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Abstract

We study dominant strategy incentive compatibility in a mechanism design setting

with contingent contracts where the payoff of each agent is observed by the principal

and can be contracted upon. Our main focus is on the class of linear contracts (one of

the most commonly used contingent contracts) which consist of a transfer and a flat

rate of profit sharing. We characterize outcomes implementable by linear contracts and

provide a foundation for them by showing that, in finite type spaces, every social choice

function that can be implemented using a more general nonlinear contingent contract

can also be implemented using a linear contract. We then qualitatively describe the

set of implementable outcomes. We show that a general class of social welfare criteria

can be implemented. This class contains social choice functions (such as the Rawl-

sian) which cannot be implemented using (uncontingent) transfers. Under additional

conditions, we show that only social choice functions in this class are implementable.

1 Introduction

The classic setting in mechanism design with quasi-linear payoffs is the following. Agents

privately observe their types and make reports to the principal. Based on these reports, the

principal chooses an alternative and transfer amounts. Agents then realize their payoff from

the chosen alternative and their final payoff is this payoff less their transfer amount. We

refer to such mechanisms as quasilinear mechanisms. An important feature of this setting is

that the mechanism is a function only of the reports and not of the realized payoffs of the
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agents. This could either be because the principal cannot observe these payoffs or that they

are not verifiable by third parties and hence contracts based on them cannot be enforced.

However, in many practical settings, principals use contingent contracts. An agent’s pay-

off from such a contract depends not only on the reported types but also on the realized

payoff (which is observed and contractible). Perhaps the simplest and most commonly ob-

served example of a contingent contract is a linear contract. Here, the contract consists of a

lump sum transfer and a flat percentage (such as a royalty rate or a tax) which determines

how the principal and an agent share the latter’s payoff. Though such contracts can be useful

in settings where agents are cash constrained, they primarily serve the purpose of providing

a larger set of tools using which a principal can incentivize the agents.

Indeed, contingent contracts are ubiquitous and settings where they are used include

publishing agreements with authors, musicians seeking record labels, the sale of patents,

entrepreneurs selling their firms to acquirers or soliciting venture capital and sports asso-

ciations selling broadcasting rights. They are employed in the form of taxes and tolls to

finance public goods provision. Auctions are often conducted in which buyers bid using such

contracts as opposed to simply making cash bids. Examples include the sale of private com-

panies and divisions of public companies, government sales of oil leases, wireless spectrum

and highway building contracts.1

In this paper, our aim is to study dominant strategy implementation using contingent

contracts. In our model, the agents first report their types to the principal who then chooses

an alternative using a social choice function (scf) which depends on these reports. The

contractible stochastic payoff of an agent, the distribution of which depends on the agent’s

true type and the chosen alternative, is then realized. The final payoff to an agent from the

contingent contract is an increasing function of his realized payoff and the vector of types

reported by all the agents. A mechanism in this context consists of an scf and a contingent

contract for each agent. We say that an scf is implementable (using a linear contract) if

there exists a (linear) contingent contract such that truthful reporting of type is a dominant

strategy for each agent in the resulting mechanism.

Surprisingly, we show that any scf implementable using a general nonlinear contingent

contract can also be implemented using a linear contract. Put differently, this result states

that the set of scfs implementable by linear contracts is not expanded by using contingent

contracts that depend nonlinearly on the realized payoff of the agents. This result can

be interpreted as a foundation for linear contracts and provides one explanation for their

ubiquity in practical applications. Further, we show that the set of scfs implementable by

linear contracts is characterized by a condition called acyclicity, which is simple to interpret

1While our focus is on settings with adverse selection, it should be pointed out that contingent contracts

are also typical in problems with moral hazard where an agent’s final payoff depends on the observed output.
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and apply.

It is natural to expect that, in an environment where the principal can contract on the

realized payoffs, the set of implementable outcomes is larger than those that can be attained

by simply using (uncontingent) transfers. We identify a family of scfs called aggregate payoff

maximizers and show that they are acyclic, and hence, implementable. Examples of aggregate

payoff maximizers include the efficient and the Rawlsian (or max-min) scfs, of which the

latter is known to be not implementable using transfers alone. When the type space satisfies

an additional richness condition, we show that the only implementable scfs satisfying an

independence condition are the aggregate payoff maximizers. Thus, under these additional

conditions, we provide a complete, qualitative description of the set of implementable scfs.

Despite the implementability equivalence between linear and contingent contracts, it

should be pointed out that payoff equivalence between these contract forms does not hold

(we provide an simple example demonstrating this). However, we provide a simple argument

which yields an important property of the payoffs achievable by linear contracts. They can

always be used to achieve efficiency with budget balance overcoming the known budget deficit

shortcoming of Vickrey-Clarke-Groves transfers (Green and Laffont, 1979).

1.1 Related Literature

This paper is related to a few different strands of literature. Mechanism design with contin-

gent contracts originated with the literature on security auctions (Hansen, 1985), a recent

survey is Skrzypacz (2013). This paper has been partly inspired by the recent work which

discuss the revenue ranking of auctions conducted with different contingent contracts (De-

Marzo et al., 2005; Che and Kim, 2010; Abhishek et al., 2013). These papers study how a

seller’s revenue is affected by the “steepness” of securities that are admissible as bids. While

our environment is more general, our goal is comparatively modest in that we simply aim

to characterize implementability (and not to derive optimal contracts). Additionally, since

we do not focus on auctions, we do not need the space of admissible contingent contracts

to be ranked - securities are completely ordered and better securities provide a higher ex-

pected payoff to the seller irrespective of bidder type. This restriction is required in security

auctions to ensure that a winner can be declared based on the bids but before the payoff

is realized. The linear contracts we consider cannot not be ranked ex-ante, and hence, are

explicitly prohibited in the security auctions literature.

Perhaps one of the reasons that contingent contracts have received limited attention is

because of an observation of Crémer (1987). He argued that in a security auction, the prin-

cipal could only choose to sell a very small share of the future profit. By offering a very

low share of the ex-post payoff to the agents, the principal can make the information rents
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negligible. In other words, the principal can always get arbitrarily close to extracting full

surplus. Of course, while this is a sound theoretical argument, it is seldom observed in real

world for a number of reasons. For instance, the principal may be liquidity constrained and

hence, may be unable to finance the necessary upfront payment to buy the agent. In other

cases, as DeMarzo et al. (2005) argue, the agents may have to make noncontractible, fixed,

costly investments in order for profits to be realized. If the ex-post payoffs offered by the

contingent contract are too low, the agent may choose to just accept the upfront payment

and not to undertake the investment. Alternatively, agents may have type dependent or even

private outside options and must be offered a higher payoff by the contingent contract (Ek-

mekci et al., 2014). In practice, environments which feature contingent contracts often have

various such legal or practical restrictions which may prevent the principle from extracting

all the surplus. For these applications, our characterization of incentive compatibility is an

important first step which can help in the derivation of optimal contracts.

This paper is also related to the literature on dominant strategy implementation with

transfers - a seminal paper is Rochet (1987). Perhaps the closest paper to ours in this

literature is Rahman (2011) who characterizes implementation in an environment where the

principal can observe and condition the mechanism on a noisy signal which is correlated

with the agent’s type. The signal in his model depends only on the type and not on the

allocation, and, further, both the scf and the payments are functions both of the signal and

the agent’s report. By contrast, in our setting, the scf depends only on the reports, but we

consider contingent contracts, whereas he restricts attention to transfers.

2 The Deterministic Model

There is a set of agents N := {1, . . . , n} who face a mechanism designer (principal). The set

of alternatives is A. For ease of exposition, we begin by examining a deterministic model

and the majority of the analysis in the paper will be conducted in this framework. Here, the

type of an agent i is given by a map vi : A→ R and Vi denotes the set of all possible types

of agent i. Using the standard notation, V := V1 × . . . × Vn denotes the set of types of all

the agents and V−i :=
∏

j 6=i Vj is the set of types of all agents except i. In this deterministic

environment, the ex-post payoff of agent i with type vi for an alternative a is given by vi(a),

and is observed by both the agent and the mechanism designer.2 For notational simplicity,

we assume that there are no two distinct types vi, v
′
i such that vi(a) = v′i(a) for all a ∈ A.

In Section 4, we describe the general model with uncertainty. There, the ex-post payoff

of each agent is a random variable, the distribution of which depends on his type and the

alternative chosen. At the interim stage (that is, after the type is realized and before an

2We use the term ‘payoff’ to distinguish this from the final ‘payoff’ that the contract awards.
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alternative is chosen), this ex-post payoff is not known to both the mechanism designer and

the agents.

A social choice function (scf) is a map f : V → A. This map specifies the chosen

alternative for every reported profile of types.

The fundamental difference separating our model from the standard mechanism design

setting is that the ex-post payoff of every agent is contractible. A commonly observed contract

which has this feature is a linear contract. A linear contract for agent i consists of two

mappings, a royalty (or tax) rule ri : V → (0, 1] and a transfer rule ti : V → R. A linear

mechanism (f, (r1, t1), . . . , (rn, tn)) consists of a linear contract (ri, ti) for each agent i and

an scf f . The payoff assigned to agent i by such a linear mechanism is

ri(v
′
i, v
′
−i)vi(f(v′i, v

′
−i))− ti(v′i, v′−i),

if his true type is vi and the profile of reported types is (v′i, v
′
−i). In words, a linear contract

specifies a transfer amount and a fraction of the payoff to be shared. Notice that we do

not allow ri(vi, v−i) = 0 for any profile of types (vi, v−i). The main reason we impose

this restriction is to prevent the principal from “buying” the agents, thereby making them

indifferent amongst reports and trivializing the implementation problem.

A special case of the linear mechanism is the standard quasi-linear mechanism (f, t1, . . . , tn),

in which the contracts just specify transfers, and where ri(·) = 1 for all i. The payoff assigned

to agent i by such a quasi-linear mechanism is vi(f(v′i, v
′
−i)) − ti(v′i, v′−i) if the agent’s true

type is vi and the profile of reported types is (v′i, v
′
−i).

An important aspect of linear contracts is that the payoff awarded by the contract is

increasing in the realized payoff vi(·) of the agent since the ri’s are restricted to being pos-

itive. We now define a general nonlinear class of contracts which satisfy this property. A

contingent contract of agent i is a map si : R × V → R which is strictly increasing in

the first argument. A contingent contract of agent i assigns a payoff to him for every real-

ized ex-post payoff and for every profile of reported types. A contingent mechanism is

(f, s1, . . . , sn), where f is an scf and (s1, . . . , sn) are the contingent contracts of the agents.

The payoff assigned to agent i by such a contingent mechanism is si(vi(f(v′i, v
′
−i)), v

′
i, v
′
−i), if

his true type is vi and the profile of reported types is (v′i, v
′
−i). Note that, since si is strictly

increasing in the first argument, the assigned payoff by a contingent contract is strictly larger

for greater realized payoffs. A linear contract is a special case of a contingent contract.

While the contingent contracts we consider are very general and model many real world

contracts, they are with loss of generality. Requiring si to be strictly increasing in the first

argument is not completely innocuous as it rules out certain commonly used contracts which

are weakly increasing such as call options and convertible debt. Again, this assumption is

made is to prevent the principal from making agents indifferent amongst reports (for instance,
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by buying the agents). Additionally, notice that we do not allow the payoff to agent i from

the contingent contract to depend on the realized payoffs of the other agents but only on

their announced types. This is true in most real world contingent contracts and, to the best

of our knowledge, this simplifying assumption is made in all of the papers in the literature.

Most importantly, in this deterministic version of our framework, the monotonicity re-

striction may prevent the principal from punishing detectable misreports from the agent.

Here, the realized payoff may reveal the true type of the agent and thus, in principle, con-

tracts can be written which impose large punishments whenever misreports are detected.

Such punishments may not be possible using a contingent contract as the monotonicity re-

quirement will then impose a restriction on the payoffs that the contract can offer other

agents. That said, we should point out that this deterministic version of our model is merely

for expositional purposes and in the general version of our model with uncertainty (described

in Section 4), realized payoffs do not generally reveal types.

We now define the notion of dominant strategy implementation that we use.

Definition 1 An scf f is implementable by a linear contract in dominant strategies

if there exist linear contracts ((r1, t1), . . . , (rn, tn)) such that ∀i ∈ N , ∀v−i ∈ V−i,

ri(vi, v−i)vi(f(vi, v−i))− ti(vi, v−i) ≥ ri(v
′
i, v−i)vi(f(v′i, v−i))− ti(v′i, v−i) ∀ vi, v′i ∈ Vi.

Then, we say that the linear mechanism (f, (r1, t1), . . . , (rn, tn)) is incentive compatible.

The notion of implementation with contingent contracts can be defined analogously.

Definition 2 An scf f is implementable (by a contingent contract) in dominant strategies

if there exist contingent contracts (s1, . . . , sn) such that ∀i ∈ N , ∀v−i ∈ V−i,

si(vi(f(vi, v−i)), vi, v−i) ≥ si(vi(f(v′i, v−i)), v
′
i, v−i) ∀ vi, v′i ∈ Vi.

Then, we say that the contingent mechanism (f, s1, . . . , sn) is incentive compatible.

3 Characterizing Implementability with Linear Contracts

In this section, we present our main characterization result: Every implementable scf can also

be implemented by a linear contract. We also give a qualitative description of implementable

scfs. To provide intuition on the role played by payoff sharing in expanding the set of

implementable outcomes, we begin by presenting an example of Bikhchandani et al. (2006)

(see their supplemental material) of an scf which cannot be implemented by transfers but

can be implemented by linear contracts.
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Example 1 Suppose there are two agents with the type space given by V1 = {v1
1, v

2
1},

V2 = {v2} and the set of alternatives is A = {a1, a2}. The payoffs are given as follows:

v1
1 v2

1 v2

a1 3 1 4

a2 5 2 2

Consider the Rawlsian scf: f(vi1, v2) = argmaxa∈A min{vi1(a), v2(a)} = ai for i ∈ {1, 2}.
If f was implementable by transfers, then incentive compatibility for agent 1 would imply

vi1(f(vi1, v2))− t1(vi1, v2) ≥ vi1(f(vi
′

1 , v2))− t1(vi
′

1 , v2) for i, i′ ∈ {1, 2}.

Summing both constraints, we get 3+2 ≥ 5+1, contradicting implementability by transfers.

Intuitively, to prevent v1
1 from misreporting as v2

1, the transfer from the latter report should

be at least 2 more than the former as v1
1 gets a higher payoff from a2. But for any such

transfers, type v2
1 would prefer to report as v1

1 as there would be a saving of least 2 in

transfers and a loss of only 1 from payoff from the worse alternative a1.

Instead, consider the following linear contract for agent 1:

r1(v1
1, v2) = 1, t1(v1

1, v2) = 0 and r1(v2
1, v2) =

1

2
, t1(v2

1, v2) = 0.

This is incentive compatible as r1(v1
1, v2)v1

1(f(v1
1))−t1(v1

1, v2) = 3 > 5
2

= r1(v2
1, v2)v1

1(f(v2
1))−

t2(v2
1, v2) and r1(v2

1, v2)v1
2(f(v2

1))− t1(v2
1, v2) = 1 ≥ 1 = r1(v1

1, v2)v1
2(f(v1

1))− t2(v1
1, v2).

Here, by keeping half of the payoff of type v2
1 agent, incentive compatibility can be

achieved even without additional transfers. Doing so, makes the agent with type v2
1 indifferent

and makes the payoff from truthtelling strictly higher for agent with type v1
1. In general,

however, a combination of royalty rates and transfers are required for implementation.

3.1 A Foundation for Linear Contracts

We now characterize the set of scfs that are implementable by linear contracts and use

this to show our equivalence result. First, we provide a simple necessary condition for

implementability.

Given an scf f , for every i ∈ N and for every v−i ∈ V−i, we define two binary relations

�f
v−i

and �f
v−i

on Vi as follows. For notational convenience, we write �f≡�f
v−i

and �f≡�f
v−i

;

the dependence on v−i is implicitly implied. Fix an i ∈ N and v−i ∈ V−i. For any, vi, v
′
i ∈ Vi,

we define

v′i �f vi if v′i(f(vi, v−i)) ≥ vi(f(vi, v−i)).

Further, for any vi, v
′
i ∈ Vi, we define v′i �f vi if v′i(f(vi, v−i)) > vi(f(vi, v−i)).
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A few comments about these binary relations are in order. In words, v′i �f vi if the

type v′i gets a higher payoff than type vi from the alternative chosen by the scf f for the

latter type. Clearly, the relation �f is reflexive. However, note that the relation is nei-

ther antisymmetric, complete nor transitive. It is entirely possible that for types v′i 6= vi,

v′i(f(vi, v−i)) ≥ vi(f(vi, v−i)) and vi(f(v′i, v−i)) ≥ v′i(f(v′i, v−i)) both hold simultaneously

(even with either or both of the inequalities being strict) which implies that �f need not be

antisymmetric. Similarly, �f may neither be complete nor transitive.

Definition 3 An scf f is 2-acyclic if for all i ∈ N , for all v−i ∈ V−i, and for every pair

of types vi, v
′
i ∈ Vi with vi �f v′i, we have v′i �f vi.

An scf f is acyclic if for all i ∈ N , for all v−i ∈ V−i, and for every sequence of types

v1
i , . . . , v

k
i ∈ Vi with v1

i �f . . . �f vki , we have vki �f v1
i .

In words, f is 2-acyclic if there does not exist a cycle of two types in the relation �f (with

at least one direction being strict). More generally, f is acyclic if there do not exist such

cycles of any finite length. The simple lemma below shows that this condition is necessary

for implementability.3

Lemma 1 If an scf is implementable, it is acyclic.

Proof : Let f be an scf that is implementable by contingent contracts (s1, . . . , sn). Fix v−i ∈
V−i and consider a sequence of types v1

i , . . . , v
k
i ∈ Vi for agent i, such that v1

i �f . . . �f vki .

Hence, vji (f(vj+1
i , v−i)) ≥ vj+1

i (f(vj+1
i , v−i)) for all j ∈ {1, . . . , k − 1}. This implies that

si(v
j
i (f(vji , v−i)), v

j
i , v−i) ≥ si(v

j
i (f(vj+1

i , v−i)), v
j+1
i , v−i) ≥ si(v

j+1
i (f(vj+1

i ), v−i), v
j+1
i , v−i).

where the first inequality follows from the incentive compatibility of si and the second in-

equality follows from monotonicity of si in the first argument. Applying this inequality

sequentially over j ∈ {1, . . . , k − 1}, we get

si(v
1
i (f(v1

i , v−i)), v
1
i , v−i) ≥ si(v

k
i (f(vki , v−i)), v

k
i , v−i) ≥ si(v

k
i (f(v1

i , v−i)), v
1
i , v−i),

where the last inequality follows from incentive compatibility. But monotonicity of si implies

that v1
i (f(v1

i , v−i)) ≥ vki (f(v1
i , v−i)). Hence, vki � v1

i , which implies that f is acyclic. �

The following theorem shows that for finite type spaces, this condition is also sufficient

for implementation. Importantly, acyclicity is also sufficient for implementation by a linear

contract. The proof is in the Appendix.

3In contrast to our notion of acyclicity over types, Rochet (1987) described an acyclicity condition over

alternatives which is necessary (but not sufficient) for implementation with transfers. His condition is neither

necessary nor sufficient for implementation with contingent contracts.
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Theorem 1 Suppose the type space is finite. Then, an scf is implementable if and only if

it is acyclic. Moreover, every implementable scf can be implemented by a linear contract.

Remark (i). For every acyclic scf, the proof explicitly constructs a linear contract that

implements it. Under a mild condition on the type space, we show that a linear contract can

be constructed such that the resulting mechanism is individually rational and the transfer of

each agent is non-negative (see the remark immediately following the proof). Further, since

each ri lies in (0, 1], the planner neither needs to make payments to nor take away large

amount of payoff from the agents.4

Remark (ii). Finite types are required for the equivalence between implementability by

contingent and linear contracts. The supplement (Deb and Mishra, 2014) contains an exam-

ple of a single agent with a countably infinite type space where this equivalence does not hold.

Remark (iii). Theorem 1 uncovers a parallel with Afriat’s theorem (Afriat, 1967) of re-

vealed preference in consumer theory.5 The acyclicity condition we use to characterize im-

plementability is analogous to the Generalized Axiom of Revealed Preference (Varian, 1982),

which is a necessary and sufficient condition for a finite price consumption data set to be

rationalized by a utility maximizing consumer. Further, Afriat shows that a data set can

be rationalized by a utility function if and only if it can be rationalized by a concave payoff

function. Analogously, we show that acyclicity is necessary and sufficient for implementabil-

ity using either contingent or linear contingent contracts. By contrast, implementability by

transfers is characterized by cycle monotonicity which is stronger than acyclicity.6

3.2 A Qualitative Description of Implementable SCFs

In this section, we qualitatively describe the set of implementable scfs. For this, we need

to introduce some new notation. Given a type profile v ≡ (v1, . . . , vn) ∈ V , we can define

a vector va ≡ (v1(a), . . . , vn(a)) ∈ Rn for each alternative a ∈ A. This is the payoff vector

of the agents corresponding to alternative a. Given a type space V , it induces a set of

permissible payoff vectors for each alternative. We will denote the set of payoff vectors va of

alternative a as Ua.

4This is true even for standard quasi-linear mechanisms - every implementable scf can be implemented

(under reasonable conditions) using individually rational and non-negative transfers (Kos and Messner, 2013).
5Beginning with (Rochet, 1987), there have been informal analogies made between these two problems.
6Implementability of an scf by transfers can be considered to be analogous to rationalizability of choice

data by quasilinear utility functions (Brown and Calsamiglia, 2007).
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We will now define the notion of an aggregate payoff function. Define the following set

X := {(a, x) : a ∈ A, x ∈ Ua}.

An aggregate payoff function is a map W : X → R. An aggregate payoff function W

is monotone if for every a ∈ A and every x, y ∈ Ua such that y ≥ x, we have W (a, y) ≥
W (a, x).7

Definition 4 A social choice function f is an aggregate payoff maximizer (APM) if

there exists a monotone aggregate payoff function W : X → R such that at every profile

v ∈ V , we have

f(v) ∈ argmax
a∈A

W (a, va).

Further, an APM f satisfies consistent tie-breaking if there exists a strict linear order P on

A such that at every profile v ∈ V , f(v) is the maximum alternative in the set {a ∈ A :

W (a, va) ≥ W (b, vb) ∀ b ∈ A} with respect to the strict linear order P .

This class of scfs include a number of commonly used social welfare functions. An example

is the class of affine maximizers. An scf f is an affine maximizer if there exist non-negative

weights (γ1, . . . , γn) ∈ Rn
+ \ {0} and a map κ : A→ R such that for all v ∈ V ,

f(v) ∈ argmax
a∈A

[∑
i∈N

γivi(a)− κ(a)

]
.

Another example is the Max-min or Rawlsian scf. An scf f is a max-min scf if for all v ∈ V ,

f(v) ∈ argmax
a∈A

min
i∈N

vi(a).

As Example 1 demonstrated, the Rawlsian scf is not implementable using transfers in general.

The next result shows that an APM with consistent tie-breaking is acyclic and hence

implementable. The proof demonstrates that acyclicity is easy to apply.

Theorem 2 In a finite type space, every APM with consistent tie-breaking is implementable.

Proof : We will show that if f is an APM satisfying consistent tie-breaking, then it is

acyclic. By Theorem 1, we will be done. Let P be the linear order on the set of alternatives

that is used to consistently break ties in f . Further, let W be a monotone aggregate payoff

function such that f(v) ∈ argmaxa∈AW (a, va) for every v ∈ V .

7For any x, y ∈ Rn, if xi ≥ yi for all i ∈ N , we write x ≥ y.
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Fix an agent i ∈ N and type profile of other agents at v−i. Consider a sequence of types

v1
i �f . . . �f vki . Pick any j ∈ {1, . . . , k − 1}. Let f(vji , v−i) = aj and f(vj+1

i , v−i) = aj+1.

Since vji �f vj+1
i , we have vji (aj+1) ≥ vj+1

i (aj+1). Denote the payoff vector of any alternative c

in type profile (vji , v−i) as vj,c. Since f(vji , v−i) = aj, we have W (aj, v
j,aj) ≥ W (aj+1, v

j,aj+1)

and monotonicity of W gives W (aj+1, v
j,aj+1) ≥ W (aj+1, v

(j+1),aj+1). Combining these in-

equalities, we get

W (aj, v
j,aj) ≥ W (aj+1, v

j,aj+1) ≥ W (aj+1, v
(j+1),aj+1).

Using it over all j ∈ {1, . . . , k − 1}, we get that

W (a1, v
1,a1) ≥ W (a2, v

1,a2) ≥ W (a2, v
2,a2) ≥ . . . ≥ . . . ≥ W (ak, v

k−1,ak) ≥ W (ak, v
k,ak).

Since f(vki , v−i) = ak, we know that W (ak, v
k,ak) ≥ W (a1, v

k,a1). Hence, we get

W (a1, v
1,a1) ≥ W (a1, v

k,a1). (1)

Now, assume for contradiction that vki �f v1
i . So, vki (a1) > v1

i (a1). By monotonicity of W ,

we have W (a1, v
k,a1) ≥ W (a1, v

1,a1). Using Inequality (1), we get

W (a1, v
1,a1) = W (a2, v

1,a2) = W (a2, v
2,a2) = . . . = W (ak, v

k,ak) = W (a1, v
k,a1) = W (a1, v

1,a1).

Now, pick any j ∈ {1, . . . , k − 1}. Since W (aj, v
j,aj) = W (aj+1, v

j,aj+1), by consistent

tie-breaking, it must be that either aj = aj+1 or ajPaj+1. Using it for all j ∈ {1, . . . , k− 1},
we see that either a1 = a2 = . . . = ak or a1Pak. But W (ak, v

k,ak) = W (a1, v
k,a1) implies that

a1Pak is not possible. Hence, a1 = a2 = . . . = ak = a for some a ∈ A. But this implies that

v1
i (a) ≥ v2

i (a) ≥ . . . ≥ vki (a), and this contradicts that vki �f v1
i . �

Under additional conditions, we can show the converse of Theorem 2. We require the

following richness in type space.

Definition 5 The type space V is rich if the set of profiles of payoff vectors is Ua×U b× . . .

This richness condition requires that every combination of payoff vectors is a feasible type

profile. For instance, if va and v′a are two payoff vectors corresponding to alternative a in Ua

and (va, v−a) is a profile of payoff vectors at a type profile, then the profile of payoff vectors

(v′a, v−a) must correspond to a valid type profile in the type space V . Let U := Ua×U b× . . ..
We now impose an independence condition on the scfs. It is in the spirit of binary

independence used in the social choice theory literature (d’Aspremont and Gevers, 2002)

from where we borrow the terminology.
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Definition 6 An scf f satisfies binary independence if for every distinct pair of alter-

natives a, b ∈ A and every v, v′ ∈ V such that va = v′a, vb = v′b, f(v) = a implies that

f(v′) 6= b.

Binary independence requires that if a is chosen over b as the outcome by an scf at a

type profile, then b cannot be chosen at a different type profile in which the payoff vectors

corresponding to a and b are not changed. In other words, the scf must evaluate a and b

at any type profile independent of payoff vectors of other alternatives. The implication of

binary independence is well understood in social choice theory (d’Aspremont and Gevers,

2002). It helps us to break ties in a consistent manner. We now show that the APMs with

consistent tie-breaking are the only implementable scfs under binary independence. The

proof of this result is in the Appendix.

Theorem 3 In a finite and rich type space, the following are equivalent for an scf f .

1. f is an aggregate payoff maximizer with consistent tie-breaking.

2. f is implementable and satisfies binary independence.

3. f is 2-acyclic and satisfies binary independence.

Notice that Theorem 3 also shows that, under these additional conditions, the significantly

weaker 2-acyclicity is sufficient for implementation. It is worth comparing Theorem 3 to a

similar characterization for the quasi-linear mechanisms. Roberts (1979) showed that affine

maximizers are the only implementable scfs using quasi-linear mechanisms. Though Theo-

rem 3 can be viewed as counterpart of that result in the contingent contract environment,

there are significant differences. While we require a finite and rich type space with binary

independence, Roberts required a finite set of alternatives with at least three alternatives,

the type space to be the whole of R|A|, and the scf to be onto.

3.3 Discussion on Payoffs

While, we have provided a foundation for linear contracts in terms of implementability, a

natural question to ask is whether the payoffs from every contingent mechanism can also

be achieved by a linear mechanism. More precisely, given an scf f and contingent contracts

(s1, . . . , sn) that implement it, we ask if there exist linear contracts ((r1, t1), . . . , (rn, tn)) that

implement f such that

si(vi(f(vi, v−i)), vi, v−i) = ri(vi, v−i)vi(f(vi, v−i))− ti(vi, v−i) for all i ∈ N, vi ∈ Vi, v−i ∈ V−i.
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Note that this requirement is only for payoffs on the equilibrium path. The following single

agent example shows that this payoff equivalence does not hold.8

Example 2 Consider a single agent with type space V1 := {v1
1, v

2
1, v

3
1} and the set of alter-

natives A := {a1, a2, a3}. The payoffs are given below.

v1
1 v2

1 v3
1

a1 30 20 10

a2 30 20 10

a3 20 10 10

The scf f(vj1) = aj for j ∈ {1, 2, 3} is implemented by the following contingent contract:

s1(30, v1
1) = 20, s1(20, v1

1) = 5, s1(10, v1
1) = 1,

s1(30, v2
1) = 16, s1(20, v2

1) = 15, s1(10, v2
1) = 1,

s1(20, v3
1) = 10, s1(10, v3

1) = 5.

Now, suppose there is a payoff equivalent linear contract (r1, t1) that implements f . Then,

r1(v1)v1(f(v1))− t1(v1) = s1(v1(f(v1)), v1) for all v1 ∈ V1.

Incentive compatibility of the linear mechanism would then imply that for all v1, v
′
1,

s1(v′1(f(v′1)), v′1)− s1(v1(f(v1)), v1) ≤ r1(v′1)[v′1(f(v′1))− v1(f(v′1))]. (2)

Taking v′1 = v2
1 and v1 = v3

1 in Inequality (2), we get r1(v2
1) ≥ 1. Taking v′1 = v2

1 and v1 = v1
1

in Inequality (2), we get r1(v2
1) ≤ 1

2
, which is a contradiction.

Though payoff equivalence does not hold between linear mechanisms and non-linear

contingent mechanisms, we can show that linear contracts can expand the set of payoffs

achievable using quasilinear mechanisms. We do this by providing a simple and power-

ful application of linear contracts. It is well known that the efficient scf f ∗, defined as

f ∗(v) ∈ argmaxa∈A
∑

i∈N vi(a), can be implemented using the VCG mechanisms, but they

are not budget-balanced in many environments (Walker, 1980). However, it is easy to verify

that the following simple linear contract,

r∗i (v) =
1

n
, t∗i (v) = − 1

n

∑
j 6=i

vj(f
∗(v)) ∀ v ∈ V, ∀ i ∈ N,

8The failure of payoff equivalence is not driven by finite type space restriction and it is easy to construct

similar examples with a continuum of types. Further, the usual revenue/payoff equivalence in quasi-linear

environments requires that two transfers implementing the same scf must differ in payoffs by a constant.

However, the payoff equivalence that we seek is across two classes of contracts implementing the same scf.
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implements f ∗ and the resulting linear mechanism awards each agent an equal 1/n share of

the total social surplus. This implies that this mechanism is budget-balanced. In other words,

with linear contracts, the principal can always achieve efficiency without transferring money

to (or taking money from) the agents. We leave the important question of characterizing the

set of payoffs achievable using linear contracts for future research.

4 The General Model with Uncertainty

In this section, we present the general model with uncertainty and discuss how the results

in the previous section extend to this environment. For this, we will need some additional

notation. The type vi of the agent now determines the distribution of the ex-post payoff that

an agent receives from an alternative a. We denote by ui, the random variable for agent i

corresponding to the ex-post payoff. At the interim stage (that is, after realization of the

type and before an alternative is chosen), this payoff is not known to the agent and the

mechanism designer. It is assumed that when agent i has type vi, his ex-post payoff ui from

alternative a is drawn from R with cumulative distribution Ga
vi

which depends both on the

true type and the alternative. Note that since the payoff is a random variable, its realization

need not reveal the type of the agent.9 In a minor abuse of notation, we use vi(a) to denote

the expected payoff from alternative a or vi(a) =
∫
R uidG

a
vi

(ui).

We will impose the following restriction on the distribution of payoffs.

Definition 7 The distributions of payoffs are ordered by first order stochastic dominance

or simply ordered if for all i, vi, v
′
i ∈ Vi and for all a ∈ A, we have

either Ga
vi
�FOSD Ga

v′i
or Ga

v′i
�FOSD Ga

vi
,

where �FOSD is the first-order stochastic dominance relation.

This ordering requirement says that for every agent i and every alternative a ∈ A, the types

in Vi can be ex-ante ordered using the �FOSD relation. Note that this does not imply that

the ordering of types has to be the same across the different alternatives. To the best of

our knowledge, most of the theoretical work on mechanism design with contingent contracts

9Of course, if the principal knew the prior distribution over the agents’ types, the realized payoff would

allow him to update the prior. By contrast, if the principal does not know the type distribution, he will not

be able to make inference (dominant strategy implementation is appropriate for these cases). That said, we

allow the supports of the distributions of payoffs to vary over different alternatives. Hence, even without

prior knowledge of how the types are distributed, there may be certain realizations of payoff from which the

principal can back out the type of the agent.
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requires this assumption.10 Importantly, the deterministic environment (which corresponds

to the distributions being degenerate) we have studied in the previous sections is ordered in

the above sense.

Finally, as in the deterministic case, we assume for notation simplicity that there are no

duplicate types. In other words, for all agents i ∈ N , there are no two types vi, v
′
i ∈ Vi such

that vi(a) = v′i(a) for all a ∈ A.

We can now define an scf and the contracts analogously to the deterministic environment.

As before, an scf is a mapping f : V → A. Linear contracts are defined identically and consist

of functions ri : V → (0, 1] and ti : V → R for each agent i. Similarly, contingent contracts

are mappings si : R×V → R for each agent i which is strictly increasing in the first argument.

Dominant strategy implementation can be adapted in a natural way. Agents now compute

their expected payoff before reporting their types. The definition of implementability by linear

contracts looks identical to the deterministic case with the only difference being that the vi(·)
in the incentive compatibility constraints now denotes the expected payoff.

Definition 8 An scf f is implementable if there exist contingent contracts (s1, . . . , sn)

such that , ∀ i, vi, v′i ∈ Vi and v−i ∈ V−i, we have∫
R
si(ui, vi, v−i)dG

f(vi,v−i)
vi

(ui) ≥
∫
R
si(ui, v

′
i, v−i)dG

f(v′i,v−i)
vi (ui).

In this case, we say that the contingent contracts (s1, . . . , sn) implement f and the contingent

mechanism (f, s1, . . . , sn) is incentive compatible.

Ordering of the distributions is essential because acyclicity only characterizes imple-

mentability under this condition. Note that, the definition of acyclicity remains unchanged

with, once again, the difference being that the vi(·)’s used to define the relations �f and

�f are expected payoffs. Note also that since the type space is assumed to be ordered

vi(a) ≥ (>)v′i(a) is equivalent to Ga
vi
�FOSD (�FOSD)Ga

v′i
. Finally, observe that if the type

space is ordered, acyclicity remains necessary for implementation. This is because for ordered

types v′i, vi ∈ Vi, the following holds

v′i �f vi =⇒
∫
R
si(ui, vi, v−i)dG

f(vi,v−i)

v′i
(ui) ≥

∫
R
si(ui, vi, v−i)dG

f(vi,v−i)
vi

(ui),

where the inequality follows from the monotonicity of si in ui and the fact that G
f(vi,v−i)

v′i
first

order stochastically dominates G
f(vi,v−i)
vi . As in the proof of Lemma 1, this combined with

incentive compatibility ensures that every implementable scf must be acyclic.

10Often, the stronger assumption of affiliation (Milgrom and Weber, 1982) is made instead (Skrzypacz,

2013).
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All of our results generalize to this general environment with uncertainty. The charac-

terization result, Theorem 1, holds verbatim with the adjusted definition of acyclicity. A

natural way to define aggregate payoff maximizers is in terms of expected payoffs and, with

this definition, Theorem 2 continues to hold as stated. The definition of payoff vector of

the agents corresponding to a given alternative a, Ua, will remain the same with the vi(·)’s
now being expected payoffs. Theorem 3, also holds verbatim with the adjusted definitions

of 2-acyclicity, richness and binary independence.

5 Extensions

We end the paper by discussing some extensions to the results in the paper. All the results

that we describe below can be found in the supplement (Deb and Mishra, 2014).

An assumption in our model is that the entire realized payoff of the agents is contractible.

While this is appropriate in many settings, it is a strong assumption for others. We can

extend Theorem 1 to an environment where the realized payoff is in two parts – contractible

and noncontractible. We show that as long as both are comonotone, the result will continue

to hold. Of course, an important extension for future work is to examine environments in

which these are not comonotone where Theorem 1 does not hold in general.

We can show that the equivalence of implementation between linear and contingent con-

tracts holds in uncountable type spaces under additional smoothness conditions. However,

the smoothness we require for this result is often absent in many practical applications such

as auctions. We hope to conduct a more formal analysis of uncountable type spaces in the

future. Here, a natural question is: When the equivalence of linear contracts and contingent

contracts in Theorem 1 fails, is there is a different class of simple (nonlinear) contracts which

are sufficient for implementation?

Although we verified acyclicity for aggregate payoff maximizers, it may, in principle, be

difficult to check for other applications. This is because it requires checking for the absence of

cycles of all finite lengths. Theorem 3 helped in this regard by showing that the substantially

weaker condition 2-acyclicity is sufficient but only as long as the type space is rich. We can

show that 2-acyclicity is sufficient in certain commonly utilized settings even when the type

space is not rich – linear one dimensional environments with uncountable types and linear

two dimensional environments with countable types.

Another interesting generalization would be to consider interdependent value settings.

Here, even the efficient scf cannot generically be implemented using transfers (Jehiel and

Moldovanu, 2001). However, Mezzetti (2004) showed that this can be overcome by using

two-stage mechanisms that depend on the realized payoffs of agents. We are not aware of

work analyzing the implementability of Rawlsian scfs in an interdependent value setting.
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Appendix

Proof of Theorem 1

Throughout the proof, we fix an agent i and type profile of other agents at v−i. For notational

convenience, we suppress the dependence on v−i. We begin the proof by noting that a

consequence of acyclicity is that the type space can be partitioned. A type space Vi can be

f -order-partitioned if there exists a partition (V 1
i , . . . , V

K
i ) of the type space Vi such that

P1 for each j ∈ {1, . . . , K} and for each vi, v
′
i ∈ V

j
i , we have vi �f v′i,

P2 for each j ∈ {1, . . . , K − 1}, for each vi ∈ V j
i , and for each v′i ∈ (V j+1

i ∪ . . . ∪ V K
i ), we

have v′i �f vi.

We first show that any acyclic SCF f induces an f -ordered-partition of the type space.

Lemma 2 Suppose the type space is finite and f is an acyclic SCF. Then, the type space can

be f -ordered-partitioned.

Proof : Let f be an acyclic scf. Consider any non-empty subset V ′i ⊆ Vi. A type vi is

maximal in V ′i with respect to �f if there exists no type v′i ∈ V ′i such that v′i �f vi. Denote

the set of types that are maximal in V ′i with respect to �f as Ṽ ′i . Since f is acyclic, �f is

acyclic. Since V ′i is finite, we conclude that Ṽ ′i is non-empty (Sen, 1970). Define

M(V ′i ) := {vi ∈ Ṽ ′i : v′i �f vi ∀ v′i ∈ V ′i \ Ṽ ′i }.

We claim that M(V ′i ) is non-empty. Assume for contradiction that M(V ′i ) is empty.

Choose v1
i ∈ Ṽ ′i . Since M(V ′i ) is empty, there exists v̄i

1 ∈ V ′i \ Ṽ ′i such that v̄i
1 �f v1

i . Since

v̄i
1 ∈ V ′i \ Ṽ ′i , there exist a sequence of types (v2

i , . . . , v
k
i ) such that v2

i �f . . . �f vki �f v̄i
1 �f

v1
i and v2

i ∈ Ṽ ′i . Since v2
i ∈ Ṽ ′i and M(V ′i ) is empty, there must exist v̄i

2 ∈ V ′i \ Ṽ ′i such

that v̄i
2 �f v2

i . This process can be repeated. Since V ′i is finite, we will get a cycle of types

satisfying vi . . . �f . . . �f . . . vi. Since f is acyclic, vi �f vi. But this contradicts the fact

that �f is reflexive. Hence, M(V ′i ) is non-empty.

We note that for any vi, v
′
i ∈ M(V ′i ), we have vi �f v′i. Now, we recursively define the

f -ordered partition of Vi. First, we set V 1
i := M(Vi). Having defined V 1

i , . . . , V
k
i , we define

Rk := Vi \ (V 1
i ∪ . . . ∪ V k

i ). If Rk 6= ∅, then define V k+1
i := M(Rk) and repeat. If Rk = ∅,

then V 1
i , . . . , V

k
i is an f -ordered partition of Vi by construction. �

A consequence of Lemma 2 is that f satisfies the following property.

17



Definition 9 An scf f satisfies scaled K-cycle monotonicity, where K ≥ 2 is a positive

integer, if there exists λi : Vi → (0,∞) such that for all sequence of types (v1
i , . . . , v

k
i ) with

k ≤ K, we have

k∑
j=1

λi(v
j
i )
[
vji (f(vji ))− v

j+1
i (f(vji ))

]
≥ 0, (3)

where vk+1
i ≡ v1

i . An scf f is scaled cycle monotone (scm) if it satisfies scaled K-cycle

monotonicity for all integers K ≥ 2. In this case, we say λi makes f scm.

To show that f is scm, we construct a λi that makes it scm.

Constructing λi: We use Lemma 2 to construct the λi map recursively. Let f be an acyclic

SCF and (V 1
i , . . . , V

K
i ) be the f -ordered-partition according to Lemma 2. First, we set

λi(vi) = 1 ∀ vi ∈ V K
i . (4)

Having defined λi(vi) for all vi ∈ (V k+1
i ∪ V k+2

i ∪ . . . ∪ V K
i ), we define λi(vi) for all vi ∈ V k

i .

Let C be any cycle of types (v1
i , . . . , v

q
i , v

1
i ) involving types in (V k

i ∪ V k+1
i ∪ . . . V K

i ) with

at least one type in V k
i and at least one type in (V k+1

i ∪ . . . ∪ V K
i ). Let C be the set of all

such cycles. For each cycle C ≡ (v1
i , . . . , v

q
i , v

q+1
i ≡ v1

i ) ∈ C, 11 define

L(C) =
∑

vji∈C∩(V k+1
i ∪...∪V K

i )

λi(v
j
i )
[
vji (f(vji ))− v

j+1
i (f(vji ))

]
(5)

`(C) =
∑

vji∈C∩V k
i

[
vji (f(vji ))− v

j+1
i (f(vji ))

]
. (6)

We now consider two cases.

Case 1. If L(C) ≥ 0 for all C ∈ C, then we set λi(vi) = 1 for all vi ∈ V k
i .

Case 2. If L(C) < 0 for some C ∈ C, we proceed as follows. Since Vi is f -ordered partitioned,

for every vi ∈ V k
i and v′i ∈ (V k+1

i ∪ . . . ∪ V K
i ), we have v′i �f vi (Property P1 of f -ordered

partition), and hence, vi(f(vi)) − v′i(f(vi)) > 0. Similarly, for every vi, v
′
i ∈ V k

i , we have

v′i �f vi (Property P2 of f -ordered partition), and hence, vi(f(vi))− v′i(f(vi)) ≥ 0.

Then, for every C ∈ C, we must have `(C) > 0 since C involves at least one type from

V k
i and at least one type from (V k+1

i ∪ . . . ∪ V k
i ). Now, for every vi ∈ V k

i , define

λi(vi) := max
C∈C:L(C)<0

−L(C)

`(C)
. (7)

We can thus recursively define the λi map.

11We will abuse notation to denote the set of types in a cycle C by C also.
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Proposition 1 Suppose Vi is finite. If an scf f is acyclic, then λi makes f scm.

Proof : Suppose f is acyclic. By Lemma 2, Vi can be f -ordered-partitioned. Let the induced

partition of Vi be (V 1
i , . . . , V

K
i ) and let λ be defined recursively as before using Equations

(4) and (7). Consider any cycle C ≡ (v1
i , . . . , v

q
i , v

q+1
i ≡ v1

i ). We will show that∑
vji∈C

λi(v
j
i )
[
vji (f(vji ))− v

j+1
i (f(vji ))

]
≥ 0. (8)

If C ⊆ V K
i , then vji (f(vji ))−v

j+1
i (f(vji )) ≥ 0 (by Property P1 above) and λi(v

j
i ) = λi(v

j+1
i )

for all vji , v
j+1
i ∈ C. Hence, Inequality (8) holds.

Now, suppose Inequality (8) is true for all cycles C ⊆ (V k+1
i ∪ . . . V K

i ). Consider a cycle

C ≡ (v1
i , . . . , v

q
i , v

q+1
i ≡ v1

i ) involving types in (V k
i ∪ . . . ∪ V K

i ). If each type in C is in V k
i ,

then again vji (f(vji )) − vj+1
i (f(vji )) ≥ 0 (by Property P1 above) and λi(v

j
i ) = λi(v

j+1
i ) for

all vji , v
j+1
i ∈ C. Hence, Inequality (8) holds. By our hypothesis, if all types in C belong to

(V k+1
i ∪ . . .∪V K

i ), then again Inequality (8) holds. So, assume that C is a cycle that involves

at least one type from V k
i and at least one type from (V k+1

i ∪ . . . ∪ V K
i ). Let λi(vi) = µ for

all vi ∈ V k
i . By definition,∑

vji∈C

λi(v
j
i )
[
vji (f(vji ))− v

j+1
i (f(vji ))

]
= L(C) + µ`(C) ≥ 0,

where the last inequality followed from the definition of µ (Equation (7)). Hence, Inequality

(8) again holds. Proceeding like this inductively, we complete the proof. �

Using λi, we can define our linear contract that implements f . For this, we need to now

define the transfers.

Constructing ti: If λi makes f scm, then λi satisfies Inequality ((3)) for any cycle of types.

Hence, by Rochet-Rockafellar cycle monotonicity characterization (Rochet, 1987; Rockafellar,

1970), there exists a map Wi : Vi → R such that

Wi(vi)−Wi(v
′
i) ≤ λi(vi)

[
vi(f(vi))− v′i(f(vi))

]
∀ vi, v′i ∈ Vi. (9)

The explicit construction of Wi involves construction of a weighted directed graph and finding

shortest paths in such a graph - see Vohra (2011). From this, we can define ti : Vi → R as

follows.

ti(vi) = λi(vi)vi(f(vi))−Wi(vi) ∀ vi ∈ Vi.

Proposition 2 If λi makes f scm, then (λi, ti) is an incentive compatible linear mechanism.
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Proof : Substituting in Inequality (9), we get for all vi, v
′
i ∈ Vi,

λi(vi)vi(f(vi))− ti(vi)− λi(v′i)v′i(f(v′i)) + ti(v
′
i) ≤ λi(vi)

[
vi(f(vi))− v′i(f(vi))

]
This gives us the desired incentive constraints: for all vi, v

′
i ∈ Vi

λi(v
′
i)v
′
i(f(v′i))− ti(v′i) ≥ λi(vi)v

′
i(f(vi))− ti(vi).

�

Remark. Consider a type space Vi and assume that there exists a type vi ∈ Vi such that

vi(a) = 0 for all a ∈ A. Further, assume that for every vi ∈ Vi and for every a ∈ A, we have

vi(a) ≥ 0. In this type space, we can show that there is a linear mechanism that will be

individually rational and the payments of agents will be non-negative. To see this, the Wi

map constructed in the proof can be constructed such that Wi(vi) = 0 - this is easily done

by translating any Wi map to a new map with Wi(vi) = 0. In that case, the net payoff of

agent i when his type is vi is given by

λi(vi)vi(f(vi))− ti(vi) = Wi(vi) ≥ Wi(vi)− λi(vi)
[
vi(f(vi))− vi(f(vi))

]
= λi(vi)vi(f(vi)) ≥ 0.

Similarly, for any vi,

Wi(vi) ≤ Wi(vi) + λi(vi)
[
vi(f(vi))− vi(f(vi))

]
= λi(vi)vi(f(vi)).

Hence, ti(vi) ≥ 0. Finally, note that we can always scale (λi, ti) such that λi lies between

0 and 1 while maintaining ti(·) ≥ 0 and individual rationality. Hence, there are linear

mechanisms in this type space where the payments of agents are non-negative and all agents

are individually rational.

Proof of Theorem 3

1 ⇒ 2 and 2 ⇒ 3. Clearly, an APM with consistent tie-breaking satisfies binary indepen-

dence and it is implementable by Theorem 2. 2⇒ 3 follows from Theorem 1.

3⇒ 1. We do this part of the proof in many steps. Let f be a 2-acyclic scf satisfying binary

independence.

Step 1. We show that f satisfies the following positive association property. We say f

satisfies weak positive association (WPA) if for every pair of type profiles v, v′ with

f(v) = a, v′i(a) ≥ vi(a) for all i ∈ N , v′i(x) = vi(x) for all x 6= a, for all i ∈ N , we have

f(v′) = a.
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To see this, consider two type profiles v and (v̄i, v−i) with f(v) = a, v̄i(a) > vi(a), and

v̄i(x) = vi(x) for all x 6= a. Assume for contradiction f(v̄i, v−i) = b 6= a. So, we have

v̄i(a) > vi(a) and vi(b) = v̄i(b), and this contradicts 2-acyclicity of f . By repeatedly apply-

ing this argument for all i ∈ N , we get that f satisfies WPA.

Step 2. Let Ā := {a ∈ A : there exists v ∈ V such that f(v) = a}, i.e., Ā is the range of

f . Let X̄ := {(a, x) ∈ X : a ∈ Ā}. Note that since V is finite, Ā (the range of f) is finite.

As a result, X̄ is also finite. Now, we define a binary relation Bf on the elements of X̄ . For

any (a, x), (b, y) ∈ X̄ with a 6= b, we let

(a, x) Bf (b, y) if there exists v ∈ V such that va = x, vb = y, f(v) = a

and for any (a, x), (a, x+ ε) ∈ X̄ with ε ∈ Rn
+ and x 6= (x+ ε), we let

(a, x+ ε) Bf (a, x).

Note that the binary relation is only a partial order. Binary independence immediately

implies that Bf is anti-symmetric.

Step 3. We will say that the binary relation Bf satisfies a monotonicity property. Pick

distinct a, b ∈ Ā and x ∈ Ua, y ∈ U b such that (a, x) Bf (b, y). Then, there exists v such that

va = x, vb = y, and f(v) = a. Choose ε ∈ Rn
+ such that (x+ ε) ∈ Ua. Since f satisfies WPA

(Step 1), at profile v′ with v′a = x + ε and v′c = vc for all c ∈ A \ {a}, we have f(v′) = a

(note that such v′ exists due to richness of type space). Hence, (a, x+ ε) Bf (b, y).

Step 4. Finally, this implies that Bf is transitive. Suppose a, b, c ∈ Ā are three distinct

alternatives and pick (a, x), (b, y), (c, z) ∈ X̄ such that (a, x) Bf (b, y) Bf (c, z). Since

(a, x) Bf (b, y), there exists a type profile v such that va = x, vb = y, and f(v) = a. Note

that this implies that (a, x) Bf (a′, va
′
) for all a′ ∈ Ā \ {a}. Consider a payoff profile v′,

where v′c = z and v′a
′
= va

′
for all a′ ∈ A\{c}. Since (a, x) Bf (a′, v′a

′
) for all a′ ∈ Ā\{a, c},

f(v′) ∈ {a, c}. If f(v′) = c, then (c, z) Bf (b, y), which is a contradiction, since Bf is

anti-symmetric (Step 2). Hence, f(v′) = a, which implies that (a, x) Bf (c, z).

The other case is (a, x + ε) Bf (a, x) Bf (b, y) for some ε ∈ Rn
+ with x 6= (x + ε) and

x, (x+ ε) ∈ Ua. But by Step 3, (a, x+ ε) Bf (b, y).

Finally, the case (b, y) Bf (a, x+ε) Bf (a, x), where ε ∈ Rn
+ and x 6= (x+ε), x, (x+ε) ∈ Ua.

Since (b, y) Bf (a, x+ ε), there exists a profile v with vb = y, va = x+ ε, and f(v) = b. This

implies that (b, y) Bf (a′, va
′
) for all a′ ∈ Ā \ {b}. Now, consider the profile v′ where

v′a = x, v′a
′

= va
′

for all a′ 6= a (by richness, such a type profile exists). By binary in-

dependence, f(v′) ∈ {b, a}. If f(v′) = a, then (a, x) Bf (b, y) and Step 3 implies that
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(a, x + ε) Bf (b, y), which is a contradiction. Hence, f(v′) = b, and this implies that

(b, y) Bf (a, x).

Step 5. This shows that Bf is an irreflexive, anti-symmetric, transitive binary relation

on X̄ . By Szpilrajn’s extension theorem, we can extend it to a complete, irreflexive, anti-

symmetric, transitive binary relation on X̄ . Since X̄ is finite, there is a payoff representation

W̄ : X̄ → R of this linear order. We can then extend this map to W : X → R as follows,

for every (a, x) ∈ X̄ , let W (a, x) := W̄ (a, x). Then choose δ < min(a,x)∈X̄ W̄ (a, x), and set

W (a, x) := δ for every (a, x) /∈ X̄ .

Now, since Bf satisfies (a, x + ε) Bf (a, x) for all a ∈ Ā, for all x, (x + ε) ∈ Ua with

ε ∈ Rn and x 6= (x + ε), W is monotone. Now, at every profile v, if f(v) = a, by definition,

(a, va) Bf (b, vb) for all b ∈ Ā \ {a}, which implies that W (a, va) > W (b, vb) for all b 6= a.

Hence, W is an APM. Further, note that W̄ is an injective map. Hence, no tie-breaking is

necessary for W . So, vacuously, it is an APM with consistent tie-breaking.
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