (X [j − 100]−X [j − 37])mod232

* Periodicity: 2129



Project

Popular RNGs

Mersenne Twisler RNG:
* Invented by Matsumoto and Nishimura(1998).
* Periodicity: 219937 − 1.

Knuth TAOCP-2002: A 32 bits integer GFSR using lagged
Fibonacci sequence with substractiuon.

X [j] = (X [j − 100]−X [j − 37])mod232

* Periodicity: 2129



Project

Popular RNGs

Mersenne Twisler RNG:
* Invented by Matsumoto and Nishimura(1998).
* Periodicity: 219937 − 1.

Knuth TAOCP-2002: A 32 bits integer GFSR using lagged
Fibonacci sequence with substractiuon.

X [j] = (X [j − 100]−X [j − 37])mod232

* Periodicity: 2129



Project

Popular RNGs

Mersenne Twisler RNG:
* Invented by Matsumoto and Nishimura(1998).
* Periodicity: 219937 − 1.

Knuth TAOCP-2002: A 32 bits integer GFSR using lagged
Fibonacci sequence with substractiuon.

X [j] = (X [j − 100]−X [j − 37])mod232

* Periodicity: 2129



Project

“Anyone who considers
arithmetical methods of
producing random digits is,
ofcourse, in a state of sin.”

− Von Neumann



Project

Von Neumann method

John Von Neumann suggested the middle square method in
about 1946.
It is a computer based PRNG.
Iterating Von Neumann’s procedure produces a series of
numbers generated by a deterministic process intended merely
to imitate a random sequence.
The procedure is:

1 Take any integer number of n digits.
2 Square it.
3 Take the middle n digits of the resulting number as the

random number.



Project

Von Neumann method

John Von Neumann suggested the middle square method in
about 1946.
It is a computer based PRNG.
Iterating Von Neumann’s procedure produces a series of
numbers generated by a deterministic process intended merely
to imitate a random sequence.
The procedure is:

1 Take any integer number of n digits.
2 Square it.
3 Take the middle n digits of the resulting number as the

random number.



Project

Von Neumann method

John Von Neumann suggested the middle square method in
about 1946.
It is a computer based PRNG.
Iterating Von Neumann’s procedure produces a series of
numbers generated by a deterministic process intended merely
to imitate a random sequence.
The procedure is:

1 Take any integer number of n digits.
2 Square it.
3 Take the middle n digits of the resulting number as the

random number.



Project

Von Neumann method

John Von Neumann suggested the middle square method in
about 1946.
It is a computer based PRNG.
Iterating Von Neumann’s procedure produces a series of
numbers generated by a deterministic process intended merely
to imitate a random sequence.
The procedure is:

1 Take any integer number of n digits.
2 Square it.
3 Take the middle n digits of the resulting number as the

random number.



Project

Von Neumann method

John Von Neumann suggested the middle square method in
about 1946.
It is a computer based PRNG.
Iterating Von Neumann’s procedure produces a series of
numbers generated by a deterministic process intended merely
to imitate a random sequence.
The procedure is:

1 Take any integer number of n digits.
2 Square it.
3 Take the middle n digits of the resulting number as the

random number.



Project

Von Neumann method

John Von Neumann suggested the middle square method in
about 1946.
It is a computer based PRNG.
Iterating Von Neumann’s procedure produces a series of
numbers generated by a deterministic process intended merely
to imitate a random sequence.
The procedure is:

1 Take any integer number of n digits.
2 Square it.
3 Take the middle n digits of the resulting number as the

random number.



Project

Von Neumann method

John Von Neumann suggested the middle square method in
about 1946.
It is a computer based PRNG.
Iterating Von Neumann’s procedure produces a series of
numbers generated by a deterministic process intended merely
to imitate a random sequence.
The procedure is:

1 Take any integer number of n digits.
2 Square it.
3 Take the middle n digits of the resulting number as the

random number.



Project

Von Neumann method

Since there are at most only 10n different numbers, eventually
the whole sequence repeats in the same order.
The method often reaches a fixed point 0. Once it reaches 0,
it stays there for ever.



Project

Von Neumann method

Since there are at most only 10n different numbers, eventually
the whole sequence repeats in the same order.
The method often reaches a fixed point 0. Once it reaches 0,
it stays there for ever.



Project

Code for Von Neumann Algorithm

Von Neumann Algorithm is carried out in two ways, viz, direct
method and using bitwise shift operator.
Direct method is implemented both in R and in C.
Needless to say that Bitwise shift method is implemented
using C.
We try to get some idea of the randomness of the generated
random numbers using graphs.



Project

Code for Von Neumann Algorithm

Von Neumann Algorithm is carried out in two ways, viz, direct
method and using bitwise shift operator.
Direct method is implemented both in R and in C.
Needless to say that Bitwise shift method is implemented
using C.
We try to get some idea of the randomness of the generated
random numbers using graphs.



Project

Code for Von Neumann Algorithm

Von Neumann Algorithm is carried out in two ways, viz, direct
method and using bitwise shift operator.
Direct method is implemented both in R and in C.
Needless to say that Bitwise shift method is implemented
using C.
We try to get some idea of the randomness of the generated
random numbers using graphs.



Project

Code for Von Neumann Algorithm

Von Neumann Algorithm is carried out in two ways, viz, direct
method and using bitwise shift operator.
Direct method is implemented both in R and in C.
Needless to say that Bitwise shift method is implemented
using C.
We try to get some idea of the randomness of the generated
random numbers using graphs.



Project

CODES
(in HTML)



Project

Preliminary Analysis based on Graphs

The occurence of the digits in the generated random numbers
should be random.
If it follows any pattern then we can say that the appearance
of the digit is non-random.
If the appearance of the digit falls in the particular sequence
of the duration of successive occurences then the same
conclusion holds.
If the last time a particular digit appears is too small then we
conclude that, that digit never comes later on and hence there
exists a non-random pattern in its occurence.



Project

Preliminary Analysis based on Graphs

The occurence of the digits in the generated random numbers
should be random.
If it follows any pattern then we can say that the appearance
of the digit is non-random.
If the appearance of the digit falls in the particular sequence
of the duration of successive occurences then the same
conclusion holds.
If the last time a particular digit appears is too small then we
conclude that, that digit never comes later on and hence there
exists a non-random pattern in its occurence.



Project

Preliminary Analysis based on Graphs

The occurence of the digits in the generated random numbers
should be random.
If it follows any pattern then we can say that the appearance
of the digit is non-random.
If the appearance of the digit falls in the particular sequence
of the duration of successive occurences then the same
conclusion holds.
If the last time a particular digit appears is too small then we
conclude that, that digit never comes later on and hence there
exists a non-random pattern in its occurence.



Project

Preliminary Analysis based on Graphs

The occurence of the digits in the generated random numbers
should be random.
If it follows any pattern then we can say that the appearance
of the digit is non-random.
If the appearance of the digit falls in the particular sequence
of the duration of successive occurences then the same
conclusion holds.
If the last time a particular digit appears is too small then we
conclude that, that digit never comes later on and hence there
exists a non-random pattern in its occurence.



Project

Duration of successive appearances of 4

Graph 1

0 100 200 300 400

0
10

20
30

40
50

60

index

di
ffe

re
nc

e



Project

Duration of successive appearances of 2

Graph 2

0 50 100 150 200 250

0
10

20
30

40
50

60

index

di
ffr

en
ce



Project

Duration of successive appearances of 3

Graph 3

0 20 40 60 80 100 120 140

0
20

40
60

80
10

0
12

0

index

di
ffe

re
nc

e



Project

Duration of successive appearances of 4

Graph 4

0 50 100 150 200 250

0
10

20
30

40
50

index

di
ffe

re
nc

e



Project

Duration of successive appearances of 4

Graph 5

5 10 15 20

0
10

20
30

40

times

di
ffe

re
nc

e



Project

Duration of successive appearances of 0

Graph 6

0 500 1000 1500

0
10

20
30

40

index

di
ffe

re
nc

es



Project

Relative Frequency of digits

Graph 7

0 1 2 3 4 5 6 7 8 9

Relative freq of digits of RNs generated by Von−Neumann Method

Digits

R
el

at
iv

e 
F

re
qu

en
cy

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10



Project

Observations

In the first four graphs we see that the sequence of durations
of successive occurances falls in a loop.
In the graph 5 we see that the digit 4 has appeared very few
times.
Infact 4 appears at 249 th position for the last time, but there
are total 3500(500× 7) random digits.
In the graph 6 we see that the digit 0 is appearing very
frequently though the sequence is not degenerated at 0.
The last graph shows that in long run the digits are coming
almost with equal probability.



Project

Observations

In the first four graphs we see that the sequence of durations
of successive occurances falls in a loop.
In the graph 5 we see that the digit 4 has appeared very few
times.
Infact 4 appears at 249 th position for the last time, but there
are total 3500(500× 7) random digits.
In the graph 6 we see that the digit 0 is appearing very
frequently though the sequence is not degenerated at 0.
The last graph shows that in long run the digits are coming
almost with equal probability.



Project

Observations

In the first four graphs we see that the sequence of durations
of successive occurances falls in a loop.
In the graph 5 we see that the digit 4 has appeared very few
times.
Infact 4 appears at 249 th position for the last time, but there
are total 3500(500× 7) random digits.
In the graph 6 we see that the digit 0 is appearing very
frequently though the sequence is not degenerated at 0.
The last graph shows that in long run the digits are coming
almost with equal probability.



Project

Observations

In the first four graphs we see that the sequence of durations
of successive occurances falls in a loop.
In the graph 5 we see that the digit 4 has appeared very few
times.
Infact 4 appears at 249 th position for the last time, but there
are total 3500(500× 7) random digits.
In the graph 6 we see that the digit 0 is appearing very
frequently though the sequence is not degenerated at 0.
The last graph shows that in long run the digits are coming
almost with equal probability.



Project

Observations

In the first four graphs we see that the sequence of durations
of successive occurances falls in a loop.
In the graph 5 we see that the digit 4 has appeared very few
times.
Infact 4 appears at 249 th position for the last time, but there
are total 3500(500× 7) random digits.
In the graph 6 we see that the digit 0 is appearing very
frequently though the sequence is not degenerated at 0.
The last graph shows that in long run the digits are coming
almost with equal probability.



Project

Bitwise Programming

In Bitwise programming a random number between 0 and
2n − 1 is chosen.
Then it is squared.
Next, appropriate number of left and right bitwise shifts give
the middle digits.
Finally the output is given as a decimal number.



Project

Bitwise Programming

In Bitwise programming a random number between 0 and
2n − 1 is chosen.
Then it is squared.
Next, appropriate number of left and right bitwise shifts give
the middle digits.
Finally the output is given as a decimal number.



Project

Bitwise Programming

In Bitwise programming a random number between 0 and
2n − 1 is chosen.
Then it is squared.
Next, appropriate number of left and right bitwise shifts give
the middle digits.
Finally the output is given as a decimal number.



Project

Bitwise Programming

In Bitwise programming a random number between 0 and
2n − 1 is chosen.
Then it is squared.
Next, appropriate number of left and right bitwise shifts give
the middle digits.
Finally the output is given as a decimal number.



Project

CODES
(in HTML)



Project

Graphical analysis

0 1 2 3 4 5 6 7 8 9

digits

re
la

tiv
e 

fr
eq

ue
nc

y

0.
0

0.
2

0.
4

0.
6

0 1 2 3 4 5 6 7 8 9

digits

re
la

tiv
e 

fr
eq

ue
nc

y

0.
00

0.
05

0.
10

0.
15

0.
20



Project

Analysis of Graphs

The graph on the left side shows that the sequence of digits
eventually converges to zero.
Graph on the right side shows that the sequence falls in a
loop.
The loop consists of four digits 0, 1, 2, 4
We have observed that the loop is actually
24, 10, 24, 10, ...(Initially we have taken the number of digits
in the binary number is 22)



Project

Analysis of Graphs

The graph on the left side shows that the sequence of digits
eventually converges to zero.
Graph on the right side shows that the sequence falls in a
loop.
The loop consists of four digits 0, 1, 2, 4
We have observed that the loop is actually
24, 10, 24, 10, ...(Initially we have taken the number of digits
in the binary number is 22)



Project

Analysis of Graphs

The graph on the left side shows that the sequence of digits
eventually converges to zero.
Graph on the right side shows that the sequence falls in a
loop.
The loop consists of four digits 0, 1, 2, 4
We have observed that the loop is actually
24, 10, 24, 10, ...(Initially we have taken the number of digits
in the binary number is 22)



Project

Analysis of Graphs

The graph on the left side shows that the sequence of digits
eventually converges to zero.
Graph on the right side shows that the sequence falls in a
loop.
The loop consists of four digits 0, 1, 2, 4
We have observed that the loop is actually
24, 10, 24, 10, ...(Initially we have taken the number of digits
in the binary number is 22)



Project

Graphical analysis

2 4 6 8 10 12

5
10

15
20

Duration of successive appearences of 2 using Bitwise operators

Number of appearences of 2

D
ur

at
io

n

0 200 400 600 800 1000

0
5

10
15

20
25

30

Duration of successive appearences of using Bitwise operators

Number of appearences of 2

D
ur

at
io

n



Project

Graphical analysis

0 100 200 300 400 500 600 700

0
5

10
15

20
25

30

Duration of successive appearences of using Bitwise operators

Number of appearences of 2

D
ur

at
io

n



Project

Conclusions based on the Graphs

The proportion of occurences of digit 2 is approximately 15
10000

which is much less than 1
10 .

It is observed from the graph 2 that eventually the duration of
successive appearence of digit 2 becomes constant while graph
3 shows that it falls in a loop.



Project

Conclusions based on the Graphs

The proportion of occurences of digit 2 is approximately 15
10000

which is much less than 1
10 .

It is observed from the graph 2 that eventually the duration of
successive appearence of digit 2 becomes constant while graph
3 shows that it falls in a loop.



Project

Comparison between Bitwise and Direct method

Barplot of relative frequencies of digits in the sequence of
random number generated is one way to compare these two
ways of implementation of Von Neumann method.
In case of direct method,the relative frequencies of all the
digits are approximately same but in case of Bitwise method,
in general, the digit 0 occur more often than other digits.
Another way to do so is to plot the duration between the
successive appearance of any digit.
In case of Bitwise method the sequence of durations falls in a
loop much before than that in case of Direct method.
In Bitwise method the sequence of durations eventually
becomes constant in several cases.



Project

Comparison between Bitwise and Direct method

Barplot of relative frequencies of digits in the sequence of
random number generated is one way to compare these two
ways of implementation of Von Neumann method.
In case of direct method,the relative frequencies of all the
digits are approximately same but in case of Bitwise method,
in general, the digit 0 occur more often than other digits.
Another way to do so is to plot the duration between the
successive appearance of any digit.
In case of Bitwise method the sequence of durations falls in a
loop much before than that in case of Direct method.
In Bitwise method the sequence of durations eventually
becomes constant in several cases.



Project

Comparison between Bitwise and Direct method

Barplot of relative frequencies of digits in the sequence of
random number generated is one way to compare these two
ways of implementation of Von Neumann method.
In case of direct method,the relative frequencies of all the
digits are approximately same but in case of Bitwise method,
in general, the digit 0 occur more often than other digits.
Another way to do so is to plot the duration between the
successive appearance of any digit.
In case of Bitwise method the sequence of durations falls in a
loop much before than that in case of Direct method.
In Bitwise method the sequence of durations eventually
becomes constant in several cases.



Project

Comparison between Bitwise and Direct method

Barplot of relative frequencies of digits in the sequence of
random number generated is one way to compare these two
ways of implementation of Von Neumann method.
In case of direct method,the relative frequencies of all the
digits are approximately same but in case of Bitwise method,
in general, the digit 0 occur more often than other digits.
Another way to do so is to plot the duration between the
successive appearance of any digit.
In case of Bitwise method the sequence of durations falls in a
loop much before than that in case of Direct method.
In Bitwise method the sequence of durations eventually
becomes constant in several cases.



Project

Comparison between Bitwise and Direct method

Barplot of relative frequencies of digits in the sequence of
random number generated is one way to compare these two
ways of implementation of Von Neumann method.
In case of direct method,the relative frequencies of all the
digits are approximately same but in case of Bitwise method,
in general, the digit 0 occur more often than other digits.
Another way to do so is to plot the duration between the
successive appearance of any digit.
In case of Bitwise method the sequence of durations falls in a
loop much before than that in case of Direct method.
In Bitwise method the sequence of durations eventually
becomes constant in several cases.



Project

K-algorithm

Given a 10-digit decimal number X , this algorithm may be used to
change X to the number that should come next in a supposedly
random sequence. The algorithm is as follows:
K1 [Choose Number of Iterations] Set Y ← bX/109c, the most

significant digit of X (We will execute steps K2 through K13
exactly Y + 1 times)

K2 [Choose Random Step] Set Z ← bX/108cmod10, the second
most significant digit of X . Go to step K (3 + Z )

K3 [Ensure ≥ 5× 109] If X < 5000000000, set
X ← X + 5000000000

K4 [Middle Square] Replace X by bX2/105cmod1010



Project

K-algorithm

Given a 10-digit decimal number X , this algorithm may be used to
change X to the number that should come next in a supposedly
random sequence. The algorithm is as follows:
K1 [Choose Number of Iterations] Set Y ← bX/109c, the most

significant digit of X (We will execute steps K2 through K13
exactly Y + 1 times)

K2 [Choose Random Step] Set Z ← bX/108cmod10, the second
most significant digit of X . Go to step K (3 + Z )

K3 [Ensure ≥ 5× 109] If X < 5000000000, set
X ← X + 5000000000

K4 [Middle Square] Replace X by bX2/105cmod1010



Project

K-algorithm

Given a 10-digit decimal number X , this algorithm may be used to
change X to the number that should come next in a supposedly
random sequence. The algorithm is as follows:
K1 [Choose Number of Iterations] Set Y ← bX/109c, the most

significant digit of X (We will execute steps K2 through K13
exactly Y + 1 times)

K2 [Choose Random Step] Set Z ← bX/108cmod10, the second
most significant digit of X . Go to step K (3 + Z )

K3 [Ensure ≥ 5× 109] If X < 5000000000, set
X ← X + 5000000000

K4 [Middle Square] Replace X by bX2/105cmod1010



Project

K-algorithm

Given a 10-digit decimal number X , this algorithm may be used to
change X to the number that should come next in a supposedly
random sequence. The algorithm is as follows:
K1 [Choose Number of Iterations] Set Y ← bX/109c, the most

significant digit of X (We will execute steps K2 through K13
exactly Y + 1 times)

K2 [Choose Random Step] Set Z ← bX/108cmod10, the second
most significant digit of X . Go to step K (3 + Z )

K3 [Ensure ≥ 5× 109] If X < 5000000000, set
X ← X + 5000000000

K4 [Middle Square] Replace X by bX2/105cmod1010



Project

K-algorithm

Given a 10-digit decimal number X , this algorithm may be used to
change X to the number that should come next in a supposedly
random sequence. The algorithm is as follows:
K1 [Choose Number of Iterations] Set Y ← bX/109c, the most

significant digit of X (We will execute steps K2 through K13
exactly Y + 1 times)

K2 [Choose Random Step] Set Z ← bX/108cmod10, the second
most significant digit of X . Go to step K (3 + Z )

K3 [Ensure ≥ 5× 109] If X < 5000000000, set
X ← X + 5000000000

K4 [Middle Square] Replace X by bX2/105cmod1010



Project

K-Algorithm

K5 [Multiply] Replace X by (1001001001X)mod1010

K6 [Pseudo-complement] If X < 100000000, then set
X ← X + 9814055677; otherwise set X ← 1010 −X

K7 [Interchange halves] Interchange the higher 5 digits of X with
the higher-order five digits; that is, set
X ← 105(Xmod105) + bX/105c

K8 [Multiply]Same as K5
K9 [Decrease Digits]Decrease each nonzero digits of the decimal

representation of X by one.



Project

K-Algorithm

K5 [Multiply] Replace X by (1001001001X)mod1010

K6 [Pseudo-complement] If X < 100000000, then set
X ← X + 9814055677; otherwise set X ← 1010 −X

K7 [Interchange halves] Interchange the higher 5 digits of X with
the higher-order five digits; that is, set
X ← 105(Xmod105) + bX/105c

K8 [Multiply]Same as K5
K9 [Decrease Digits]Decrease each nonzero digits of the decimal

representation of X by one.



Project

K-Algorithm

K5 [Multiply] Replace X by (1001001001X)mod1010

K6 [Pseudo-complement] If X < 100000000, then set
X ← X + 9814055677; otherwise set X ← 1010 −X

K7 [Interchange halves] Interchange the higher 5 digits of X with
the higher-order five digits; that is, set
X ← 105(Xmod105) + bX/105c

K8 [Multiply]Same as K5
K9 [Decrease Digits]Decrease each nonzero digits of the decimal

representation of X by one.



Project

K-Algorithm

K5 [Multiply] Replace X by (1001001001X)mod1010

K6 [Pseudo-complement] If X < 100000000, then set
X ← X + 9814055677; otherwise set X ← 1010 −X

K7 [Interchange halves] Interchange the higher 5 digits of X with
the higher-order five digits; that is, set
X ← 105(Xmod105) + bX/105c

K8 [Multiply]Same as K5
K9 [Decrease Digits]Decrease each nonzero digits of the decimal

representation of X by one.



Project

K-Algorithm

K5 [Multiply] Replace X by (1001001001X)mod1010

K6 [Pseudo-complement] If X < 100000000, then set
X ← X + 9814055677; otherwise set X ← 1010 −X

K7 [Interchange halves] Interchange the higher 5 digits of X with
the higher-order five digits; that is, set
X ← 105(Xmod105) + bX/105c

K8 [Multiply]Same as K5
K9 [Decrease Digits]Decrease each nonzero digits of the decimal

representation of X by one.



Project

K-Algorithm

K10 [99999 Modify] If X < 105, set X ← X2 + 99999; otherwise
set X ← X − 99999

K11 [Normalize] (At this point X can not be zero.) If X < 109,
set X ← 10X and repeat this step.

K12 [Modified Middle Square]Replace X by
bX(X − 1)/105cmod1010, that is middle 10 digits of
X(X − 1)

K13 [Repeat?] If Y > 0, decrease Y by one and return to K2. If
Y = 0, the algorithm terminates with X as the desired
random value.



Project

K-Algorithm

K10 [99999 Modify] If X < 105, set X ← X2 + 99999; otherwise
set X ← X − 99999

K11 [Normalize] (At this point X can not be zero.) If X < 109,
set X ← 10X and repeat this step.

K12 [Modified Middle Square]Replace X by
bX(X − 1)/105cmod1010, that is middle 10 digits of
X(X − 1)

K13 [Repeat?] If Y > 0, decrease Y by one and return to K2. If
Y = 0, the algorithm terminates with X as the desired
random value.



Project

K-Algorithm

K10 [99999 Modify] If X < 105, set X ← X2 + 99999; otherwise
set X ← X − 99999

K11 [Normalize] (At this point X can not be zero.) If X < 109,
set X ← 10X and repeat this step.

K12 [Modified Middle Square]Replace X by
bX(X − 1)/105cmod1010, that is middle 10 digits of
X(X − 1)

K13 [Repeat?] If Y > 0, decrease Y by one and return to K2. If
Y = 0, the algorithm terminates with X as the desired
random value.



Project

K-Algorithm

K10 [99999 Modify] If X < 105, set X ← X2 + 99999; otherwise
set X ← X − 99999

K11 [Normalize] (At this point X can not be zero.) If X < 109,
set X ← 10X and repeat this step.

K12 [Modified Middle Square]Replace X by
bX(X − 1)/105cmod1010, that is middle 10 digits of
X(X − 1)

K13 [Repeat?] If Y > 0, decrease Y by one and return to K2. If
Y = 0, the algorithm terminates with X as the desired
random value.



Project

Programming for K-Algorithm

To solve this problem we used C language.
This can also be solved in R.
In order to minimize the complexity involved in implementing
the algorithm in R we prefered C.
We have made the generated random numbers readily
available, for further testing, in R by building a shared object.



Project

Programming for K-Algorithm

To solve this problem we used C language.
This can also be solved in R.
In order to minimize the complexity involved in implementing
the algorithm in R we prefered C.
We have made the generated random numbers readily
available, for further testing, in R by building a shared object.



Project

Programming for K-Algorithm

To solve this problem we used C language.
This can also be solved in R.
In order to minimize the complexity involved in implementing
the algorithm in R we prefered C.
We have made the generated random numbers readily
available, for further testing, in R by building a shared object.



Project

Programming for K-Algorithm

To solve this problem we used C language.
This can also be solved in R.
In order to minimize the complexity involved in implementing
the algorithm in R we prefered C.
We have made the generated random numbers readily
available, for further testing, in R by building a shared object.



Project

Difficulties Encountered

Memory Allocation Problem
* In C, the maximum positive integer value that
can be saved is 18446744073709551615.

* Since we are dealing with a 10-digit number, in
several steps of the program, we have to handle
numbers exceeding this bound.

While making shared library for R, the numbers are
transferred as NUMERIC(not as INTEGER) as there may be
some memory allocation problem.



Project

Difficulties Encountered

Memory Allocation Problem
* In C, the maximum positive integer value that
can be saved is 18446744073709551615.

* Since we are dealing with a 10-digit number, in
several steps of the program, we have to handle
numbers exceeding this bound.

While making shared library for R, the numbers are
transferred as NUMERIC(not as INTEGER) as there may be
some memory allocation problem.



Project

Difficulties Encountered

Memory Allocation Problem
* In C, the maximum positive integer value that
can be saved is 18446744073709551615.

* Since we are dealing with a 10-digit number, in
several steps of the program, we have to handle
numbers exceeding this bound.

While making shared library for R, the numbers are
transferred as NUMERIC(not as INTEGER) as there may be
some memory allocation problem.



Project

Difficulties Encountered

Memory Allocation Problem
* In C, the maximum positive integer value that
can be saved is 18446744073709551615.

* Since we are dealing with a 10-digit number, in
several steps of the program, we have to handle
numbers exceeding this bound.

While making shared library for R, the numbers are
transferred as NUMERIC(not as INTEGER) as there may be
some memory allocation problem.



Project

CODES
(in HTML)



Project

Graphical analysis

0 1 2 3 4 5 6 7 8 9

Barplot showing relative frequencies of digits when n = 100000

Digits

R
el

at
iv

e 
fr

eq
ue

nc
y

0.
00

0.
02

0.
04

0.
06

0.
08

0.
10

0.
12

0.
14



Project

Graphical analysis

0 100 200 300 400 500 600 700

0
10

20
30

40
50

60
70

Number of apearences of 3

D
ur

at
io

n



Project

Observations and Conclusion

From the barplot it is clear that the probability of occurance
of 0 and 1 is higher than the rest.
This is obviously not expected.
In the second graph the time lag between two successive
occurance of 3 is observed.
It comes out to be random enough.
So we can conclude that though the numbers are appearing at
random time point, the probability of their appearance is not
equal.



Project

Observations and Conclusion

From the barplot it is clear that the probability of occurance
of 0 and 1 is higher than the rest.
This is obviously not expected.
In the second graph the time lag between two successive
occurance of 3 is observed.
It comes out to be random enough.
So we can conclude that though the numbers are appearing at
random time point, the probability of their appearance is not
equal.



Project

Observations and Conclusion

From the barplot it is clear that the probability of occurance
of 0 and 1 is higher than the rest.
This is obviously not expected.
In the second graph the time lag between two successive
occurance of 3 is observed.
It comes out to be random enough.
So we can conclude that though the numbers are appearing at
random time point, the probability of their appearance is not
equal.



Project

Observations and Conclusion

From the barplot it is clear that the probability of occurance
of 0 and 1 is higher than the rest.
This is obviously not expected.
In the second graph the time lag between two successive
occurance of 3 is observed.
It comes out to be random enough.
So we can conclude that though the numbers are appearing at
random time point, the probability of their appearance is not
equal.



Project

Observations and Conclusion

From the barplot it is clear that the probability of occurance
of 0 and 1 is higher than the rest.
This is obviously not expected.
In the second graph the time lag between two successive
occurance of 3 is observed.
It comes out to be random enough.
So we can conclude that though the numbers are appearing at
random time point, the probability of their appearance is not
equal.



Project

Linear Congruential Generators

Introduced by D.H.Lehmer around 1949.
The generator is defined by the

Xn+1 = (aXn + c)modm

Where,
1 {Xn} = Sequence of pseudorandom values
2 m =The modulus m > 0
3 a =The multiplier 0 < a < m
4 c =The increment 0 ≤ c < m
5 X0 =The seed or start value. 0 ≤ X0 < m

This method gives random numbers over [0, m]



Project

Linear Congruential Generators

Introduced by D.H.Lehmer around 1949.
The generator is defined by the

Xn+1 = (aXn + c)modm

Where,
1 {Xn} = Sequence of pseudorandom values
2 m =The modulus m > 0
3 a =The multiplier 0 < a < m
4 c =The increment 0 ≤ c < m
5 X0 =The seed or start value. 0 ≤ X0 < m

This method gives random numbers over [0, m]



Project

Linear Congruential Generators

Introduced by D.H.Lehmer around 1949.
The generator is defined by the

Xn+1 = (aXn + c)modm

Where,
1 {Xn} = Sequence of pseudorandom values
2 m =The modulus m > 0
3 a =The multiplier 0 < a < m
4 c =The increment 0 ≤ c < m
5 X0 =The seed or start value. 0 ≤ X0 < m

This method gives random numbers over [0, m]



Project

Linear Congruential Generators

Introduced by D.H.Lehmer around 1949.
The generator is defined by the

Xn+1 = (aXn + c)modm

Where,
1 {Xn} = Sequence of pseudorandom values
2 m =The modulus m > 0
3 a =The multiplier 0 < a < m
4 c =The increment 0 ≤ c < m
5 X0 =The seed or start value. 0 ≤ X0 < m

This method gives random numbers over [0, m]



Project

Linear Congruential Generators

Introduced by D.H.Lehmer around 1949.
The generator is defined by the

Xn+1 = (aXn + c)modm

Where,
1 {Xn} = Sequence of pseudorandom values
2 m =The modulus m > 0
3 a =The multiplier 0 < a < m
4 c =The increment 0 ≤ c < m
5 X0 =The seed or start value. 0 ≤ X0 < m

This method gives random numbers over [0, m]



Project

Linear Congruential Generators

Introduced by D.H.Lehmer around 1949.
The generator is defined by the

Xn+1 = (aXn + c)modm

Where,
1 {Xn} = Sequence of pseudorandom values
2 m =The modulus m > 0
3 a =The multiplier 0 < a < m
4 c =The increment 0 ≤ c < m
5 X0 =The seed or start value. 0 ≤ X0 < m

This method gives random numbers over [0, m]



Project

Linear Congruential Generators

Introduced by D.H.Lehmer around 1949.
The generator is defined by the

Xn+1 = (aXn + c)modm

Where,
1 {Xn} = Sequence of pseudorandom values
2 m =The modulus m > 0
3 a =The multiplier 0 < a < m
4 c =The increment 0 ≤ c < m
5 X0 =The seed or start value. 0 ≤ X0 < m

This method gives random numbers over [0, m]



Project

Linear Congruential Generators

Introduced by D.H.Lehmer around 1949.
The generator is defined by the

Xn+1 = (aXn + c)modm

Where,
1 {Xn} = Sequence of pseudorandom values
2 m =The modulus m > 0
3 a =The multiplier 0 < a < m
4 c =The increment 0 ≤ c < m
5 X0 =The seed or start value. 0 ≤ X0 < m

This method gives random numbers over [0, m]



Project

Linear Congruential Generators

The sequence is not random for all choices of the parameters.
We have to choose them carefully to get a long chain of
random numbers.
Eventually the process will fall in a loop.
But we have to be careful that the length of the loop is large
enough.
Here is an example where bad choices of the parameters give
a sequence which is perfectly non-random.



Project

Linear Congruential Generators

The sequence is not random for all choices of the parameters.
We have to choose them carefully to get a long chain of
random numbers.
Eventually the process will fall in a loop.
But we have to be careful that the length of the loop is large
enough.
Here is an example where bad choices of the parameters give
a sequence which is perfectly non-random.



Project

Linear Congruential Generators

The sequence is not random for all choices of the parameters.
We have to choose them carefully to get a long chain of
random numbers.
Eventually the process will fall in a loop.
But we have to be careful that the length of the loop is large
enough.
Here is an example where bad choices of the parameters give
a sequence which is perfectly non-random.



Project

Linear Congruential Generators

The sequence is not random for all choices of the parameters.
We have to choose them carefully to get a long chain of
random numbers.
Eventually the process will fall in a loop.
But we have to be careful that the length of the loop is large
enough.
Here is an example where bad choices of the parameters give
a sequence which is perfectly non-random.



Project

Linear Congruential Generators

The sequence is not random for all choices of the parameters.
We have to choose them carefully to get a long chain of
random numbers.
Eventually the process will fall in a loop.
But we have to be careful that the length of the loop is large
enough.
Here is an example where bad choices of the parameters give
a sequence which is perfectly non-random.



Project

Linear Congruential Generators

Take m = 10 and X0 = a = c = 7. Then the sequence
obtained is:

7, 6, 9, 0, 7, 6, 9, 0, ...

This shows that the sequence is not random for all choices of
the parameters.
Now we will concentrate on choosing the combination of
parameters which will give a good result.



Project

Linear Congruential Generators

Take m = 10 and X0 = a = c = 7. Then the sequence
obtained is:

7, 6, 9, 0, 7, 6, 9, 0, ...

This shows that the sequence is not random for all choices of
the parameters.
Now we will concentrate on choosing the combination of
parameters which will give a good result.



Project

Linear Congruential Generators

Take m = 10 and X0 = a = c = 7. Then the sequence
obtained is:

7, 6, 9, 0, 7, 6, 9, 0, ...

This shows that the sequence is not random for all choices of
the parameters.
Now we will concentrate on choosing the combination of
parameters which will give a good result.



Project

Linear Congruential Generators

Choice of Multiplier ‘a’
When a = 0 Xn = c mod m which is obviously not random.
When a = 1, Xn = (X0 + nc)mod m amd the sequence will
not behave like a random sequence.
So in general we take a ≥ 2

Choice of Modulus ‘m’
First we should not take m = 2, then the sequence would at
best have a form 0, 1, 0, 1, 0, 1, ...

If w is the word size of the computer a choice of m may be
w ± 1.
Another choice may be the largest prime number < w.



Project

Linear Congruential Generators

Choice of Multiplier ‘a’
When a = 0 Xn = c mod m which is obviously not random.
When a = 1, Xn = (X0 + nc)mod m amd the sequence will
not behave like a random sequence.
So in general we take a ≥ 2

Choice of Modulus ‘m’
First we should not take m = 2, then the sequence would at
best have a form 0, 1, 0, 1, 0, 1, ...

If w is the word size of the computer a choice of m may be
w ± 1.
Another choice may be the largest prime number < w.



Project

Linear Congruential Generators

Choice of Multiplier ‘a’
When a = 0 Xn = c mod m which is obviously not random.
When a = 1, Xn = (X0 + nc)mod m amd the sequence will
not behave like a random sequence.
So in general we take a ≥ 2

Choice of Modulus ‘m’
First we should not take m = 2, then the sequence would at
best have a form 0, 1, 0, 1, 0, 1, ...

If w is the word size of the computer a choice of m may be
w ± 1.
Another choice may be the largest prime number < w.



Project

Linear Congruential Generators

Choice of Multiplier ‘a’
When a = 0 Xn = c mod m which is obviously not random.
When a = 1, Xn = (X0 + nc)mod m amd the sequence will
not behave like a random sequence.
So in general we take a ≥ 2

Choice of Modulus ‘m’
First we should not take m = 2, then the sequence would at
best have a form 0, 1, 0, 1, 0, 1, ...

If w is the word size of the computer a choice of m may be
w ± 1.
Another choice may be the largest prime number < w.



Project

Linear Congruential Generators

Choice of Multiplier ‘a’
When a = 0 Xn = c mod m which is obviously not random.
When a = 1, Xn = (X0 + nc)mod m amd the sequence will
not behave like a random sequence.
So in general we take a ≥ 2

Choice of Modulus ‘m’
First we should not take m = 2, then the sequence would at
best have a form 0, 1, 0, 1, 0, 1, ...

If w is the word size of the computer a choice of m may be
w ± 1.
Another choice may be the largest prime number < w.



Project

Linear Congruential Generators

Choice of Multiplier ‘a’
When a = 0 Xn = c mod m which is obviously not random.
When a = 1, Xn = (X0 + nc)mod m amd the sequence will
not behave like a random sequence.
So in general we take a ≥ 2

Choice of Modulus ‘m’
First we should not take m = 2, then the sequence would at
best have a form 0, 1, 0, 1, 0, 1, ...

If w is the word size of the computer a choice of m may be
w ± 1.
Another choice may be the largest prime number < w.



Project

Linear Congruential Generators(periodicity)

Since only m different values are possible, the period surely
can not be larger than m.
It can be proved that a linear congruential method has period
length m iff

1 c is relatively prime to m,
2 b = a − 1 is a multiple of p, for every prime p dividing m.
3 b is a multiple of 4, if m is a multiple of 4, b = a − 1.



Project

Linear Congruential Generators(periodicity)

Since only m different values are possible, the period surely
can not be larger than m.
It can be proved that a linear congruential method has period
length m iff

1 c is relatively prime to m,
2 b = a − 1 is a multiple of p, for every prime p dividing m.
3 b is a multiple of 4, if m is a multiple of 4, b = a − 1.



Project

Linear Congruential Generators(periodicity)

Since only m different values are possible, the period surely
can not be larger than m.
It can be proved that a linear congruential method has period
length m iff

1 c is relatively prime to m,
2 b = a − 1 is a multiple of p, for every prime p dividing m.
3 b is a multiple of 4, if m is a multiple of 4, b = a − 1.



Project

Linear Congruential Generators(periodicity)

Since only m different values are possible, the period surely
can not be larger than m.
It can be proved that a linear congruential method has period
length m iff

1 c is relatively prime to m,
2 b = a − 1 is a multiple of p, for every prime p dividing m.
3 b is a multiple of 4, if m is a multiple of 4, b = a − 1.



Project

Linear Congruential Generators(periodicity)

Since only m different values are possible, the period surely
can not be larger than m.
It can be proved that a linear congruential method has period
length m iff

1 c is relatively prime to m,
2 b = a − 1 is a multiple of p, for every prime p dividing m.
3 b is a multiple of 4, if m is a multiple of 4, b = a − 1.



Project

Merits and Demerits

Fast and Requires minimal memory.
Proper choice of parameters gives ‘good’ sequence of PRNs.
It is not, in general, cryptographically secure.
If the parameters are not properly chosen it may have very
short period.



Project

Merits and Demerits

Fast and Requires minimal memory.
Proper choice of parameters gives ‘good’ sequence of PRNs.
It is not, in general, cryptographically secure.
If the parameters are not properly chosen it may have very
short period.



Project

Merits and Demerits

Fast and Requires minimal memory.
Proper choice of parameters gives ‘good’ sequence of PRNs.
It is not, in general, cryptographically secure.
If the parameters are not properly chosen it may have very
short period.



Project

Merits and Demerits

Fast and Requires minimal memory.
Proper choice of parameters gives ‘good’ sequence of PRNs.
It is not, in general, cryptographically secure.
If the parameters are not properly chosen it may have very
short period.



Project

Acknowledgement

The Art of Computer Programming, Vol-2, Knuth
Dr. Deepayan Sarkar
Arijit Dutta, (M.Stat 2nd year)


