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Abstract

A seller is selling a good to an (agent, manager) pair. The agent is budget con-

strained but the manager is not. Both value the good differently and want to jointly

acquire it, but they take decisions in a lexicographic manner. In particular, for any

pair of outcomes, the agent first compares using her valuation. If she cannot compare

them (due to budget constraint), then the manager compares. We are interested in

the optimal (expected revenue maximizing) mechanism under incentive and individual

rationality constraints. We show that the optimal mechanism is either a posted price

mechanism or a mechanism involving a pair of posted prices (a menu of three out-

comes). In the latter case, the optimal mechanism involves randomization and pools

types in the middle.
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1 Introduction

An (agent, manager) pair needs to buy a good. The agent (she) is budget constrained,

but the manager (he) is not budget constrained. A seller offers a menu of (quantity, price)

bundles to the them in a mechanism. If the agent’s best bundle is within her budget, she

buys it. Else, she contacts the manager. The manager is not budget constrained and can

give any amount of funding as long as she respects his preference. Implicitly, the manager’s

payoff is linked to the agent’s payoff in a monotone way and hence, the manager is willing

to fund (without any side payments). This may be because both the manager and the agent

need to acquire the good for the firm, and their payoff depends on the payoff of the firm.

They have subjective valuation of the good for the firm. The valuations of the agent and the

manager may be different because either there is inherent uncertainty about the valuation

of the good and the agent and the manager may be differently informed about it or they use

different attributes of the good to determine its valuation.

Our objective here is to capture a setting where an agent’s behavior contradicts standard

notions of rationality - ideally, the agent and the manager should get together and choose

the best option according their joint estimate of the good’s valuation. However, they are

naive: (a) the agent only contacts the manager when she cannot choose the best bundle due

to budget constraint; (b) whenever she contacts the manager, she respects his decision; and

(c) the manager can impose his preference only when contacted by the agent. This makes

the problem different from standard monopoly pricing problems. Sales to such an (agent,

manager) pair who take decisions lexicographically, where the agent is budget constrained,

is not uncommon: (child, parent) pair making decision to buy some product; (management,

board) pair of a company making decisions to acquire another company; (department, dean)

pair making decision to recruit a faculty candidate. A department (or, child or management)

only contacts the dean (or, parent or board respectively) when it cannot take a decision about

a new faculty candidate due to budget constraint. But once it contacts the dean, it has to

respect the dean’s preference. 1 We are interested in finding the optimal mechanism for

selling to such an (agent, manager) pair.

1The dean and the department cannot jointly evaluate a faculty candidate because the dean is time

constrained, and may be involved with a number of other such responsibilities. Similarly, the company

board has delegated responsibility to the management with a budget constraint. Burkett (2015) shows that

such arrangements can come out of an equilibrium contracting agreement between a (principal, agent) pair

participating in a mechanism.
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The private information or type in our model is a pair of valuations: agent’s own valuation

and manager’s valuation. Later, we discuss an extension where the budget is also a private

information. There is no information transmission story here - even though the agent does

not know the valuation of the manager, she can readily access the preference of the manager,

but does so only when she cannot make a decision due to budget constraint. Hence, her

decisions depend on her valuation and the manager’s valuation. The incentive constraints in

our model are quite different from a standard model of mechanism design. This is because the

sequential nature of decision-making generates cyclic preference of the (agent, manager) pair.

Hence, no utility representation is possible for such preferences, and the incentive constraints

are ordinal in nature. In particular, if a mechanism assigns bundle (q, p) to a type, where q

is quantity and p is price, then a manipulation to get another (quantity, price) pair (q′, p′) is

possible if (a) the agent finds (q′, p′) more attractive than (q, p) and p′ is less than the budget

or (b) she cannot compare these two pairs (because the preferred pair is beyond budget) but

the manager finds (q′, p′) more attractive than (q, p). An incentive compatible mechanism

guards against all such manipulations.

Contributions. We fully characterize the optimal (expected revenue maximizing in-

centive compatible and individually rational) mechanism for the seller in our model. The

optimal mechanism is either a posted-price mechanism (the no-haggling solution of Mussa

and Rosen (1978); Riley and Zeckhauser (1983)) or a mechanism involving two posted-prices

- we call it the post-2 mechanism. The post-2 mechanism has a pair of posted prices P1

and P2, both greater than the budget B. If the agent’s valuation of the good is less than

P1, then the object is not sold (and no payments are made). If the agent’s valuation of

the good is more than P1, then the object is sold with probability B
P1

at per unit price P1

(i.e., total payment is B). The remaining probability (1− B
P1

) is sold at per unit price P2 if

the valuation of both the agent and the manager exceeds P2. Hence, a post-2 mechanism

involves an extra layer of pooling of types in the middle and involves randomization. 2

We provide a simple condition on the budget when a post-2 mechanism is optimal. There

are three special cases, where our problem reduces to a standard revenue maximization

2 Randomization is often seen in practice: same product is sold with different quality levels; limited shares

of a company are possible to acquire instead of complete acquisition; a faculty candidate considers different

levels of teaching in the contract when being hired etc. However, our optimal mechanism design recommends

a particular kind of randomization. We do not know if such particular randomization is seen in practical

problems. Our results suggest that whenever a designer believes he is confronted with an (agent, manager)

pair described in our model, it is optimal to offer such randomization in the menu.
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problem of a monopolist: (1) when budget of the agent is sufficiently high (then the agent

can make all the decisions); (2) when budget of the agent is zero (then the manager makes

all the decisions); and (3) when the preferences of the agent and the manager are identical.

In all these cases, a posted-price mechanism is optimal (Mussa and Rosen, 1978; Riley and

Zeckhauser, 1983) - call the optimal posted-price in such settings a monopoly reserve price.

We show that if the budget of the agent is below the monopoly reserve price, a post-2

mechanism is optimal.

Our optimal mechanism is simple since it can be described by a single parameter or a pair

of parameters, and involves a menu of size two or three. Further, our result works for a rich

class of priors (over values of the two rationales), which allows for correlation. The nature of

incentive constraints in our problem implies that there is no revenue equivalence theorem to

work with. Compared to a standard multi-object monopolist, where one runs into difficulty

even in the two-object case (Manelli and Vincent, 2007; Hart and Nisan, 2017), we still have

tractability in our multidimensional model because of the nature of decision-making and the

incentive constraints.

We also consider an extension of our model where the budget information (along with

values of the agent and the manager) is private. By restricting our attention to a reasonable

class of mechanisms, we derive an optimal mechanism over this class of mechanisms - the

projection of this optimal mechanism on the valuations space for each budget is (i) a post-2

mechanism if the budget is low and (ii) a post-1 mechanism if the budget is high. This

shows some robustness of our main result.

2 An illustration

We explain using a simple example why a posted price mechanism need not be optimal in

our model. For simplicity, consider a setting where valuations of the agent and the manager,

v ≡ (v1, v2), are distributed in [0, 1]× [0, 1]. We assume that both the agent and the manager

have quasilinear preferences. So, the agent evaluates options using v1 and the manager

evaluates options using v2. Consider a budget B > 0. Suppose the seller uses a posted price

mechanism with price p > B. We argue that such a posted price mechanism cannot be

optimal. To see this, consider the menu in a posted price mechanism: {(1, p), (0, 0)}, i.e.,

take the object with probability 1 at price p or get nothing at zero price. If v ≡ (v1, v2) is

such that v1 ≤ p the agent will prefer (0, 0) to (1, p) and she will take this decision without
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consulting the manager. If v ≡ (v1, v2) is such that v2 ≤ p and v1 ≥ p, then the agent

prefers (1, p) to (0, 0) but she cannot take this decision since p > B. Hence, she consults

the manager who prefers (0, 0) to (1, p). Hence, (0, 0) will be preferred over (1, p) at such

profiles. So, the only region where (1, p) is preferred to (0, 0) is when min(v1, v2) ≥ p - this

is when both the agent and the manager prefers (1, p) to (0, 0). This is shown in the left

graph of Figure 1.

v1

p

p

p

p

BB
v1

v2v2

(1; p)

(0; 0)

(1; p)

(Bp ; B)(0; 0)

(0; 0)(0; 0)

(0; 0)

Figure 1: Non-optimality of posted prices

Now, consider another mechanism with a menu of three outcomes: {(1, p), (B
p
, B), (0, 0)}.

So, the new menu contains an outcome that involves randomization and a payment of B.

Consider the profile of values v ≡ (v1, v2). Using the same argument as before, we see that

if min(v1, v2) ≥ p, then the (agent,manager) pair prefers (1, p) to the other two outcomes

in the menu. Similarly, if v1 ≤ p, then the (0, 0) is preferred to the other two outcomes in

the menu. However, if v1 ≥ p but v2 ≤ p, then v1 − p ≥ B
p

(v1 − p). But p > B implies

that the agent cannot compare (1, p) and (B
p
, B) - i.e., the preferred outcome (1, p) is beyond

beyond the budget. However, since v2 ≤ p, we see that B
p

(v2− p) ≥ v2− p. So, the manager

prefers (B
p
, B) to (1, p). The agent prefers (B

p
, B) to (0, 0) because B

p
(v1 − p) ≥ 0 and she

can compare these outcomes (within budget). Hence, the (B
p
, B) is preferred to the other

outcomes in the menu by the (agent, manager) pair when v1 ≥ p but v2 ≤ p. This is shown

the right graph of Figure 1. This graph has an extra positive measure region where revenue

of B can be earned by the seller at every profile in this region. Hence, this mechanism

generates strictly larger revenue than the posted price mechanism. As is apparent, the seller

is able to exploit the lexicographic nature of decision-making of the (agent, manager) pair

to extract more revenue than in a posted price mechanism. Our main result will show that

it cannot exploit any more than this, i.e., such a mechanism will be optimal.
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The above discussion shows that a posted price mechanism which posts a price above the

budget cannot be optimal. Our main result will formalize this intuition - for low enough

budgets, we will show that the optimal mechanism will involve randomization but we can

be precise about the nature of the randomization. The optimal mechanism will be a posted

price mechanism for “high enough” budgets. But for budgets below a certain threshold, it

will be a mechanism involving an extra layer of pooling in the middle.

The rest of the paper is structured as follows. In the next section, we introduce our model

formally. In Section 4, we introduce our notion of incentive compatibility and state our main

results. The proofs of our main results are quite long. So, we have put them in Appendix A.

We give a brief overview of the proofs in Section 4.5. Section 5 discusses a different notion

of incentive compatibility and compares it with the notion we use for our results. Section

6 contains an extension where budget is also considered private information of the agent.

The proofs of Section 6 is given in Appendix B. Supplementary Appendix C contains some

missing proofs and discussions.

3 The model

A seller is selling a single object to an agent who evaluates options along with her manager.

She has a publicly observable budget B ∈ (0, β), where β > 0 - Section 6 deals with the

private budget case. A consumption bundle is a pair (a, t), where a ∈ [0, 1] is the allocation

probability and t ∈ R is the transfer - amount paid by the agent. The set of all consumption

bundles is denoted by Z ≡ [0, 1]× R. The agent and the manager evaluate the outcomes in

Z using quasilinearity. Hence, their individual preference can be captured by valuations:

a generic valuation of the agent is denoted as v1 and a generic valuation of the manager is

denoted by v2. We assume that v1, v2 ∈ V ≡ [0, β] - all our results extend even if we allow for

the fact vi ∈ [0, βi] for each i ∈ {1, 2} and β1 6= β2. Since the budget is publicly observable

in this section, the only private information in the model are the two valuations (v1, v2).

Preference (rationale) of the agent with valuation v1 is denoted by �v1 . Formally, �v1 is

a binary relation (incomplete): ∀ (a, t), (a′, t′) ∈ Z,

[
(a, t) �v1 (a′, t′)

]
⇔

[
av1 − t ≥ a′v1 − t′ and t ≤ B

]
.

Notice that t′ need not be below B in the above definition. This is consistent with our story

that the agent makes a decision whenever she can.
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Preference of the manager with valuation v2 is denoted by �v2 . Formally, ∀ (a, t), (a′, t′) ∈
Z, [

(a, t) �v2 (a′, t′)
]
⇔

[
av2 − t ≥ a′v2 − t′

]
.

Hence, �v2 is complete. Notice that both �v1 and �v2 are transitive.

We denote the aggregate preference of the (agent, manager) pair with type v ≡ (v1, v2)

as �v. The preference �v is a complete binary relation derived from �v1 and �v2 as follows.

For every (a, t), (a′, t′) ∈ Z, [
(a, t) �v (a′, t′)

]
⇔

either
[
(a, t) �v1 (a′, t′)

]
or
[
(a, t) �v1 (a′, t′), (a′, t′) �v1 (a, t), (a, t) �v2 (a′, t′)

]
.

As is expected, �v is intransitive for some v ≡ (v1, v2) - a formal lemma is given in Supple-

mentary Appendix C.1 at the end. An important consequence of this lemma is that there is

no utility representation of the preference of our (agent, manager) pair. As discussed earlier,

the aggregate preference captures the decision making process of the (agent, manager) pair.

For every pair of outcomes, first the agent tries to compare. The manager compares only

if the agent fails to compare due to budget constraint. We interpret this decision-making

process further after defining the incentive constraints.

We assume that the random variable v ≡ (v1, v2) over V × V follows a distribution G

with G1 being the marginal for agent’s valuation and G2 being the marginal for manager’s

valuation. Both G1 and G2 are assumed to be differentiable functions with positive densities

g1 and g2 respectively. Notice that we allow for values of the agent and the manager to be

correlated. Our results will require some restrictions in G1, which we will state later.

4 The optimal mechanism

4.1 Incentive compatibility

Since the preference of the (agent, manager) pair is completely captured by v ≡ (v1, v2),

we will refer to v as the type in our model - Section 6 discusses the private budget case,

where the type will be (v1, v2, B). A (direct) mechanism is a pair of maps: an allocation

rule f : V 2 → [0, 1] and a payment rule p : V 2 → R. For every v ∈ V 2, f(v) denotes the

allocation probability and p(v) denotes the payment of this type.
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The restriction to such direct mechanisms is without loss of generality as a version of

the revelation principle holds in our setting - see Section 5. 3 Hence, we can discuss about

incentive compatibility of direct mechanisms.

Definition 1 A mechanism (f, p) is incentive compatible if for all u, v ∈ V 2,

(f(u), p(u)) �u (f(v), p(v)).

Fix a mechanism (f, p) and let the range of the mechanism be

Rf,p := {(a, t) : (f(v), p(v)) = (a, t) for some v ∈ V 2}.

Consider a type u ≡ (u1, u2). The designer has assigned the bundle (f(u), p(u)) to this type.

For every (a, t) ∈ Rf,p, there are two possibilities of manipulation. First, the agent can

manipulate - this is possible if au1 − t > f(u)u1 − p(u) with t ≤ B. Second, the manager

can manipulate and this is possible if the agent could not take a decision, contacted the

manager, and au2 − t > f(u)u2 − p(u). Our notion of incentive compatibility thus guards

against two kinds of manipulations: one where the agent can take her own decision and

manipulates, and the other where the agent cannot decide due to budget constraint and the

manager manipulates.

In general, preferences over outcomes in Rf,p may violate transitivity. However, our notion

of incentive compatibility requires that at every type u, the outcome (f(u), p(u)) is preferred

to any other outcome in Rf,p. This implies that if the designer wants type u to choose

(f(u), p(u)) from the menu Rf,p, then it must be the case that for any other outcome (a, t)

in Rf,p, the agent does not prefer (a, t) to (f(u), p(u)) or the agent cannot compare (a, t) and

(f(u), p(u)), but the manager does not prefer (a, t) to (f(u), p(u)). Our notion of incentive

compatibility implies that the outcome chosen for every type is not involved in a cycle. This

allows us to rule out Dutch book arguments (or money pump) using our notion of incentive

compatibility. We discuss another notion of incentive compatibility and its relation to our

notion later in Section 5.

Thus, our notion of incentive compatibility can be broken down into two distinct cases. Fix

u, v ∈ V 2. Then, there are two ways in which bundle (f(u), p(u)) can be (weakly) preferred

over (f(v), p(v)) by a type u.

3Though direct reporting of valuations of the agent and the manager may seem unrealistic in this setting,

we can think of the direct mechanism as announcing a menu of outcomes and the agent choosing the best

outcome from this menu (with the help of her manager).
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1. First, the agent prefers (f(u), p(u)) over (f(v), p(v)). This is possible if p(u) ≤ B and

u1f(u)− p(u) ≥ u1f(v)− p(v).

2. Second, the agent cannot compare (f(u), p(u)) and (f(v), p(v)), but the manager

prefers (f(u), p(u)) over (f(v), p(v)). This means u2f(u) − p(u) ≥ u2f(v) − p(v).

Further, since the agent cannot compare these two outcomes, one of the following

conditions must hold.

(a) u1f(u)− p(u) > u1f(v)− p(v) but p(u) > B.

(b) u1f(v)− p(v) > u1f(u)− p(u) but p(v) > B.

(c) u1f(v)− p(v) = u1f(u)− p(u) but min(p(u), p(v)) > B.

Besides, incentive compatibility, we will impose a natural participation constraint. For

this, we will assume that outside option of the (agent, manager) pair is the outcome (0, 0),

where she receives nothing and pays nothing.

Definition 2 A mechanism (f, p) is individually rational if for all v ∈ V 2,

(f(v), p(v)) �v (0, 0).

It is useful to note that the above individual rationality condition can be equivalently stated

as follows. A mechanism (f, p) is individually rational if for all v ∈ V 2 (a) when p(v) ≤
B, we have v1f(v) − p(v) ≥ 0 and (b) when p(v) > B, we have v1f(v) − p(v) ≥ 0 and

v2f(v) − p(v) ≥ 0. This leads us to the following characterization of individual rationality.

Such characterizations are well known in standard settings and the result below shows that

it extends to our model too.

Lemma 1 Consider any incentive compatible mechanism (f, p). Then, (f, p) is individually

rational if and only if p(0, 0) ≤ 0.

Proof : Suppose that p(0, 0) ≤ 0. Consider any u ∈ V 2 with p(u) ≤ B. Incentive com-

patibility and the fact that p(u) ≤ B and p(0, 0) ≤ 0 < B imply that (f(u), p(u)) �u
(f(0, 0), p(0, 0)), which further implies that u1f(u) − p(u) ≥ u1f(0, 0) − p(0, 0). This com-

bined with the fact that u1f(0, 0) − p(0, 0) ≥ 0 (since −p(0, 0), f(0, 0) ≥ 0), we conclude

(f(u), p(u)) �u (0, 0).
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Similarly, consider any v = (v1, v2) ∈ V 2 with p(v) > B. Incentive compatibility and the

fact that p(0, 0) ≤ 0 < B, p(v) > B imply that the agent cannot compare (f(v), p(v)) and

(f(0, 0), p(0, 0)) but the manager prefers (f(v), p(v)) to (f(0, 0), p(0, 0)). This implies that

v1f(v)− p(v) ≥ v1f(0, 0)− p(0, 0) and v2f(v)− p(v) ≥ v2f(0, 0)− p(0, 0). These inequalities

imply that v1f(v) − p(v) ≥ 0 and v2f(v) − p(v) ≥ 0 as −p(0, 0), f(0, 0) ≥ 0. From this we

conclude (f(v), p(v)) �v (0, 0).

For the other direction, consider the type (0, 0) ∈ V . Individual rationality implies that

(f(0, 0), p(0, 0)) �(0,0) (0, 0). This implies that −p(0, 0) ≥ 0. �

4.2 New mechanisms

Incentive compatibility has different implications in our model because of the sequential

nature of decision-making. There are some simple mechanisms that are incentive compatible

and resemble similar mechanisms in standard settings where decisions are taken using a

single preference relation.

Definition 3 A mechanism (f, p) is a post-1 mechanism if there exists a K1 ∈ [0, B] such

that

(f(v), p(v)) =

{
(0, 0) if v1 ≤ K1

(1, K1) otherwise.

A post-1 mechanism is a mechanism where the object is allocated by only considering the

value of the agent. So, it can be thought of as a posted price mechanism for the agent. This

is because it posts a price K1 which is less than the budget B, and hence, the agent can

make a decision using her preference. So, if her value is less than K1, then the object is

not allocated. Else, the object is allocated with probability 1. It is easy to see that such a

mechanism is incentive compatible and individually rational.

We now introduce a new class of mechanisms that we call the post-2 mechanisms. Unlike

the post-1 mechanism, the post-2 mechanism considers the values of both the agent and

the manager.

Definition 4 A mechanism (f, p) is a post-2 mechanism if there exists a K1, K2 ∈ [B, β]

with K1 ≤ K2, such that

(f(v), p(v)) =





(0, 0) if v1 ≤ K1

(1, B +K2(1− B
K1

)) if min(v1, v2) > K2

( B
K1
, B) otherwise

9
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Figure 2: post-2 mechanism

The post-2 mechanism has a pair of posted prices. The first posted price K1 is for the

agent. If the value of the agent is below K1, then the object is not sold. Else, the the object is

sold with probability B
K1

at per unit price of K1, i.e., the total price paid equals K1 times the

probability of winning, which is K1× B
K1

= B. The remaining probability (1− B
K1

) is sold at

per unit price K2 if the values of both the agent and the manager exceed K2. Figure 2 gives

a graphical illustration of a post-2 mechanism. We show below that a post-2 mechanism

is incentive compatible and individually rational.

Proposition 1 Every post-2 mechanism is incentive compatible and individually rational.

Though, we provide a formal proof of this result (and all subsequent omitted proofs) in

the Appendix, we explain how the notion of incentive compatibility and the lexicographic

decision-making make the result possible. There are three outcomes in the “menu” (range) of

a post-2 mechanism. The outcomes (0, 0) and ( B
K1
, B) are outcomes which can be compared

using preference of the agent. On the other hand, outcome (1, B+K2(1− B
K1

)) has payment

more than B. So, if a type v ≡ (v1, v2) is assigned this outcome, incentive compatibility

requires that (1, B+K2(1− B
K1

)) is preferred to (0, 0) and ( B
K1
, B) by both the agent and the

manager. It is easy to verify that this is possible if v1, v2 ≥ K2 and K2 ≥ K1. Similarly, the

other incentive constraints can be shown to hold.

A post-2 mechanism uses the naivety of the (agent, manager) pair by posting a pair

of prices. There are other kinds of mechanisms that can be incentive compatible. Our
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main result below shows that the optimal mechanism can be either a post-1 or a post-2

mechanism.

4.3 Main results

The expected (ex-ante) revenue of a mechanism (f, p) is given by

Rev(f, p) =

∫

V 2

p(v)dG(v)

We say that a mechanism (f, p) is optimal if (a) (f, p) is incentive compatible and indi-

vidually rational, and (b) Rev(f, p) ≥ Rev(f ′, p′) for any other incentive compatible and

individually rational mechanism (f ′, p′).

For the optimality of our mechanisms, we will need a condition on the marginal distribution

of the agent. Define the function H1 as follows:

H1(x) = xG1(x) ∀ x ∈ [0, β].

Theorem 1 Suppose H1 is a strictly convex function. Then, either a post-1 or a post-2

mechanism is an optimal mechanism.

Our results are slightly stronger than what Theorem 1 suggests. We prove that among all

mechanisms which has a positive measure of types where the payment is more than the

budget, a post-2 mechanism is optimal. In the remaining class of mechanisms, a post-1

mechanism is optimal. The strict convexity assumption of H1 is satisfied by a variety of

distributions, including the uniform distribution. 4

We can be more precise about the optimization programs that need to be solved to get

the optimal mechanism in Theorem 1. In particular, we either need to solve a one-variable

or a two-variable optimization program.

4 Such a distributional assumption has appeared in the context of mechanism design before (Che and

Gale, 2000). The strict convexity of H1 requires that the function G1(x) +xg1(x) is strictly increasing. This

is equivalent to requiring g1(x)
(
x− 1−G1(x)

g1(x)

)
being strictly increasing. The standard regularity condition in

mechanism design requires increasingness of the bracketed term only.
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Proposition 2 Suppose H1 is strictly convex. Then, the expected revenue from the optimal

mechanism is max(R1, R2), where

R1 = max
K1∈[0,B]

K1(1−G1(K1))

R2 = max
K2∈[B,β],K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.

The maximization expressions for R1 and R2 reflect the expected revenue from a post-1

and post-2 mechanism respectively.

If the budget B is high enough, then the post-1 mechanism becomes optimal - intuitively,

the agent makes more decisions and screening along her valuation becomes optimal. It is

more interesting to see how much restriction on budget we need to get post-2 mechanism

to be optimal. Below, we derive such a sufficient condition on the budget.

Define the optimal monopoly reserve price as K̄

K̄ := arg max
r∈[0,β]

r(1−G1(r)).

If H1 is a strictly convex function, K̄ is uniquely defined since x − xG1(x) is a strictly

concave function. The interpretation of K̄ is that if the agent was not budget-constrained,

then the optimal mechanism would have involved a posted-price of K̄. Our other main result

shows that if the budget constraint is less than K̄, then the optimal mechanism is a post-2

mechanism.

Proposition 3 Suppose H1 is strictly convex and B ≤ K̄. Then, the optimal mechanism

is a post-2 mechanism. In particular, it is a solution to the following program.

max
K2∈[B,β], K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.

Proof : Since H1 is strictly convex, r(1−G1(r)) is strictly increasing for all r ≤ K̄. Using

B ≤ K̄, we get that B(1 − G1(B)) ≥ r(1 − G1(r)) for all r ≤ B. Hence, R1 defined as the

maximum possible revenue in a posted-price mechanism in our problem (Proposition 2) is

R1 = max
K1∈[0,B]

K1(1−G1(K1)) = B(1−G1(B)).

But the post-2 mechanism with K1 = K2 = B generates a revenue of B(1−G1(B)). This

proves the theorem. �
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The optimality of post-2 mechanism is possible even for B > K̄. Proposition 3 only

gives a sufficient condition on the budget for optimality of a post-2 mechanism. The exact

optimal mechanism is difficult to describe in general. Section 4.6 works out the exact optimal

mechanism for the uniform distribution prior.

4.4 Limiting cases

It is interesting to see what our result says in three extreme cases. First, as B → β, then the

expected revenue from any post-2 mechanism tends to 0 (since K1, K2 ≥ B). As a result,

a post-1 mechanism becomes optimal.

Second, as B → 0, the expected revenue from a post-1 mechanism is zero (since posted

price is not more than B in a pos-1 mechanism), but using the expression of revenue for

optimal post-2 mechanism given by Proposition 2, we see that it is independent of K1:

max
K2∈[0,β]

K2

(
1−G1(K2)−G2(K2) +G(K2, K2)

)

Hence, the optimal post-2 mechanism can have K1 = K2 and chooses K2 that maximizes the

product of K2 and the probability measure of the square on the north-east corner of Figure

2 (where v1 ≥ K2 and v2 ≥ K2). Note that since B
K1
→ 0, there are only two outcomes in the

menu such a mechanism: (0, 0) and (1, K2). Thus the optimal mechanism converges to the

optimal posted-price mechanism for the manager - just as we described in Section 2, only

types in the north-east square will choose outcome (1, K2) in a posted-price mechanism with

a posted-price K2. Note that such a posted price mechanism is not a post-1 mechanism

because a post-1 mechanism has a posted price less than or equal to the budget.

Finally, though our results require that we do not have perfect correlation, it is interesting

to see what happens as we approach the perfect correlation case. As we approach perfect

correlation, we have for all x, G(x, x)→ Gi(x) for each i ∈ {1, 2}. Hence, using Proposition

2, we conclude that the optimal post-2 mechanism revenue is given by

max
K2∈[B,β],K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]

= max
K2∈[B,β],K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)

]
.

The above expression is just maximizing the expected revenue of the following class of

mechanisms. Pick any K2 ∈ [B, β] and K1 ∈ [B,K2] and define a mechanism (f, p) as
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follows:

(f(v), p(v)) =





(0, 0) if v1 ≤ K1

(1, B +K2(1− B
K1

)) if v1 > K2

( B
K1
, B) otherwise

A straightforward calculation reveals that the revenue from this mechanism is exactly the

expression in the maximization term above. Of course, this mechanism is an incentive

compatible mechanism in a standard model where there is just the agent with type v1. But,

we know that the optimal mechanism in such a model is a posted-price mechanism with some

posted-price p∗ and revenue p∗(1−G1(p∗)). Hence, the revenue R2 from the optimal post-2

mechanism must satisfy R2 ≤ p∗(1−G1(p∗)). If R2 is strictly higher than the revenue from

the optimal post-1 mechanism, then p∗ ≤ B will imply that a post-1 mechanism is also

optimal, a contradiction. Hence, p∗ > B must hold when a post-2 mechanism is the optimal

mechanism. But a post-2 mechanism generating a revenue of p∗(1−G1(p∗)) with p∗ > B is

a post-2 mechanism with K1 = K2 = p∗. Thus R2 = p∗(1−G1(p∗)), where K1 = K2 = p∗.

Finally, note that as G(x, x)→ Gi(x) for each x and for each i, the probability measure of the

rectangle {v : v1 > K2, v2 < K2} tends to zero. Hence, this post-2 mechanism approaches

a standard posted-price mechanism with two outcomes in the menu.

4.5 Sketch of the proofs

We give an overview of the proof of Theorem 1 in this section. Fix a mechanism (f, p), and

define the following partitioning of the type space:

V +(f, p) := {v : p(v) > B}
V −(f, p) = {u : p(u) ≤ B}.

The proof considers two classes of mechanisms, those (f, p) where V +(f, p) has non-zero

Lebesgue measure and those where V +(f, p) has zero Lebesgue measure. Define the following

partitioning of the class of mechanisms:

M+ := {(f, p) : V +(f, p) has positive Lebesgue measure}
M− := {(f, p) : V +(f, p) has zero Lebesgue measure}.

The proof of Theorem 1 is completed by proving the following proposition.

Proposition 4 Suppose H1 is strictly convex. Then, the following are true.
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1. There exists a post-1 mechanism (f, p) ∈ M− which is incentive compatible and in-

dividually rational such that for every incentive compatible and individually rational

mechanism (f ′, p′) ∈M−, we have

Rev(f, p) ≥ Rev(f ′, p′).

2. There exists a post-2 mechanism (f, p) ∈ M+ which is incentive compatible and in-

dividually rational such that for every incentive compatible and individually rational

mechanism (f ′, p′) ∈M+, we have

Rev(f, p) ≥ Rev(f ′, p′).

The proof of (1) in Proposition 4 uses somewhat familiar ironing arguments. However,

proof of (2) in Proposition 4 is quite different, and requires a lot of work to get to a simpler

class of mechanisms where ironing can be applied. The proof proceeds by deriving some

necessary conditions for incentive compatibility and reducing the space of mechanisms. It

can be broken down into three steps.

1. Step 1. The first step of the proof uses just incentive constraints to show that every

incentive compatible mechanism has a simple form. In particular, there is a cutoff

K ≥ B such that for all types v with min(v1, v2) > K, the outcome of the mechanism

is constant (with payment greater than the budget). This implication comes purely

from the incentive constraints in the mechanism.

2. Step 2. In the next step, we show that the optimal mechanism must belong to a class

of simple mechanisms. In this class of mechanisms, there is a cutoff K (identified in

Step 1), such that the outcome of the mechanism for types v with min(v1, v2) > K is

one constant (where payment is greater than the budget) and for types v with v1 ≥ K

but min(v1, v2) ≤ K, it is another constant (where payment is equal to budget). For

types v with v1 < K, payment is not more than the budget.

3. Step 3. In this step, we further relax the class of above mechanisms. We show that

it is without loss of generality to consider only those mechanisms where for all types

u, v with u1 = v1 < K, the outcomes at u and v are the same. These steps allow us to

apply standard ironing arguments and get to a post-2 mechanism.

In summary, though the proof does not introduce new tools to deal with multidimensional

mechanism design problems, it illustrates that multidimensional mechanism design problems

may be tractable under certain behavioral assumptions.
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4.6 Uniform distribution

In this section, we work out the exact optimal mechanism for the uniform distribution case.

All the proofs of this section are given in Supplementary Appendix C.2.

We assume that β = 1 and G is the uniform distribution over [0, 1] × [0, 1]. Call a

post-2 mechanism defined by posted prices (K∗1 , K
∗
2) optimal post-2 mechanism if it solves

the optimization program in Proposition 2. Our result shows that for uniform distribution

K∗1 = K∗2 .

Lemma 2 Suppose β = 1 and G is the uniform distribution over [0, 1] × [0, 1]. If (K∗1 , K
∗
2)

are values of (K1, K2) in the optimal post-2 mechanism, then K∗1 = K∗2 .

Further, the optimal post-2 mechanism must satisfy:

1. if B ≥ 1
2
(3−

√
5), then K∗1 = K∗2 = B,

2. if B < 1
2
(3−

√
5), then K∗1 = K∗2 = 1

3

(
B + 2−

√
(B2 +B + 1)

)
.

Using this lemma, we can provide a complete description of the optimal mechanism for

the uniform distribution case.

Proposition 5 Suppose β = 1 and G is the uniform distribution over [0, 1]× [0, 1]. Then,

the optimal mechanism is the following.

1. If B > 1
2
, then a post-1 mechanism with K1 = 1

2
is optimal.

2. If B ∈ [1
2
(3−
√

5), 1
2
], then a post-1 mechanism with K1 = B is optimal. In this case,

a post-2 mechanism with K1 = K2 = B is also optimal.

3. If B ∈ (0, 1
2
(3−

√
5)), then a post-2 mechanism with

K1 = K2 =
1

3

(
B + 2−

√
(B2 +B + 1)

)

is optimal.

Notice that as B → 0, the optimal mechanism is a posted price mechanism with price 1
3
. So,

in the limiting case when the agent has zero budget to make decisions, the optimal mechanism

is not a posted price mechanism with posted price 1
2

- which is the optimal posted price in

the standard model. To see why, consider the limiting case B = 0. Suppose the seller uses

a posted price mechanism with price p. Who are the types who will accept this price? This

is shown in the left graph in Figure 1. All the types (v1, v2) such that v1 < p will choose
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outcome (0, 0). All types (v1, v2) with v1 > p but v2 < p will also choose outcome (0, 0)

- this is because even though the agent prefers (1, p) over (0, 0), it cannot make a decision

because of budget constraint. Thus, the only types (v1, v2) which will prefer (1, p) to (0, 0)

are those with v1 > p, v2 > p. Hence, the expected revenue from a posted price mechanism

is p(1 − p)2, which is maximized at 1
3
. This argument establishes the optimal posted price

mechanism. Proposition 5 shows that it is the optimal mechanism.

On the other extreme, when B → β, the optimal mechanism is a posted price mechanism

with price 1
2
. This is because the agent makes all the decisions now and for any price p, the

types that accept this price are just the types with v1 > p. An optimal solution thus gives a

posted price of 1
2

as in a standard model.

5 Notion of incentive compatibility

In this section, we discuss some issues related to the revelation principle and our notion

of incentive compatibility. We show here a version of the revelation principle holds in our

setting. To define an arbitrary mechanism, let M be a message space and µ : M → Z be

a mechanism. A strategy of the (agent, manager) pair is a map s : V → M . We say that

mechanism µ implements the direct revelation mechanism (f, p) if there exists a strategy

s : V →M such that

• equilibrium. µ(s(v)) �v µ(m) ∀ v ∈ V, ∀ m ∈M.

• outcome. µ(s(v)) = (f(v), p(v)) ∀ v ∈ V.

Suppose µ implements (f, p). Then, fix some v, v′ ∈ V and note that (f(v), p(v)) =

µ(s(v)) �v µ(s(v′)) = (f(v′), p(v′)), which proves incentive compatibility of (f, p). Hence,

the revelation principle holds in this setting. It is well known that with behavioral agents,

the revelation principle may not hold in general (de Clippel, 2014). There are at least two

assumptions in our model which allows the revelation principle to work. The first is the

completeness of our relation �v (even though it may be intransitive). The second, and more

important one, is the notion of incentive compatibility we use. We discuss this issue in detail

next.

The primitives of our model involves how the (agent, manager) pair chooses from pairs

of outcomes. We are silent about how it chooses from a subset of alternatives. This is

consistent with Tversky (1969) and most of the literature which works on binary choice
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models (Rubinstein, 1988; Tadenuma, 2002; Houy and Tadenuma, 2009). Our incentive

constraints are appropriate for this binary choice model.

In Supplementary Appendix C.3, we consider a model where we extend our framework to

allow for choice from any subset of outcomes. We adapt a model of Manzini and Mariotti

(2012) for this purpose. We then propose a notion of incentive compatibility which is appro-

priate for choice correspondences - we call it choice-incentive compatibility. We argue that

both the notions of incentive compatibility are independent. However, there are two main

reasons why we use our existing notions of incentive compatibility instead of choice-incentive

compatibility. First, to be able to use choice-incentive compatibility, we have to assume that

the (agent, manager) pair chooses from subsets of outcomes using some choice procedure.

The current primitives of our model are much simpler - it just makes assumptions on how

we choose between pairs of outcomes. Importantly, our notion of incentive compatibility

allows us tractability using minimal assumptions about deviations from rationality. Second,

if the primitives of the model are choice correspondences, then a revelation principle need not

hold - see de Clippel (2014). This implies that the space of mechanisms are more complex

than the set of direct revelation mechanisms. In summary, it is not clear how an optimal

mechanism will look like if we considered a model assuming certain choice behavior of agents

over subsets of outcomes and choice-incentive compatibility as the notion of our incentive

compatibility. We leave this issue for future research.

6 Private budgets: a partial result

In this section, we consider the scenario when budget is private information. This may be the

case in various examples that we considered - the budget of the agent may not be observable

to the seller. In such cases, the type space is three-dimensional. We only have a partial

description of an optimal mechanism in this case.

We will assume that both the values and the budget lie in [0, β]. Thus, the type space is

W ≡ [0, β]3. A type will be denoted by (v,B) ≡ (v1, v2, B), where v1 and v2 are the values

of the agent and the manager respectively and B is the budget. For any type (v,B) ∈ W ,

the preferences over the outcome space is same as the preferences of the type v ∈ V with

budget B in the public budget case. Since the outcome space is the same, this is well defined

as before. For any type (v,B), we denote the corresponding preference as �(v,B).
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The seller has a prior Φ over the type space W . A (direct) mechanism is a pair of maps:

an allocation rule f : W → [0, 1] and a payment rule p : W → R. The incentive compatibility

and individual rationality constraints are as before.

Definition 5 A mechanism (f, p) is incentive compatible if for all (u,B), (v,B′) ∈ W ,

(
f(u,B), p(u,B)

)
�(u,B)

(
f(v,B′), p(v,B′)

)
.

A mechanism (f, p) is individually rational if for all (v,B) ∈ W ,

(
f(v,B), p(v,B)

)
�(v,B)

(
0, 0
)
.

We will only consider the following class of mechanisms in this section for our main result.

Definition 6 A mechanism (f, p) is manager non-trivial if there exists some budget

B ∈ [0, β] and V ′ ⊆ [0, β]2 such that V ′ has non-zero Lebesgue measure in [0, β]2 and

p(v,B) > B ∀ v ∈ V ′.

A manager non-trivial mechanism rules out the possibility that at every budget B, the

payment is not more than B at almost every valuation profile (given B). We only consider

optimality in the class of manager non-trivial mechanisms. We believe that manager non-

triviality is a reasonable restriction to impose on the class of mechanisms in this setting -

in the absence of this, the agent will take all the decisions in a mechanism. As before, the

expected revenue of a mechanism (f, p) is

Rev(f, p) :=

∫

W

p(v,B)dΦ(v,B).

A manager non-trivial mechanism (f, p) is partially optimal if it is incentive compatible

and individually rational and there is no other manager non-trivial mechanism (f ′, p′) which

is incentive compatible and individually rational and Rev(f ′, p′) > Rev(f, p). Even though

manager non-trvial mechanisms are a natural class of mechanisms to consider, our reason

for restricting attention to this class is tractability. However, we give sufficient conditions on

the distributions under which a partially optimal mechanism is optimal.

We now introduce an analogue of the post-2 mechanism in the private budget case.
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Definition 7 A mechanism (f, p) is a post∗ mechanism if there exists K ∈ [0, β] such that

(f(v,B), p(v,B)) =





(
1, K

)
if
(

min(v1, v2) > K and B < K
)

or
(
v1 > K and B ≥ K

)

(0, 0) if v1 ≤ K

(B
K
, B) if v1 > K, v2 ≤ K and B < K

A pictorial description of a post∗ mechanism is given in Figure 3. The similarity between

K

K

v1

v2

(0, 0, 0)

�
f(v, B), p(v, B)

�
= (1, K)

B

�
f(v, B), p(v, B)

�
= (0, 0)

�
f(v, B), p(v, B)

�
= ( B

K , B)

K

Figure 3: Illustration of a post∗ mechanism

post-2 and post∗ is deceiving since post-2 is defined for a fixed budget B but post∗ is

defined for all values of budget. As a result, the menu size of post∗ is infinite - a separate

outcome is chosen for every budget in the third case of the definition of post∗ mechanism.

Notice that choice of K ∈ [0, β] pins down a post∗ mechanism. So, a post∗ mechanism is

defined by a single parameter. On the other hand, a post-2 mechanism requires specification

of two parameters. However, if we fix a post∗ mechanism, defined by choosing K, and

consider a budget B < K, then the projection of this post∗ mechanism at B is a post-2

mechanism with the two parameters of the post-2 mechanism equal to K. Similarly, if we

take B > K, then the projection of a post∗ mechanism at B is a posted price mechanism.

We show below that every post∗ mechanism is incentive compatible and individually

rational.

Proposition 6 Every post∗ mechanism is manager non-trivial, incentive compatible, and

individually rational.
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The main result of this section establishes the partial optimality of post∗ mechanism.

Theorem 2 A partially optimal mechanism is a post∗ mechanism.

We emphasize here that unlike Theorem 1, Theorem 2 does not require any distributional

assumption. This is a consequence of the ironing required to arrive at the optimal mechanism

in Theorem 1, and the absence of any ironing in the proof of Theorem 2 - see the respective

proofs in Appendix. Intuitively, with private budgets, the set of incentive constraints become

larger and the need for ironing reduces. We should also note here that if the lower support

of budget is positive (for simplicity, we have assumed it to be zero), Theorem 2 goes through

with some minor changes, but it requires the distribution to satisfy the same condition as in

Theorem 1. This is because, in that case, we need ironing to arrive at an optimal mechanism

(very similar to Theorem 1). We skip these details for the interest of space but it is available

upon request.

The derivation of an optimal mechanism without the manager non-triviality assumption

for the private budget case seems difficult - even in the standard model, the private budget

case is significantly complicated (Che and Gale, 2000). In Supplementary Appendix C.4, we

state a sufficient condition on distributions (satisfied if values and budget are independently

and uniformly distributed) that guarantee the optimality of a post∗ mechanism.

7 Related literature

Our paper is related to a couple of strands of literature in mechanism design. We go over

them in some detail. Before doing so, we relate our work to two papers which seem directly

related to our work. The first is the work of Burkett (2016), who studies a principal-agent

model where the agent is participating in an auction mechanism with a third-party. In his

model, there is a third-party which has proposed a mechanism for selling a single good.

After the third-party announces a mechanism, the principal in his model announces another

mechanism, which he terms as a contract, to the agent. The sole purpose of the contract is

to determine the amount the agent will bid in the third-party mechanism. In his model, the

value of the good to the agent is the only private information - the value of the good to the

principal can be determined from the value of the agent. The main result in this paper is

that the optimal contract for the principal is a “budget-constraint” contract, which specifies

a cap on the report of each type of the agent to the third-party mechanism and involves no
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side-payments between the principal and the agent. 5

Though related, our model is quite different. In our model, the values of the agent and

the manager can be completely different (at a technical level, Burkett (2016) has a one-

dimensional mechanism design problem, whereas ours is a two-dimensional mechanism design

problem). Further, we do not model decision-making by our (agent, manager) pair via a

contract. In other words, the naive decision-making in our model makes it quite different

from Burkett (2015, 2016).

Another closely related paper is Malenko and Tsoy (Forthcoming), who study a model

where a single good is sold to a set of buyers. Each buyer is advised by a unique advi-

sor. Each buyer does not know her value but the advisor knows. However, the advisor

has some bias, which is commonly known. Before the start of the auction, there is com-

munication from the advisor to the buyer, which influences how much the buyer bids in

the auction. The aim of Malenko and Tsoy (Forthcoming) is to compare standard auction

formats in the presence of such uncertain buyers being advised by biased consultants. They

find that standard sealed-bid auctions are revenue equivalent, but ascending-price auction

generates more expected revenue than sealed-bid auctions. While their focus is on the effect

of communication on equilibrium of standard form auctions, ours is a mechanism design

problem where the (agent, manager) pair do not engage in any communication. Our novelty

is to solve for the optimal contract of a seller in the presence of a naive (agent, manager) pair.

Behavioral mechanism design. We discuss some literature in mechanism design which

looks at specific models of behavioral agents and designing optimal contracts for selling to

such agents. A very detailed survey with excellent examples can be found in Koszegi (2014).

Our literature survey is limited in nature as we focus on models which are closer to ours.

A stream of papers investigate the optimal contract for a firm to a consumer in a two-

period model, where the consumer has time inconsistent preferences. These papers differ

in the way it treats inconsistent preferences and non-common priors between firm and the

consumer.

Eliaz and Spiegler (2006) consider a model where the type of the agent is his “cognitive”

ability. In their model, there are two periods and the agent enjoys a valuation for an action

5In a related paper, Burkett (2015) considers first-price and second-price auctions and compares their

revenue and efficiency properties when a seller is faced with such principal-agent pairs.
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in each period. In period 2, the agent’s valuation may change to another value. Agents differ

in their subjective assessment of the probability of that transition. So, in their model, the

type is the subjective probability of the agent. They show how the optimal contract treats

sophisticated and naive agents. While this paper allows agents to be time-inconsistent,

in another paper, Eliaz and Spiegler (2008) study a similar model but do not allow time

inconsistency. There, they allow the monopolist to have a separate belief about the change

of state. They characterize the optimal contract and show the implications of non-common

priors on the menu of optimal contract and ex-post efficiency. Grubb (2009) considers a

two period model where a firm is selling a divisible good to consumers. The private type

of the consumer is his demand in period 2. In period 1, the firm offers them a tariff which

is accepted or rejected. If accepted, the consumers buy the quantity in period 2 once they

realize their demand. The key innovation in his paper is again the lack of common prior

between consumers and the firm - in particular, he shows that if the prior of the consumers

is such that it underestimates the variance of the actual prior (for instance, if the consumer

prior has the same mean as the firm, then consumer prior is a mean-preserving spread of the

firm prior), then the optimal tariff of the firm must have three parts (with quantities offered

at zero marginal cost).

de Clippel (2014) studies complete information implementation with behavioral agents

- his main results extend Maskin’s characterization (Maskin, 1999) to environments with

behavioral agents. Esteban et al. (2007) consider a model where agents have temptation

and self control preferences as in Gul and Pesendorfer (2001), and characterize the optimal

contract - also see related work on self control preferences in DellaVigna and Malmendier

(2004). There are several other papers who consider time inconsistent preferences and ana-

lyze the optimal contracting problem. Carbajal and Ely (2016) consider a model of optimal

price discrimination when buyers have loss averse preferences with state dependent reference

points. They characterize the optimal contract in their model.

Multidimensional mechanism design. The type space of our agent is two-dimensional.

It is well known that the problem of finding an optimal mechanism for selling multiple goods

(even to a single buyer) is notorious. A long list of papers have shown the difficulties involved

in extending the one-dimensional results in Mussa and Rosen (1978); Myerson (1981); Riley

and Zeckhauser (1983) to multidimensional framework - see Armstrong (2000); Manelli and

Vincent (2007) as examples. Even when the seller has just two objects and there is just one

buyer with additive valuations (i.e., value for both the objects is sum of values of both the ob-

jects), the optimal mechanism is difficult to describe (Manelli and Vincent, 2007; Daskalakis
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et al., 2017; Hart and Nisan, 2017). This has inspired researchers to consider approximately

optimal mechanisms (Chawla et al., 2007, 2010; Hart and Nisan, 2017) or additional robust-

ness criteria for design (Carroll, 2017). Compared to these problems, our two-dimensional

mechanism design problem becomes tractable because of the nature of incentive constraints,

which in turn is a consequence of the preference of the agent.

Mechanism design with budget constraints. In our model, the agent is budget

constrained but the manager is not. We compare this with the literature in the standard

model when there is a single object and the buyer(s) is budget constrained. The space of

mechanisms is restricted to be such that payment is no more than the budget. This feasi-

bility requirement on the mechanisms essentially translates to a violation of quasilinearity

assumption of the buyer’s preference for prices above the budget (utility assumed to be −∞)

but below the budget the utility is assumed to be quasilinear. This introduces additional

complications for finding the optimal mechanism. Laffont and Robert (1996) show that an

all-pay-auction with a suitable reserve price is an optimal mechanism for selling an object to

multiple buyers who have publicly known budget constraints. When the budget is private

information, the problem becomes even more complicated - see Che and Gale (2000) for a

description of the optimal mechanism for the single buyer case and Pai and Vohra (2014) for

a description of the optimal mechanism for the multiple buyers case. All these mechanisms

involve randomization but the nature of randomization is quite different from ours. This is

because the source of randomization in all these papers is either due to budget being private

information (hence, part of the type, as in Che and Gale (2000); Pai and Vohra (2014)) or

because of multiple agents with budget being common knowledge (as in Laffont and Robert

(1996); Pai and Vohra (2014)). Indeed, with a single agent and public budget, the optimal

mechanism in a standard single object allocation model is a posted price mechanism. This

can be contrasted with our result where we get randomized optimal mechanism even with

one (agent, manager) pair and budget being common knowledge. This shows that the lexi-

cographic decision making using two rationales plays an important role in making a post-2

mechanism optimal. Also, the set of menus in the optimal mechanism in the standard single

object auction with budget constraint may have more than three outcomes. Further, the out-

comes in the menu of these optimal mechanisms are not as simple as our post-2 mechanism.

Finally, like us, these papers assume that budget is exogenously determined by the agent. If

the buyer can choose his budget constraint, then Baisa and Rabinovich (2016) shows that

the optimal mechanism in a multiple buyers setting allocates the object efficiently whenever

it is allocated - this is in contrast to the exogenous budget case (Laffont and Robert, 1996;
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Pai and Vohra, 2014).
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A Appendix: Omitted Proofs of Section 4

This section contains all omitted proofs of Section 4 - except for proofs of Section 4.6, which

are given in the Supplementary Appendix C.2.

A.1 Proof of Proposition 1

Proof : Consider a post-2 mechanism (f, p) defined by parameters K1 and K2 with B ≤
K1 ≤ K2. Since p(0, 0) = 0, Lemma 1 implies that (f, p) is individually rational if it is

incentive compatible. We show incentive compatibility of (f, p). We will denote by ū → ũ

the incentive constraint associated with type ū when it cannot misreport ũ.

Consider types u, v, s taken from three different regions in Figure 2 with three different

outcomes. In particular, u, v, s satisfy: u1 ≤ K1, min(v1, v2) ≤ K2 but v1 > K1, and

min(s1, s2) > K2. Note that

(f(u), p(u)) = (0, 0), (f(v), p(v)) = (
B

K1

, B), and (f(s), p(s)) = (1, B +K2(1− B

K1

)).

We consider incentive compatibility of each of these types.

1. u→ v, u→ s. Note that since u1 ≤ K1, we have u1
B
K1
−B ≤ 0. Hence, type u weakly

prefers (0, 0) to ( B
K1
, B). Similarly,

u1 −B −K2

(
1− B

K1

)
≤ K1 −B −K2 +

K2

K1

B

= (K2 −K1)
( B
K1

− 1
)
≤ 0,

where first inequality is due to u1 ≤ K1 and the second is due to K2 ≥ K1 and B ≤ K1.

Hence, u prefers (0, 0) to (f(s), p(s)).

2. v → u, v → s. For v → u, we note that

v1
B

K1

−B ≥ 0

This follows from the fact that v1 > K1. Hence, incentive constraint v → u holds as

p(v) = B.

For v → s, we note that

min(v1, v2)−B −K2

(
1− B

K1

)
≤ min(v1, v2)−B −min(v1, v2)

(
1− B

K1

)

=
B

K1

min(v1, v2)−B.
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If min(v1, v2) = v1, then we see that (f(v), p(v)) is preferred to (f(s), p(s)). Else,

min(v1, v2) = v2. In that case since p(s) > B, even if the agent prefers (f(s), p(s)) to

(f(v), p(v)), she cannot compare. But the manager prefers (f(v), p(v)) to (f(s), p(s)).

Hence, incentive constraint v → s holds.

3. s→ u, s→ v. Note that for x ∈ {s1, s2}, we have

0 ≤ K2

K1

B −B ≤ B

K1

x−B

= x−B − x
(

1− B

K1

)

≤ x−B −K2

(
1− B

K1

)
,

where the inequalities follow from the fact that min(s1, s2) > K2 ≥ K1 ≥ B. This

shows that both the dimensions at s prefer (f(s), p(s)) to (f(v), p(v)) and (f(u), p(u)).

Because p(s) > B, the incentive constraints s→ v and s→ u hold.

�

A.2 Proofs of Theorem 1 and Propositions 2 and 4

In this section, we provide the proof of the main results - Theorem 1 and Propositions 2 and

4. It is clear that Proposition 4 immediately implies Theorem 1. So, we first provide a proof

of Proposition 4, followed by a proof of Proposition 2.

A.2.1 Preliminary Lemmas

We start off by proving a series of necessary conditions for incentive compatibility. The

first lemma is a monotonicity condition of allocation rule: for every incentive compatible

mechanism, type with higher payment implies higher allocation probability. Hence, the

outcomes in the range of an incentive compatible mechanism are ordered in a natural sense.

Lemma 3 For any incentive compatible mechanism (f, p), if p(u) < p(v) for any u, v, then

f(u) < f(v).

Proof : Take any u, v such that p(u) < p(v). Incentive compatibility implies that

(f(v), p(v)) �v (f(u), p(u)).
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If p(v) ≤ B, then we must use the incentive constraints in � v1, which gives us

v1f(v)− p(v) ≥ v1f(u)− p(u) > v1f(u)− p(v),

where the last inequality uses p(v) > p(u). This implies f(u) < f(v). If p(v) > B, then

using the incentive constraint in �v2 , we have

v2f(v)− p(v) ≥ v2f(u)− p(u) > v2f(u)− p(v),

where the last inequality uses p(v) > p(u). This implies f(u) < f(v). �

Lemma 4 For any incentive compatible mechanism (f, p), for all u, v

1. if p(u), p(v) ≤ B and u1 > v1, then f(u) ≥ f(v),

2. if p(u), p(v) > B and u2 > v2, then f(u) ≥ f(v).

Proof : Take any u, v. If p(u), p(v) ≤ B, then adding the incentive constraints using �v1 and

�u1gives us the desired result and if p(u), p(v) > B, then adding the incentive constraints

using �v2 and �u2 gives us the desired result. �

Lemma 5 For any incentive compatible mechanism (f, p), for all u, v the following holds:

[
p(u) ≤ B < p(v)

]
⇒
[

min(v1, v2) ≥ min(u1, u2)
]
.

Proof : Since p(u) ≤ B < p(v), by Lemma 3, f(v) > f(u). We consider the incentive

constraint from v to u first. This gives us

v2f(v)− p(v) ≥ v2f(u)− p(u). (1)

v1f(v)− p(v) > v1f(u)− p(u). (2)

Using f(v) > f(u), and aggregating Inequalities 1 and 2 gives us

min(v1, v2)
(
f(v)− f(u)

)
≥ p(v)− p(u). (3)

Incentive compatibility from u to v implies one of the two conditions to holds:

Case 1. �u1 prefers (f(u), p(u)) to (f(v), p(v)): this gives

u1f(u)− p(u) ≥ u1f(v)− p(v) or p(v)− p(u) ≥ u1(f(v)− f(u)).
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Adding with Inequality 3, we get,

(min(v1, v2)− u1)(f(v)− f(u)) ≥ 0.

Then, f(v) > f(u) implies that min(v1, v2) ≥ u1.

Case 2. �u1 does not prefer (f(u), p(u)) to (f(v), p(v)) but budget has a bite - so, �u2
prefers (f(u), p(u)) to (f(v), p(v)): this gives

u2f(u)− p(u) ≥ u2f(v)− p(v). (4)

Adding Inequalities (4) and (3), we get (min(v1, v2)−u2)(f(v)−f(u)) ≥ 0. Since f(v) > f(u),

we get min(v1, v2) ≥ u2.

Combining both the cases, min(v1, v2) ≥ min(u1, u2). �

Now, fix a mechanism (f, p), and define

V +(f, p) := {v : p(v) > B}
V −(f, p) = {u : p(u) ≤ B}.

Lemma 6 Fix an incentive compatible mechanism (f, p). If V +(f, p) and V −(f, p) are non-

empty, then the following holds:

inf
v∈V +(f,p)

min(v1, v2) = sup
u∈V −(f,p)

min(u1, u2).

Proof : Since V +(f, p) is non-empty and min(v1, v2) ≥ 0, we have that infv∈V +(f,p) min(v1, v2)

is a non-negative real number - we denote it as v. By Lemma 5, supu∈V −(f,p) min(u1, u2) is

also a non-negative real number as it is bounded above - we denote this as v̄.

First, we show that v ≥ v̄. If not, then v < v̄. Then, there is some v such that

v < min(v1, v2) < v̄. By definition of v, there is a v′ such that min(v′1, v
′
2) is arbitrarily

close to v and p(v′) > B. Since min(v′1, v
′
2) < min(v1, v2), Lemma 5 gives us p(v) > B.

Similarly, by definition of v̄, there is a u′ such that min(u′1, u
′
2) is arbitrarily close to v̄ and

p(u′) ≤ B. Since min(u′1, u
′
2) > min(v1, v2), Lemma 5 gives us p(v) ≤ B, giving us the

desired contradiction.

Next, we show that v = v̄. If not, v > v̄. But this is not possible since for any v with

v > min(v1, v2) > v̄, we will have both p(v) ≤ B and p(v) > B, giving us a contradiction. �
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For any mechanism (f, p), we will denote by K(f,p) the following:

K(f,p) := inf
v∈V +(f,p)

min(v1, v2) = sup
u∈V −(f,p)

min(u1, u2). (5)

By Lemma 6, this is well-defined if V +(f, p) and V −(f, p) is non-empty.

Lemma 7 If (f, p) is an incentive compatible and individual rational mechanism, then V −(f, p)

is non-empty.

Proof : Lemma 1 ensures that (0, 0) ∈ V −(f, p) if (f, p) is incentive compatible and indi-

vidually rational. �

Define the following partitioning of the class of mechanisms:

M+ := {(f, p) : V +(f, p) has positive Lebesgue measure}
M− := {(f, p) : V +(f, p) has zero Lebesgue measure}.

We now prove a series of Lemmas for M+ class of mechanisms.

A.2.2 Lemmas for M+

The following lemma shows that K(f,p) is well defined if (f, p) ∈M+.

Lemma 8 Suppose (f, p) is an incentive compatible and individually rational mechanism.

1. If V +(f, p) is non-empty, then K(f,p) defined in Equation (5) exists and satisfies: for

all v ∈ V , [
min(v1, v2) > K(f,p)

]
⇒
[
p(v) > B

]
,

[
min(v1, v2) < K(f,p)

]
⇒
[
p(v) ≤ B

]
.

2. If (f, p) ∈M+, then β > K(f,p) > B.

Proof : The first part follows from Lemma 6, Lemma 7, and the definition of M+.

For the second part, we first argue that K(f,p) ≥ B. Suppose K(f,p) < B. Then, for some

v with K(f,p) < min(v1, v2) ≤ B, we have p(v) > B. But this violates individual rationality.

Now, assume for contradiction K(f,p) = B. In that case, fix some ε ∈ (0, 1) and positive

integer k, and consider the type vk,ε ≡ (B + εk, B + εk). By (1), we know that p(vk,ε) > B.

By individual rationality,

(B + εk)f(vk,ε) ≥ p(vk,ε) > B.
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This gives us f(vk,ε) > B
B+εk

. Since B + ε > B + εk for all k > 1, by (1) of Lemma 4, we

have f(v1,ε) ≥ f(vk,ε) > B
B+εk

. As B
B+εk

can be made arbitrarily close to 1, we conclude that

f(v1,ε) = 1 - notice that v1,ε ≡ (B + ε, B + ε) and the claim holds for all ε ∈ (0, 1). By

Lemma 3, for all ε, ε′ ∈ (0, 1), since f(v1,ε) = f(v1,ε′) = 1, we get that p(v1,ε) = p(v1,ε′).

Denote p(v1,ε) = B + δ, where ε ∈ (0, 1). By definition, δ > 0. Now, individual rationality

requires that for every ε ∈ (0, 1),

(B + ε)f(v1,ε)− p(v1,ε) = (B + ε)− (B + δ) ≥ 0.

But this will mean ε > δ for all ε ∈ (0, 1). Since δ > 0 is fixed, this is a contradiction.

Finally, we know that (f, p) ∈ M+ implies V +(f, p) has positive Lebesgue measure. If

β = K(f,p), then by (1), we know that V +(f, p) has zero Lebesgue measure, which is a

contradiction. �

Next, we show a useful inequality involving K(f,p) for any (f, p) ∈M+.

Lemma 9 Suppose (f, p) is an incentive compatible and individually rational mechanism. If

(f, p) ∈M+, then for all types u ∈ V with B < p(u), we must have

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) ≥ K(f,p)f(u)− p(u).

Proof : First, consider two types v ≡ (K(f,p), 0) and v′ ≡ (K(f,p), K(f,p) − ε), where ε > 0

such that K(f,p) − ε > 0. Notice that min(v1, v2) < K(f,p) and min(v′1, v
′
2) < K(f,p). Hence,

by Lemma 8, p(v) ≤ B and p(v′) ≤ B. As a result incentive constraints v → v′ and v′ → v

imply that

K(f,p)f(v)− p(v) ≥ K(f,p)f(v′)− p(v′)
K(f,p)f(v′)− p(v′) ≥ K(f,p)f(v)− p(v).

This gives us

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) = K(f,p)f(K(f,p), K(f,p) − ε)− p(K(f,p), K(f,p) − ε). (6)

Now, assume for contradiction that for some u with p(u) > B we have

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) < K(f,p)f(u)− p(u).

We can choose an ε > 0 but arbitrarily close to zero such that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) <
(
K(f,p) − ε

)
f(u)− p(u).
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Using Equation 6, we get,

K(f,p)f(K(f,p), K(f,p) − ε)− p(K(f,p), K(f,p) − ε) <
(
K(f,p) − ε

)
f(u)− p(u).

But then

(K(f,p) − ε)f(K(f,p), K(f,p) − ε)− p(K(f,p), K(f,p) − ε)
< K(f,p)f(K(f,p), K(f,p) − ε)− p(K(f,p), K(f,p) − ε)
<
(
K(f,p) − ε

)
f(u)− p(u) < K(f,p)f(u)− p(u).

Hence, the incentive constraint (K(f,p), K(f,p) − ε)→ u does not hold - a contradiction. �

Lemma 10 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. Then, for any γ ∈ (K(f,p), β], the following limits exist:

lim
δ→0+

f(K(f,p) + δ, γ) = A(f,p),γ

lim
δ→0+

p(K(f,p) + δ, γ) = P(f,p),γ.

Further, the following equations hold:

K(f,p)A(f,p),γ − P(f,p),γ = K(f,p)f(K(f,p), 0)− p(K(f,p), 0) (7)

γA(f,p),γ − P(f,p),γ = γf(β, γ)− p(β, γ). (8)

Proof : Fix any γ ∈ (K(f,p), β] and any δ > 0 such that K(f,p) + δ ≤ β - by Lemma 8,

such δ > 0 exists. Consider two types v ≡ (K(f,p) + δ, γ) and v′ ≡ (β, γ). By Lemma 8,

p(v), p(v′) > B. The pair of incentive constraints between v and v′ gives us

γf(v)− p(v) ≥ γf(v′)− p(v′)
γf(v′)− p(v′) ≥ γf(v)− p(v).

Combining these and using the definition of v′, we get

γf(v)− p(v) = γf(β, γ)− p(β, γ). (9)

Now, consider v′′ ≡ (K(f,p), 0). By Lemma 8, p(v′′) ≤ B. But p(v) > B implies that

incentive constraint v → v′′ must imply

(K(f,p) + δ)f(v)− p(v) ≥ (K(f,p) + δ)f(v′′)− p(v′′)
≥ K(f,p)f(v)− p(v) + δf(v′′),
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where the second inequality comes from Lemma 9 and the fact that p(v) > B. Using

Equation 9, we replace p(v) in the previous equation to get,

(K(f,p) + δ)f(v) ≥ (K(f,p) + δ)f(v′′)− p(v′′) + γf(v)− γf(β, γ) + p(β, γ)

≥ K(f,p)f(v) + δf(v′′)

Rearranging terms, we get
[
γ −K(f,p)

]
f(v) ≤

[
γf(β, γ)− p(β, γ)

]
−
[
K(f,p)f(v′′)− p(v′′)

]

≤
[
γ −K(f,p)

]
f(v) + δ

[
f(v′′)− f(v)

]

Since v′′ ≡ (K(f,p), 0) is independent of δ and v ≡ (K(f,p) + δ, γ), we get that
[
γ −K(f,p)

]
lim
δ→0+

f(K(f,p) + δ, γ) =
[
γf(β, γ)− p(β, γ)

]
−
[
K(f,p)f(K(f,p), 0)− p(K(f,p), 0)

]
.

This gives us the desired expression for A(f,p),γ. Using Equation 9, we also get the desired

expression for P(f,p),γ.

Then, it is routine to check that Equations (7) and (8) hold. �

Lemma 11 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. For every δ ∈ (0, β −K(f,p)] and γ ∈ (K(f,p), β], the following is true:

1. f(K(f,p) + δ, γ) ≥ A(f,p),γ,

2. p(K(f,p) + δ, γ) ≥ P(f,p),γ.

Proof : Fix any δ ∈ (0, β −K(f,p)] and γ ∈ (K(f,p), β] and let v ≡ (K(f,p) + δ, γ). By Lemma

8, we know that p(v) > B. Then Lemma 9 applies and we must have,

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) ≥ K(f,p)f(v)− p(v).

Equation 7 then directly implies,

K(f,p)A(f,p),γ − P(f,p),γ ≥ K(f,p)f(v)− p(v).

Combining Equations (8) and (9) yields,

γA(f,p),γ − P(f,p),γ = γf(v)− p(v).

Combining the above two expressions gives us

K(f,p)

(
A(f,p),γ − f(v)

)
≥ P(f,p),γ − p(v) = γ

(
A(f,p),γ − f(v)

)
.

Since γ > K(f,p), we get A(f,p),γ ≤ f(v), which further implies P(f,p),γ ≤ p(v). This gives us

the desired results. �
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Lemma 12 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. For every γ1, γ2 ∈ (K(f,p), β],

A(f,p),γ1 = A(f,p),γ2

P(f,p),γ1 = P(f,p),γ2 .

Proof : Fix any γ1, γ2 ∈ (K(f,p), β]. First, we note that Equation 7 implies

K(f,p)A(f,p),γ1 − P(f,p),γ1 = K(f,p)A(f,p),γ2 − P(f,p),γ2 . (10)

Assume for contradiction that A(f,p),γ1 < A(f,p),γ2 , which implies that P(f,p),γ1 < P(f,p),γ2 .

Then Equation 10 combined with the fact that K(f,p) < γ1 implies

γ1A(f,p),γ1 − P(f,p),γ1 < γ1A(f,p),γ2 − P(f,p),γ2 .

Let ∆ > 0 be defined by the equation

∆ =
[
γ1

(
A(f,p),γ2 − A(f,p),γ1

)]
−
[
P(f,p),γ2 − P(f,p),γ1

]
. (11)

Fix some δ > 0 be such that the following inequality holds

p(K(f,p) + δ, γ2)− P(f,p),γ2 < ∆.

Existence of such a δ is guaranteed by the definition of P(f,p),γ2 . Lemma 11 implies that

0 ≤ γ1

(
f(K(f,p) + δ, γ2)− A(f,p),γ2

)
.

Adding above two inequalities we arrive at

γ1A(f,p),γ2 − P(f,p),γ2 < ∆ + γ1f(K(f,p) + δ, γ2)− p(K(f,p) + δ, γ2).

Substituting ∆ from Equation 11 we get

γ1A(f,p),γ1 − P(f,p),γ1 < γ1f(K(f,p) + δ, γ2)− p(K(f,p) + δ, γ2).

Combining this with Equation 8 we get

γ1f(β, γ1)− p(β, γ1) < γ1f(K(f,p) + δ, γ2)− p(K(f,p) + δ, γ2).

By Lemma 8, we know that p(β, γ1) > B and p(K(f,p) + δ, γ2) > B. Then, the above

inequality implies that the incentive constraint (β, γ1)→ (K(f,p) +δ, γ2) does not hold, which

is a contradiction. �
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In light of Lemma 12, for every incentive compatible and individually rational mechanism

(f, p) in M+ we denote A(f,p),γ and P(f,p),γ defined in the Lemma 10 by A(f,p) and P(f,p), i.e.,

we drop the subscript γ.

A.2.3 A structure lemma for M+ mechanisms

The following lemma identifies an important structure of incentive compatible and individ-

ually rational mechanisms in M+.

Lemma 13 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. Then the following are true.

1. p(u) = P(f,p) and f(u) = A(f,p), for all u with u2 ∈ (K(f,p), β) and u1 > K(f,p).

2. P(f,p) > B.

3. A(f,p) > f(K(f,p), 0) + 1
K(f,p)

[
B − p(K(f,p), 0)

]
.

Proof : Proof of (1). Consider a type (K(f,p) + δ, β) for some δ > 0 but close to zero. By

Lemma 8, we know that p(K(f,p) + δ, β) > B. Now, choose any u with u2 ∈ (K(f,p), β) and

u1 > K(f,p). By Lemma 8, we have p(u) > B. By Lemma 4, we get f(K(f,p) + δ, β) ≥ f(u).

Now, the incentive constraint u→ (K(f,p) + δ, β) implies

u2f(u)− p(u) ≥ u2f(K(f,p) + δ, β)− p(K(f,p) + δ, β)

⇒ p(K(f,p) + δ, β)− p(u) ≥ u2

[
f(K(f,p) + δ, β)− f(u)

]
≥ 0.

Since this holds for all δ > 0 but arbitrarily close to zero,

P(f,p) = lim
δ→0+

p(K(f,p) + δ, β) ≥ p(u).

Now, applying Lemmas 11 and 12, we have

P(f,p) ≤ p(u).

The above two inequalities give us p(u) = P(f,p). Then, using Equations (8) and (9) give

us f(u) = A(f,p).

Proof of (2). By Lemma 8, for all u with u2 ∈ (K(f,p), β) and u1 > K(f,p), we have

p(u) > B. By (1), the result then follows.
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Proof of (3). Assume for contradiction that

A(f,p) ≤ f(K(f,p), 0) +
1

K(f,p)

[
B − p(K(f,p), 0)

]
.

⇔ K(f,p)A(f,p) −B ≤ K(f,p)f(K(f,p), 0)− p(K(f,p), 0).

Using the expression of A(f,p) and P(f,p) in Lemma 10, we get that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) = K(f,p)A(f,p) − P(f,p).

Substituting this above, we get P(f,p) ≤ B. This contradicts (2) above. �

Lemma 13 shows that how certain regions in the type space look like for any incentive

compatible and individually rational mechanism (f, p). This is shown in Figure 4.

v1

v2

K(f;p)

K(f;p)B

(f(v); p(v) = (A(f;p); P(f;p))

Figure 4: Implication of Lemma 13

Notice that Lemma 13 is silent about the outcome of the mechanism for types v with

v1 > K(f,p) and v2 = β.

A.2.4 Reduction of space of M+ mechanisms: implications of optimality

The next lemma shows that it is without loss of generality to make the outcomes for those

types also (A(f,p), P(f,p)).

Lemma 14 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. Then, there is another incentive compatible and individually rational mechanism

(f ′, p′) such that

(f ′(v), p′(v)) =

{
(A(f,p), P(f,p)) if v1 > K(f,p) and v2 = β

(f(v), p(v)) otherwise.
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and

p′(v) ≥ p(v) for almost all v.

Proof : By Lemma 13, the only difference between the mechanisms (f ′, p′) and (f, p) is at v

with v1 > K(f,p) and v2 = β with β > K(f,p) (see (2) in Lemma 8). Also, such a modification

changes the outcome at these types to (A(f,p), P(f,p)) which is already in the menu of outcomes

in the original mechanism (f, p). Hence, the only possibility of a manipulation in (f ′, p′) is for

type (v1, β) with v1 > K(f,p) to report another type v′ to get (f(v′), p(v′)) 6= (A(f,p), P(f,p)).

This manipulation is possible if p(v′) ≤ B and

v1f(v′)− p(v′) > v1A(f,p) − P(f,p)

or p(v′) > B and

βf(v′)− p(v′) > βA(f,p) − P(f,p).

Now, consider a type u such that u1 = v1 and u2 = β − ε for small enough ε > 0. Note that

(f(u), p(u)) = (f ′(u), p′(u)) = (A(f,p), P(f,p)) by Lemma 13. Since ε > 0 is small enough, this

implies that one of the above constraints must hold for type u too, which further implies

that type u can manipulate the mechanism (f, p). This is a contradiction.

Since p′(0, 0) = p(0, 0) = 0, individual rationality follows from Lemma 1. Since (f ′, p′) is

a modification of (f, p) at measure zero profiles, p′(v) ≥ p(v) for almost all v. �

Lemma 14 has a straightforward implication - we can assume without loss of generality

that the top (and right) boundary of the upper rectangle in Figure 4 is assigned outcome

(A(f,p), P(f,p)). This simplifies our analysis. Using Lemmas 13 and 14, we assume that every

incentive compatible and individually rational mechanism (f, p) ∈ M+ has the feature that

for all v with min(v1, v2) > K(f,p), we have ((f(v), p(v)) = (A(f,p), K(f,p)).

Next, we will look at a subclass of mechanisms which fixes some other regions of the

type space. Further, we will show that such a restriction is also without loss of generality

for optimal mechanisms. To show this property, we consider an arbitrary incentive compat-

ible and individually rational mechanism (f, p) ∈ M+. We then construct a new incentive

compatible and individually rational mechanism which generates more expected revenue and

has the property we require. The new mechanism, which we denote as (f ′, p′) is defined as

follows.

(f ′(v), p′(v)) =

{
(f(v), p(v)) if v1 < K(f,p) or min(v1, v2) > K(f,p)(
f(K(f,p), 0) + 1

K(f,p)

(
B − p(K(f,p), 0)

)
, B
)

otherwise
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v1

v2

K(f;p)

K(f;p)B

(f(v); p(v)) = (A(f;p); P(f;p))

(
f(K(f;p); 0) +

1
K(f;p)

(
B − p(K(f;p); 0)

)
; B

)

Figure 5: New mechanism

The new mechanism is shown in Figure 5. The rectangle at the top-right corner of the

type space (excluding the lower boundaries) continues to have the outcome (A(f,p), P(f,p)) -

by Lemma 13, this is the same outcome as in the original mechanism (f, p). The outcomes

in the big white rectangle to the left (but excluding the right boundary) is left unchanged.

Note that v1 < K(f,p) implies p′(v) = p(v) ≤ B by Lemma 8 in this region. The outcomes

along the vertical line corresponding to K(f,p) value of the agent and the outcomes for all

types such that v1 > K(f,p) and v2 ≤ K(f,p) is assigned value

(
f(K(f,p), 0) +

1

K(f,p)

(
B − p(K(f,p), 0)

)
, B
)

We prove the following.

Lemma 15 If (f, p) ∈ M+ is an incentive compatible and individually rational mechanism,

then the mechanism (f ′, p′) is incentive compatible, individually rational, and

p′(v) ≥ p(v) for almost all v.

Proof : As stated earlier, we assume (f, p) ∈M+ is an incentive compatible and individually

rational mechanism such that (f(v), p(v)) = (A(f,p), P(f,p)) for all v with min(v1, v2) > K(f,p).

Since p(0, 0) = p′(0, 0) and (f, p) is individually rational, Lemma 1 implies that (f ′, p′) is also

individually rational if we can show that (f ′, p′) is incentive compatible. First, we establish

that p′(v) ≥ p(v) for almost all v ∈ V . To see this, first observe that p(v) and p′(v) may be

unequal only when v belongs to the following set of types:

Ṽ := {v : v1 ≥ K(f,p) and min(v1, v2) ≤ K(f,p)}.
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Now, consider the set of types V̄ := {v :
(
v1 > K(f,p), v2 ≤ K(f,p)

)
or v1 = K(f,p)}. For each

v ∈ V̄ , we have p′(v) = B and p(v) ≤ B (due to Lemma 8). The set of types Ṽ \ V̄ forms a

set of measure zero. So, for almost all v, we have p′(v) ≥ p(v).

For incentive compatibility, we consider a partition of the type space as follows:

V 1 := {v : min(v1, v2) > K(f,p)}
V 2 := {v : v1 < K(f,p)}
V 3 := (V × V ) \ (V 1 ∪ V 2).

For any v, v′ ∈ V 1 ∪ V 2, we have (f ′(v), p′(v)) = (f(v), p(v)) and (f ′(v′), p′(v′)) =

(f(v′), p(v′)). Since (f, p) is incentive compatible, the incentive constraints v → v′ and

v′ → v hold. For any v, v′ ∈ V 3, we have (f ′(v), p′(v)) = (f ′(v′), p′(v′)). Hence, the incentive

constraints v → v′ and v′ → v hold.

Hence, we pick u ∈ V 1, s ∈ V 2, t ∈ V 3, and verify the incentive constraints

s→ t, t→ s, t→ u, u→ t.

1. s → t. Note that p(K(f,p), 0) ≤ B and since p(s) ≤ B, incentive constraint s →
(K(f,p), 0) in (f, p) implies that

s1f(s)− p(s) ≥ s1f(K(f,p), 0)− p(K(f,p), 0)

≥ s1f(K(f,p), 0)− p(K(f,p), 0)−
[
B − p(K(f,p), 0)

](
1− s1

K(f,p)

)
,

where the inequality follows because p(K(f,p), 0) ≤ B and s1 < K(f,p). Using f(s) =

f ′(s), p(s) = p′(s), and a slight rearrangement of RHS of the above inequality gives us

s1f
′(s)− p′(s) ≥ s1

[
f(K(f,p), 0) +

1

K(f,p)

(
B − p(K(f,p), 0)

)]
−B

= s1f
′(t)− p′(t).

Hence, the incentive constraint s→ t holds for (f ′, p′).

2. t→ s. Since p(s) ≤ B, incentive constraint (K(f,p), 0)→ s in (f, p) implies that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) ≥ K(f,p)f(s)− p(s)

⇒ K(f,p)

[
f(K(f,p), 0) +

1

K(f,p)

(
B − p(K(f,p), 0)

)]
−B ≥ K(f,p)f(s)− p(s)

⇒ K(f,p)f
′(t)− p′(t) ≥ K(f,p)f

′(s)− p′(s).
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This implies that

K(f,p)

[
f ′(t)− f ′(s)

]
≥ p′(t)− p′(s).

But p′(t) = B ≥ p′(s) = p(s) implies that f ′(t) ≥ f ′(s). Using the fact that t1 ≥ K(f,p),

we get

t1

[
f ′(t)− f ′(s)

]
≥ p′(t)− p′(s),

Since p′(t) = B and p′(s) ≤ B, this is the desired incentive constraint t→ s in (f ′, p′).

3. t→ u, u→ t. By Lemma 10, we know that

K(f,p)f(K(f,p), 0)− p(K(f,p), 0) = K(f,p)A(f,p) − P(f,p)

⇔ K(f,p)

[
f(K(f,p), 0)− 1

K(f,p)

(
B − p(K(f,p), 0)

)]
−B = K(f,p)A(f,p) − P(f,p).

Hence, we get

K(f,p)

[
f ′(u)− f ′(t)

]
= p′(u)− p′(t). (12)

Using Lemma 13, p′(u) = p(u) = P(f,p) > p′(t) = B. Hence, Equation 12 implies that

f ′(u) > f ′(t). Using min(u1, u2) > K(f,p), we get

u1f
′(u)− p′(u) ≥ u1f

′(t)− p′(t)
u2f

′(u)− p′(u) ≥ u2f
′(t)− p′(t).

Hence, the incentive constraint u→ t holds in (f ′, p′).

Similarly, we now use the fact that min(t1, t2) ≤ K(f,p). If min(t1, t2) = t1, then using

Equation 12, we get

t1f
′(t)− p′(t) ≥ t1f

′(u)− p′(u).

Else, min(t1, t2) = t2, in which case again, we get

t2f
′(t)− p′(t) ≥ t2f

′(u)− p′(u).

So, one of the above constraints must hold. Since p′(t) = B and p′(u) > B, this ensures

that the incentive constraint t→ u holds in (f ′, p′).

�
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A.2.5 Ironing Lemmas

The final Lemma before we start ironing, further simplifies the class of mechanisms that we

need to consider for optimal mechanism design.

Lemma 16 Suppose (f, p) ∈M+ is an incentive compatible and individually rational mech-

anism. Then, there exists another mechanism (f̂ , p̂) such that

1. (f̂(v), p̂(v)) = (f(v), p(v)) for all v with v1 ≥ K(f,p),

2. (f̂(v), p̂(v)) = (f̂(u), p̂(u)) for all u, v with u1 = v1 < K(f,p),

3. p̂(u) ≥ p(u) for all u,

4. p̂(0, 0) = p(0, 0),

5. incentive constraints u→ v for every u, v with p̂(u), p̂(v) ≤ B hold in (f̂ , p̂).

Proof : Consider an incentive compatible and individually rational mechanism (f, p), and

let K(f,p) be as defined in Lemma 8. We complete the proof in two steps.

Step 1. In this step, we show some implications of incentive constraints u → v, where

u1, v1 < K(f,p). Consider any (u1, u2), (u1, u
′
2) such that u1 < K(f,p). Then, by Lemma 8, we

have p(u1, u2) ≤ B and p(u1, u
′
2) ≤ B. Hence, the relevant pair of incentive constraints give

us:

u1f(u1, u2)− p(u1, u2) ≥ u1f(u1, u
′
2)− p(u1, u

′
2)

u1f(u1, u
′
2)− p(u1, u

′
2) ≥ u1f(u1, u2)− p(u1, u2).

This gives us

u1f(u1, u2)− p(u1, u2) = u1f(u1, u
′
2)− p(u1, u

′
2). (13)

Also, notice that Equation 13 implies that for all u2 ∈ [0, β],

p(0, u2) = p(0, 0) (14)

Finally, since only incentive constraints corresponding to agent’s value are relevant in this

region, revenue equivalence formula implies that for every u1 < K(f,p) and u2, u
′
2 ∈ [0, β], we

have

u1f(u1, u2)− p(u1, u2) =

∫ u1

0

f(x, u2)dx− p(0, u1) =

∫ u1

0

f(x, u2)dx− p(0, 0)
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u1f(u1, u
′
2)− p(u1, u

′
2) =

∫ u1

0

f(x, u′2)dx− p(0, u1) =

∫ u1

0

f(x, u′2)dx− p(0, 0)

Using Equation 13, we get
∫ u1

0

f(x, u2)dx =

∫ u1

0

f(x, u′2)dx.

Hence, we can write for every u1 < K(f,p) and every u2 ∈ [0, β],

u1f(u1, u2)− p(u1, u2) =

∫ u1

0

f(x, 0)dx− p(0, 0). (15)

Notice that the RHS of the above equation is independent of u2. Denoting the RHS of the

above equation as U (f,p)(u1), we see that

u1 sup
u2∈[0,β]

f(u1, u2) = sup
u2∈[0,β]

p(u1, u2) + U (f,p)(u1). (16)

Notice that f and p are bounded from above (p is bounded from above because p(u1, u2) ≤ B

for each u2 ∈ [0, β] due to Lemma 8). As a result, the supremums in the above equation

exist. We denote this supremums as follows:

α(u1) := sup
u2∈[0,β]

f(u1, u2) ∀ u1 < K(f,p) (17)

π(u1) := sup
u2∈[0,β]

p(u1, u2) ∀ u1 < K(f,p). (18)

We use these to define our new mechanism in the next step.

Step 2. Now, we define the following mechanism (f̂ , p̂). For every v with v1 ≥ K(f,p), we

have (f̂(v), p̂(v)) = (f(v), p(v)). For all v with v1 < K(f,p), we define

f̂(v) := α(v1); p̂(v) := π(v1).

By definition of p̂, it is clear that p̂(v) ≥ p(v) for all v. Also, Equation 14 ensures that

p̂(0, 0) = π(0) = p(0, 0). Hence, (1), (2), (3), (4) hold for (f̂ , p̂).

For (5), assume for contradiction that the incentive constraint u → v in (f̂ , p̂) does not

hold for some u, v with p̂(u), p̂(v) ≤ B. So, the violation of incentive constraint must happen

for value of the agent. Note that by definition of p̂, we must have p(u) ≤ B and p(v) ≤ B.

Also, incentive constraints cannot be violated if u1, v1 ≥ K(f,p) since (f, p) is incentive com-

patible and (f̂(u), p̂(u)) = (f(u), p(u)) and (f̂(v), p̂(v)) = (f(v), p(v)). The other possibilities

are analyzed below.
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Case 1. u1, v1 < K(f,p). In that case, we must have

u1α(u1)− π(u1) < u1α(v1)− π(v1) = (u1 − v1)α(v1) + v1α(v1)− π(v1).

Using Equation (16), we get that

Uf (u1) < Uf (v1) + (u1 − v1)α(v1).

By definition, there exists, y ∈ [0, β] such that α(v1) is arbitrarily close to f(v1, y). Using

Equation (15) gives us

u1f(u1, y)− p(u1, y) < v1f(v1, y)− p(v1, y) + (u1 − v1)f(v1, y) = u1f(v1, y)− p(v1, y).

This contradicts incentive compatibility of (f, p).

Case 2. u1 < K(f,p) and v1 ≥ K(f,p). In that case, we must have

u1α(u1)− π(u1) < u1f(v)− p(v).

But using Equations (15) and (16), we see that there is some y such that

u1f(u1, y)− p(u1, y) < u1f(v)− p(v)

which contradicts incentive compatibility of (f, p).

Case 3. u1 ≥ K(f,p) and v1 < K(f,p). In that case, we must have

u1f(u)− p(u) < u1α(v1)− π(v1) = (u1 − v1)α(v1) + Uf (v1).

Now, pick y such that α(v1) is arbitrarily close to f(v1, y). By Equations (15) and (16), we

get

u1f(u)− p(u) < (u1 − v1)f(v1, y) + v1f(v1, y)− p(v1, y) = u1f(v1, y)− p(v1, y).

This contradicts incentive compatibility of (f, p) and completes the proof. �

Definition 8 We call a mechanism (f, p) simple if there exists K,A, Â, P with K ∈ (0, B),

P ∈ (B, β], A, Â ∈ [0, 1], A > Â such that

1. p(0, 0) ≤ 0.
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2. K(A− Â) = P −B with KA− P ≥ 0.

3. (f(v), p(v)) = (A,P ) for all v with min(v1, v2) > K,

4. p(v) ≤ B for all v with v1 < K.

5. (f(v), p(v)) = (Â, B) for all v with min(v1, v2) ≤ K and v1 ≥ K.

6. (f(v), p(v)) = (f(v′), p(v′)) for all v, v′ with v1 = v′1 < K.

7. incentive constraints v → v′ hold for all types with p(v), p(v′) ≤ B.

Based on Lemmas 15 and 16, the following is a simple corollary.

Corollary 1 If (f, p) is an optimal mechanism in M+, then there is a simple mechanism

(f̂ , p̂) such that

Rev(f, p) ≤ Rev(f̂ , p̂).

Proof : Suppose (f, p) is an optimal mechanism in M+, then Lemma 15 says that there is an-

other incentive compatible and individually rational mechanism (f ′, p′) such that Rev(f ′, p′) ≥
Rev(f, p). Using K = K(f,p), Lemma 16 shows that (f ′, p′) satisfies all the properties of a

simple mechanism. �

Because of property (6), for any simple mechanism (f, p), we denote the allocation prob-

ability at any type v with v1 < K as simply αf (v1) and the payment as πp(v1). We also

denote by αf (K) ≡ Â and πp(K) ≡ B, where Â is the parameter specified in the simple

mechanism (f, p).

Lemma 17 Suppose (f, p) is a simple mechanism with parameters (K,A, Â, P ). Then, the

revenue from (f, p) is

Rev(f, p) = G1(K)
[
B −Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx

+B(1−G1(K)) +K(A− αf (K))(1−G1(K)−G2(K) +G(K,K)),

where h(x) = xg1(x) +G1(x) for all x ∈ [0, K].

Proof : Fix a simple mechanism with parameters (K,A, Â, P ). We divide the proof into

two parts, where we compute revenue from two disjoint regions of the type space.
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Region 1. Here, we consider all v such that v1 ≤ K. By properties (4) and (5) of the simple

mechanism, payments in this region of type space is not more than B and by property (7),

all the incentive constraints in this region hold. Using standard Myersonian techniques, it is

easy to see that

αf (v1) ≥ αf (v′1) ∀ v′1 < v1 ≤ K (19)

πp(v1) = πp(0) + v1α
f (v1)−

∫ v1

0

αf (x)dx ∀ v1 ≤ K (20)

Hence, the expected payment from this region is
∫ K

0

πp(v1)g1(v1)dv1 =

∫ K

0

πp(0)g1(v1)dv1 +

∫ K

0

v1α
f (v1)g1(v1)dv1 −

∫ K

0

( ∫ v1

0

αf (x)dx
)
g1(v1)dv1

= G1(K)πp(0) +

∫ K

0

v1α
f (v1)g1(v1)dv1 −

∫ K

0

(
(G1(K)−G1(v1)

)
αf (v1)dv1

= G1(K)
[
πp(0)−

∫ K

0

αf (x)dx
]

+

∫ K

0

h(x)αf (x)dx

= G1(K)
[
πp(K)−Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx

= G1(K)
[
B −Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx,

where the last but one equality follows from Equation 20 at v1 = K and the last equality

follows from the fact πp(K) = B.

Region 2. Finally, we consider all v such that v1 > K. By definition, the expected revenue

from this region is

B(1−G1(K)) + (P −B)(1−G1(K)−G2(K) +G(K,K)) =

B(1−G1(K)) +K(A− αf (K))(1−G1(K)−G2(K) +G(K,K)),

where the equality follows from property (2) of simple mechanism.

Putting together the revenues from both the regions, we get the desired expression of the

expected revenue from the simple mechanism. �

We now prove that for every simple mechanism, there is a post-2 mechanism that

generates as much expected revenue.

Lemma 18 For every simple mechanism (f, p), there is a post-2 mechanism (f̄ , p̄) such

that

Rev(f̄ , p̄) ≥ Rev(f, p).
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Proof : Suppose (f, p) is a simple mechanism with parameters (K,A, Â, P ). Now, by prop-

erty (5) of the simple mechanism, Equation 20 along with property (1) imply that

πf (K) = B ≤ Kαf (K)−
∫ K

0

αf (x)dx. (21)

Now, define a post-2 mechanism by parameters:

K1 :=
B

Â
=

B

αf (K)
, K2 := K.

By property (1) of simple mechanism, we get that K1 = B
αf (K)

≤ K2 = K. Also, K1 > B.

This means that the new mechanism is a well-defined post-2 mechanism. Denote this

mechanism as (f ′, p′).

It is also easily verified that it is a simple mechanism: the parameters are

K ′ := K2 = K;A′ = 1; Â′ := Â = αf (K);P ′ := B +K2(1− B

K1

) = B +K(1− αf (K)),

and also note that every post-2 mechanism is incentive compatible (Proposition 1). Note

here that αf
′
(K) = αf (K). Also, αf

′
(x) = 0 for all x ≤ K1 and αf

′
(x) = B

K1
= αf (K) for
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all x ∈ (K1, K]. Using these observations and Lemma 17,

Rev(f ′, p′)−Rev(f, p)

=

(
G1(K)

[
B −Kαf (K)

]
+

∫ K

0

h(x)αf
′
(x)dx+B(1−G1(K))+

K(1− αf (K))(1−G1(K)−G2(K) +G(K,K))

)

−
(
G1(K)

[
B −Kαf (K)

]
+

∫ K

0

h(x)αf (x)dx+B(1−G1(K))+

K(A− αf (K))(1−G1(K)−G2(K) +G(K,K))

)

≥
∫ K

0

h(x)αf
′
(x)dx−

∫ K

0

h(x)αf (x)dx

≥
∫ K

K1

h(x)
(
αf (K)− αf (x)

)
dx−

∫ K1

0

h(x)αf (x)dx.

≥ (K −K1)h(K1)αf (K)− h(K1)

∫ K

K1

αf (x)dx− h(K1)

∫ K1

0

αf (x)dx

(using h and α to be increasing functions)

= (K −K1)h(K1)αf (K)− h(K1)

∫ K

0

αf (x)dx

≥ h(K1)(K −K1)αf (K)− h(K1)(K −K1)αf (K)

(using Equation (21) and definition of K1)

= 0.

�

A.2.6 Proof of Proposition 4

The proof of (2) in Proposition 4 now follows from Corollary 1 and Lemma 18. Proof of (1)

in Proposition 4 is given below.

This requires to show that the optimal mechanism in M− is a post-1 mechanism. Every

mechanism (f, p) ∈ M− satisfies the property that types satisfying p(v) > B have zero

measure. We first argue that it is without loss of generality to assume that p(v) ≤ B for all v.

To see this, note that by (1) in Lemma 8 and the fact that V +(f, p) has zero measure, it must

be thatK(f,p) = β. Let πp(β) := supv2<β p(β, v2) and αf (β) := supv2<β f(β, v2). Observe that
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αp(β) ≤ B. Hence, we consider the following mechanism (f ′, p′): (f ′(v), p′(v)) = (f(v), p(v))

if v /∈ V +(f, p) and (f ′(v), p′(v)) = (αf (β), πp(β)) otherwise. By construction, the expected

revenue of (f ′, p′) is the same as (f, p) and p′(v) ≤ B for all v. Further, (f ′, p′) is incentive

compatible (we only need to worry about incentive constraints of types v ∈ V +(f, p), and

they hold because for all v, p′(v) ≤ B implies we only need to check incentive constraints for

value of agent, which holds due to an argument similar to that in Lemma 16(5)). Individual

rationality of (f ′, p′) follows from Lemma 1.

Now, we state an analogue of Lemma 16 for M− class of mechanisms - the proof of this

lemma is identical to that of Lemma 16, and is skipped.

Lemma 19 Suppose (f, p) ∈M− is an incentive compatible and individually rational mech-

anism. Then, there exists another mechanism (f̂ , p̂) such that

1. (f̂(v), p̂(v)) = (f̂(u), p̂(u)) for all u, v with u1 = v1,

2. p̂(u) ≥ p(u) for all u,

3. p̂(0, 0) = p(0, 0),

4. (f̂ , p̂) is incentive compatible and individually rational.

Using Lemma 19, we only focus on mechanisms satisfying the properties stated in Lemma

19. Let (f, p) be such a mechanism and define αf and πp as before, i.e., αf (v1) = f(v1, v2)

and πp(v1) = p(v1, v2) for all v with v1 < β.

Hence, the expected revenue from a mechanism (f, p) given in Lemma 19 is given by

Rev(f, p) = p(0, 0) +

∫ β

0

u1α
f (u1)g1(u1)du1 −

∫ β

0

(∫ u1

0

αf (x)dx
)
g1(u1)du1

= p(0, 0) +

∫ β

0

xαf (x)g1(x)dx−
∫ β

0

(1−G1(x))αf (x)dx

= p(0, 0) +

∫ β

0

[
h(x)− 1

]
αf (x)dx.

We now construct another posted-price mechanism (f ′, p′) that generates no less revenue

than (f, p). The posted-price mechanism (f ′, p′) is defined as follows. Let K1 := πf (β)
αf (β)

. For

all v with v1 ≤ K1, we set

f ′(v) = 0, p′(v) = 0

and for all v with v1 > K1, we set

f ′(v) = αf (β), p′(v) = K1α
f (β) = πp(β).
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It is not difficult to see that (f ′, p′) is individually rational and incentive compatible. The

expected revenue from (f ′, p′) is given by

Rev(f ′, p′) = K1α
f (β)(1−G1(K1))

Now, note that

αf (β)

∫ β

K1

[
h(x)− 1

]
dx = αf (β)

(
K1 −K1G1(K1)

)
= Rev(f ′, p′).

So, we get

Rev(f ′, p′)−Rev(f, p) =

(
αf (β)

∫ β

K1

[
h(x)− 1

]
dx

)
−
(
p(0, 0) +

∫ β

0

[
h(x)− 1

]
αf (x)dx

)

= αf (β)

∫ β

K1

h(x)dx−
∫ β

0

h(x)αf (x)dx+

∫ β

0

αf (x)dx− (β −K1)αf (β)− p(0, 0)

= αf (β)

∫ β

K1

h(x)dx−
∫ β

0

h(x)αf (x)dx+

∫ β

0

αf (x)dx− βαf (β)− πp(β)− p(0, 0)

(Using definition of K1)

= αf (β)

∫ β

K1

h(x)dx−
∫ β

0

h(x)αf (x)dx

(Using revenue equivalence formula (Equation 20) at β)

=

∫ β

K1

[
αf (β)− αf (x)

]
h(x)dx−

∫ K1

0

αf (x)h(x)dx

≥ h(K1)

∫ β

K1

[
αf (β)− αf (x)

]
dx− h(K1)

∫ K1

0

αf (x)dx

(since h is increasing and α is non-decreasing)

= h(K1)(β −K1)αf (β)− h(K1)

∫ β

0

αf (x)dx

≥ h(K1)(β −K1)αf (β)− h(K1)(β −K1)αf (β)

(Using revenue equivalence formula (Equation 20) at β and p(0, 0) ≤ 0)

= 0.

Hence, every optimal mechanism in M− is a posted-price mechanism described in (f ′, p′).

It is characterized by a posted-price K1 and an allocation probability α if the value of the
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agent is above the posted price. The optimization program can be written as follows.

max
K1,α

K1α(1−G1(K1))

subject to

K1α ≤ B

α ∈ [0, 1].

We argue that the optimal solution to this program must have α = 1. To see this, let K∗

be the unique solution to the following optimization

max
K1∈[0,B]

K1(1−G1(K1)).

The fact that this optimization program has a unique solution follows from the fact that

x−xG1(x) is strictly concave (since xG1(x) is strictly convex). Hence, the revenue from the

solution when α = 1 is K∗(1 − G1(K∗)). Now, suppose the optimal solution has K̂ and α̂.

Note that the K̂α̂ ≤ B. So, define K̃ = K̂α̂ ≤ B. By definition,

K∗(1−G1(K∗)) ≥ K̃(1−G1(K̃))

= K̂α̂(1−G1(K̂α̂))

≥ K̂α̂(1−G1(K̂)),

where the final inequality used the fact that G1(K̂α̂) ≤ G1(K̂). This implies that the

optimal solution must have α = 1 and K1 must be the unique solution to K1(1 − G1(K1))

with the constraint K1 ∈ [0, B]. Hence, the optimal solution in M− must be a posted price

mechanism, where the posted price is a unique solution to

max
K1∈[0,B]

K1(1−G1(K1)).

A.2.7 Proof of Proposition 2

We now combine the optimal solutions in M+ and M− as follows. The optimal in M− is a

solution to

max
K1∈[0,B]

K1(1−G1(K1)).

The optimal in M+ is a solution to

max
K2∈(B,β),K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.
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Notice that the optimization for M+ does not admit K2 = B. But if K2 = B and

K1 ∈ [B,K], we must have K1 = B and then the objective function value reduces to

B(1 − G1(B)). This is the same objective function value of the program for M− when

K1 = B. Similarly, if K2 = β is allowed in the optimization for M+, we see that the

objective function is maximized at K1 = B giving a value of B(1−G1(B)) to the objective

function. Again, this is the same objective function value of the program for M− when

K1 = B.

Summarizing these findings, we get that the expected revenue from the optimal mecha-

nism is max(R1, R2), where

R1 = max
K1∈[0,B]

K1(1−G1(K1))

R2 = max
K2∈[B,β],K1∈[B,K2]

B
[
1−G1(K1)

]
+K2

(
1− B

K1

)[
1−G1(K2)−G2(K2) +G(K2, K2)

]
.

This proves Proposition 2.

51



B Appendix: Proofs of Section 6

This appendix contains all omitted proofs of Section 6.

B.1 Proof of Proposition 6

We establish a stronger result. We show that a larger class mechanisms, which includes the

post∗ mechanism, is incentive compatible.

Definition 9 A mechanism (f, p) is a generalized post∗ (g-post∗) mechanism if there

exists K,P ∈ (0, β] and A ∈ [0, 1] such that

0 ≤ A− P

K
≤ 1− B

K

and for all (v,B) ∈ W

(f(v,B), p(v,B)) =





(A− P
K
, 0) if v1 ≤ K(

A,P
)

if {min(v1, v2) > K and B < P}
or {v1 > K and B ≥ P}

(A− P−B
K
, B) if v1 > K, v2 ≤ K and B < P

Note that if we put A = 1, P = K, we get a post∗ mechanism. We prove the following

proposition, which implies Proposition 6.

Proposition 7 Every g-post∗ mechanism is manager non-trivial, incentive compatible,

and individually rational.

Proof : It is clear that a g-post∗ mechanism is manager non-trivial. Individual rationality

will follow from Lemma 1 once we show incentive compatibility. So, we show incentive

compatibility below.

Fix a g-post∗ mechanism (f, p) defined by parameters K,P,A. Partition the type space

W into three regions:

W 1 := {(u,B) : u1 ≤ K},
W 2 := {(u,B) : min(u1, u2) > K,B < P} ∪ {(u,B) : u1 > K,B ≥ P},
W 3 := {(u,B) : u1 > K, u2 ≤ K,B < P}.

By definition, we have (f(u,B), p(u,B)) = (f(u′, B′), p(u′, B′)) if (u,B), (u′, B′) ∈ W 1 or

(u,B), (u′, B′) ∈ W 2. Now, pick (u,B), (u′, B′) ∈ W 3 with B < B′. Notice that

K
[
f(u,B)− f(u′, B′)

]
= p(u,B)− p(u′, B′) = B −B′ < 0.
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This gives us f(u,B) < f(u′, B′). Since, u′1 > K, we get

u′1

[
f(u,B)− f(u′, B′)

]
< p(u,B)− p(u′, B′),

which implies that incentive constraint (u′, B′) → (u,B) holds for (f, p). Similarly, using

u2 ≤ K, we notice that

u2

[
f(u,B)− f(u′, B′)

]
≥ p(u,B)− p(u′, B′).

Using p(u′, B′) = B′ > B, the above inequality implies that incentive constraint (u,B) →
(u′, B′) also holds for (f, p).

We now show incentive constraints hold across each pair of types in W 1,W 2,W 3. For

this, pick (u,B) ∈ W 1, (u′, B′) ∈ W 2, (u′′, B′′) ∈ W 3. By definition, we have

Kf(u,B)− p(u,B) = Kf(u′, B′)− p(u′, B′) = Kf(u′′, B′′)− p(u′′, B′′) = KA− P. (22)

Now, we consider three cases.

Case 1. (u,B)→ (u′, B′) and (u′, B′)→ (u,B). Using Equation (22), we get

K
[
f(u,B)− f(u′, B′)

]
= p(u,B)− p(u′, B′) = −P < 0.

Using u1 < K, we get

u1f(u,B)− p(u,B) ≥ u1f(u′, B′)− p(u′, B′).

This is enough for incentive constraint (u,B)→ (u′, B′) since p(u,B) = 0.

Similarly, using u′1 > K implies

u′1f(u′, B′)− p(u′, B′) ≥ u′1f(u,B)− p(u,B). (23)

This is enough for incentive constraint (u′, B′) → (u,B) if p(u′, B′) = P ≤ B′. Else,

p(u′, B′) = P > B′, which also means min(u′1, u
′
2) > K. But this means, we also have

u′2f(u′, B′)− p(u′, B′) ≥ u′2f(u,B)− p(u,B). (24)

Inequalities (23) and (24) ensure that incentive constraint (u′, B′)→ (u,B) holds.

Case 2. (u′, B′)→ (u′′, B′′) and (u′′, B′′)→ (u′, B′). Using Equation (22) and B′′ < P , we

get

K
[
f(u′, B′)− f(u′′, B′′)

]
= p(u′, B′)− p(u′′, B′′) = P −B′′ > 0.
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Since u′′2 ≤ K, we get

u′′2f(u′′, B′′)− p(u′′, B′′) ≥ u′′2f(u′, B′)− p(u′, B′).

This is enough for incentive constraint (u′′, B′′)→ (u′, B′) to hold since p′(u′, B′) = P > B′′.

Similarly, using u′1 > K implies

u′1f(u′, B′)− p(u′, B′) > u′1f(u′′, B′′)− p(u′′, B′′). (25)

This is enough for incentive constraint (u′, B′) → (u′′, B′′) if p(u′, B′) = P ≤ B′. Else,

p(u′, B′) = K > B′, which also means min(u′1, u
′
2) > K. But this means, we also have

u′2f(u′, B′)− p(u′, B′) > u′2f(u′′, B′′)− p(u′′, B′′). (26)

Inequalities (25) and (26) ensure that incentive constraint (u′, B′)→ (u′′, B′′) holds.

Case 3. (u,B)→ (u′′, B′′) and (u′′, B′′)→ (u,B). Using Equation (22), we get

K
[
f(u,B)− f(u′′, B′′)

]
= p(u,B)− p(u′′, B′′) = 0−B′′ ≤ 0.

Using u1 ≤ K, we get

u1f(u,B)− p(u,B) ≥ u1f(u′′, B′′)− p(u′′, B′′).

This is enough for incentive constraint (u,B) → (u′′, B′′) since p(u,B) = 0. Also, since

u′′1 > K, we get

u′′1f(u′′, B′′)− p(u′′, B′′) ≥ u′′1f(u,B)− p(u,B).

This is enough for incentive constraint (u′′, B′′)→ (u,B) since p(u′′, B′′) = B′′. �

B.2 Proof of Theorem 2

We give the proof of Theorem 2. We start by giving some preparatory lemmas.

B.2.1 Preparatory Lemmas

Fix a manager non-trivial mechanism (f, p). Let

B+
(f,p) := {B : {v ∈ V : p(v,B) > B} has non-zero measure}.

By manager non-triviality B+
(f,p) is non-empty. This means for any B ∈ B+

(f,p), we observe that

V +(f, p) defined in the public budget case has non-zero measure and hence (f, p) restricted

to B belongs to M+. We can then directly state equivalent of lemmas from the public budget

case for any B ∈ B+
(f,p).
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Lemma 20 Suppose (f, p) is an incentive compatible and individually rational mechanism

satisfying manager non-triviality. Then, for any B ∈ B+
(f,p), there exists P(f,p),B, A(f,p),B and

K(f,p),B such that the following are true.

1. p(u,B) = P(f,p),B and f(u,B) = A(f,p),B, for all u with u2 ∈ (K(f,p),B, β) and u1 >

K(f,p),B.

2. A(f,p),B > f(K(f,p),B, 0, B) + 1
K(f,p),B

[
B − p(K(f,p),B, 0, B)

]
.

3. βA(f,p),B − P(f,p),B = βf(u,B)− p(u,B) for all u with u2 = β and u1 > K(f,p),B.

4. K(f,p),BA(f,p),B − P(f,p),B = K(f,p),Bf(K(f,p),B, 0, B)− p(K(f,p),B, 0, B).

Proof : Fix any B ∈ B+
(f,p). Define K(f,p),B as in Lemma 6 and P(f,p),B, A(f,p),B as in Lemma

10. Then it is easy to see that the first two statements are direct equivalent statements

from Lemma 13. (3) follows by combining Lemma 12 with Equations 8 and 9. Combining

Equation 7 with Lemma 12 we get (4). �

Lemma 21 Suppose (f, p) is an incentive compatible and individually rational mechanism

satisfying manager non-triviality. Then, there exists P(f,p), A(f,p) and K(f,p) such that the

following hold.

1. p(u,B) = P(f,p), f(u,B) = A(f,p) for all (u,B) ∈ W with

u1 > K(f,p), u2 ∈ (K(f,p), β) and B < P(f,p).

2. If B < P(f,p), then B ∈ B+
(f,p).

3. p(u,B) ≤ B for all (u,B) ∈ W with (u1, u2) 6= (β, β) and B ≥ P(f,p).

4. p(u,B) = P(f,p) and f(u,B) = A(f,p) for all (u,B) ∈ W with B ≥ P(f,p), u1 ∈
(K(f,p), β), and u2 < β

5. K(f,p)A(f,p) − P(f,p) = K(f,p)f(K(f,p), 0, B)− p(K(f,p), 0, B) for all B < P(f,p).

6. p(u,B) ≤ p(K(f,p), 0, B
′) for all (u,B) ∈ W with u1 < K(f,p) and for all B′ < P(f,p).

7. p(u,B) ≤ 0 for all (u,B) ∈ W with u1 < K(f,p).
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Proof : Proofs of (1) and (2). Fix an incentive compatible and individually rational

mechanism (f, p) and pick any B́ ∈ B+
(f,p). From Lemma 20, we know that there exist

K(f,p),B́, P(f,p),B́, and A(f,p),B́ such that p(u, B́) = P(f,p),B́ > B́ and f(u, B́) = A(f,p),B́, for all

u ∈ V with u2 ∈ (K(f,p),B́, β) and u1 > K(f,p),B́. We do the proof in two steps.

Step 1. Consider an outcome (a, t) in the range of the mechanism. First, consider the case

when t < P(f,p). Analogous to Lemma 3, it can be shown that incentive compatibility of (f, p)

implies that a < A(f,p),B́. Now, consider any type of the form (v, B́) where v1 = v2 = x ∈
(K(f,p),B́, β). Such a v exists since K(f,p),B́ < β. Lemma 20 implies that (f(v, B́)), p(v, B́)) =

(A(f,p),B́, P(f,p),B́). Incentive compatibility from (v, B́) to any type with the outcome (a, t)

gives us:

xA(f,p),B́ − P(f,p),B́ ≥ xa− t.

Since this is true for all x ∈ (K(f,p),B́, β) and noting that t < P(f,p),B́ and a < A(f,p),B́ we

conclude that

xA(f,p),B́ − P(f,p),B́ > xa− t for all x ∈ (K(f,p),B́, β). (27)

If t > P(f,p), a similar reasoning establishes that Inequality (27) continues to hold (the

only adjustment we need to do is that a will be strictly greater than A(f,p)).

Step 2. Pick any budget B′ with B′ 6= B́ but B′ < P(f,p),B́. Further, pick any type

(u,B′) with u1 > K(f,p),B́ and u2 ∈ (K(f,p),B́, β). We will argue that (f(u,B′), p(u,B′)) =

(A(f,p),B́, P(f,p),B́). Assume for contradiction, (f(u,B′), p(u,B′)) = (a, t) for some (a, t) 6=
(A(f,p),B́, P(f,p),B́). Since Inequality (27) holds for x = u2, incentive compatibility implies

that t ≤ B′ and

u1a− t ≥ u1A(f,p),B́ − P(f,p),B́.

But B′ < P(f,p),B́ implies that t < P(f,p),B́, and hence, a < A(f,p),B́. So, for any x ∈
(K(f,p),B́, β) with x < u1, we must have

xa− t > xA(f,p),B́ − P(f,p),B́,

which is a contradiction to Inequality (27).

So, we conclude that for all u1 > K(f,p),B́ and u2 ∈ (K(f,p),B́, β), we have (f(u,B′), p(u,B′)) =

(A(f,p),B́, P(f,p),B́). Further, this ensures that B′ ∈ B+
(f,p). Hence, we have shown that for any
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B́ ∈ B+
(f,p) and any B′ < P(f,p),B́, we have

B′ ∈ B+
(f,p). (28)

Now, Lemma 20 implies that for every (u,B′) with u1 > K(f,p),B′ and u2 ∈ (K(f,p),B′ , β),

we have p(u,B′) = P(f,p),B′ , we get that P(f,p),B′ = P(f,p),B́. Consequently, A(f,p),B′ = A(f,p),B́.

Clearly, K(f,p),B′ ≤ K(f,p),B́. But since P(f,p),B′ = P(f,p),B́ and the choice of B′, B́ is arbitrary,

we could swap their positions to conclude K(f,p),B́ = K(f,p),B′ .

We can now define P(f,p) := P(f,p),B́, A(f,p) := A(f,p),B́, and K(f,p) := K(f,p),B́. This

concludes proof of (1).

For (2), by manager non-triviality, B+
(f,p) is non-empty, and using the conclusion in (1)

along with the set inclusion in (28), we get that for all B < P(f,p), we have B ∈ B+
(f,p).

From this step, using Inequality (27), we can write that for all outcomes (a, t) 6= (A(f,p), P(f,p))

in the mechanism, we must have

xA(f,p) − P(f,p) > xa− t ∀ x ∈ (K(f,p), β). (29)

This obviously implies that if a > A(f,p), then

xA(f,p) − P(f,p) > xa− t ∀ x < β. (30)

Proof of (3) and (4). Fix any type (u,B) such that B > P(f,p), and (u1, u2) 6= (β, β).

Assume for contradiction that p(u,B) > B - this implies that f(u,B) > A(f,p). Since

p(u,B) > B > P(f,p) and f(u,B) > A(f,p), the following inequalities must hold for incentive

compatibility

u1f(u,B)− p(u,B) ≥ u1A(f,p) − P(f,p)

u2f(u,B)− p(u,B) ≥ u2A(f,p) − P(f,p)

This contradicts Inequality (30) for x = u1 or x = u2 (note that f(u,B) > A(f,p)). This

proves (2).

Fix any (u,B) such that B ≥ P(f,p), u1 ∈ (K(f,p), β), and u2 < β. From (2) above, we

have p(u,B) ≤ B. Substituting x = u1 in Inequality (29), we notice that for every other

outcome (a, t) in the range of the mechanism, we have

u1A(f,p) − P(f,p) > u1a− t.
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Hence, the agent prefers (A(f,p), P(f,p)) to any other outcome (a, t) in the range of the mech-

anism. By incentive compatibility (f(u,B), p(u,B)) = (A(f,p), P(f,p)). This proves (3).

Proof of (5). By (1), we know that every B < P(f,p) belongs to B+
(f,p). Then, (4) in

Lemma 20 gives the result.

Proof of (6). Fix any (u,B) ∈ W such that u1 < K(f,p). Since u1 < K(f,p), Lemma 8

implies that p(u,B) ≤ B.

Substituting x = K(f,p) and (a, t) =
(
f(u,B), p(u,B)

)
, Inequality (29) implies

K(f,p)A(f,p) − P(f,p) ≥ K(f,p)f(u,B)− p(u,B)

Now pick B′ < P(f,p) and use (4) above to get

K(f,p)f(K(f,p), 0, B
′)− p(K(f,p), 0, B

′) ≥ K(f,p)f(u,B)− p(u,B). (31)

Now, assume for contradiction that p(u,B) > p(K(f,p), 0, B
′). Since, p(u,B) ≤ B we have

p(K(f,p), 0, B
′) < B. Then incentive constraint (u,B)→ (K(f,p), 0, B

′) implies that

u1f(u,B)− p(u,B) ≥ u1f(K(f,p), 0, B
′)− p(K(f,p), 0, B

′). (32)

Adding Inequalities (31) and (32), and using u1 < K(f,p), we get f(u,B) ≤ f(K(f,p), 0, B
′).

But this implies that p(u,B) ≤ p(K(f,p), 0, B
′), which is contradiction.

Proof of (7). This is a corollary to (5) above. Set B′ = 0 and the result follows since

p(K(f,p), 0, 0) ≤ 0 from Lemma 8. �

Figure 6 gives a pictorial description of an incentive compatible and individually rational

mechanism as implied by Lemma 21.

B.2.2 Optimality of post∗

We now complete the proof of Theorem 2 by using the preparatory lemmas. For every

incentive compatible, individually rational, and manager non-trivial mechanism (f, p), we

first construct a new g-post∗ mechanism (f ′, p′) in the following way.

(f ′(v,B), p′(v,B)) =





(A(f,p), P(f,p)) if
(

min(v1, v2) > K(f,p) and B < P(f,p)

)

or
(
v1 > K(f,p) and B ≥ P(f,p)

)

(
A(f,p) − 1

K(f,p)
P(f,p), 0

)
if v1 ≤ K(f,p)(

A(f,p) − 1
K(f,p)

(P(f,p) −B), B
)

if v1 > K(f,p), v2 ≤ K(f,p) and B < P(f,p)

58



K(f,p)

K(f,p)

v1

v2

�
f(v, B), p(v, B)

�
= (A(f,p), P(f,p))

B

p(v, B)  0

(0, 0, 0)

P (f
,p
)

1

Figure 6: Structure of incentive compatible and individually rational mechanism

The new mechanism (f ′, p′) is shown in Figure 7. It is easy to verify that f ′(v,B) ∈ [0, 1]

for all (v,B) ∈ W . To see this, assume for contradiction that A(f,p) − 1
K(f,p)

(P(f,p) − B) > 1

when B < P(f,p). Then, we get K(f,p)A(f,p) − P(f,p) > K(f,p) − B, which is a contradiction

since A(f,p) ∈ [0, 1] and B < P(f,p). This shows that A(f,p) − 1
K(f,p)

(P(f,p) − B) ≤ 1, which

also implies that A(f,p) − 1
K(f,p)

P(f,p) ≤ 1. Finally, A(f,p) − 1
K(f,p)

P(f,p) ≥ 0 follows from (5) in

Lemma 21 and individual rationality of (f, p).

K(f,p)

K(f,p)

v1

v2

(0, 0, 0)

�
f(v, B), p(v, B)

�
= (A(f,p), P(f,p))

B

p(v, B) = 0

p(v, B) = B

P (f
,p
)

1

Figure 7: Mechanism (f ′, p′)
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Lemma 22 If (f, p) is an incentive compatible, individually rational, manager non-trivial

mechanism, then the g-post∗ mechanism (f ′, p′) is a manager non-trivial, incentive com-

patible, individually rational, and

p′(v,B) ≥ p(v,B) for almost all (v,B) ∈ W.

Proof : Since (f ′, p′) is a g-post∗ mechanism, Proposition 7 implies that (f ′, p′) is a manager

non-trivial, incentive compatible, individually rational. We establish that p′(v,B) ≥ p(v,B)

for almost all (v,B) ∈ W . To see this, consider the following three cases.

• Case 1. Consider (v,B) ∈ W such that {min(v1, v2) > K(f,p) and B < P(f,p), v2 6= β}
or {v1 ∈ (K(f,p), β) and B ≥ P(f,p), v2 6= β}. By (1) and (4) in Lemma 21,

p′(v) = P(f,p) = p(v).

• Case 2. Consider (v,B) ∈ W such that v1 < K(f,p). By (7) in Lemma 21, we have

p′(v,B) = 0 ≥ p(v,B).

• Case 3. Finally, consider (v,B) ∈ W such that v2 < K(f,p), v1 > K(f,p) and B < P(f,p).

By (2) in Lemma 21, we get that B ∈ B+
(f,p). Then, since min(v1, v2) < K(f,p), by the

definition of K(f,p), we get p(v,B) ≤ B = p′(v,B), which concludes this case.

Denote by W ′ the set of type profiles covered in the above three cases. It is easy to see

(for instance, refer to Figure 7) that W \W ′ has zero Lebesgue measure. So, for almost all

(v,B), we have p′(v,B) ≥ p(v,B). �

The proof of Theorem 2 is completed by the following lemma.

Lemma 23 For every g-post∗ mechanism (f, p), there is a post∗ mechanism (f ′, p′) such

that

p′(v,B) ≥ p(v,B) ∀ (v,B) ∈ W.

Proof : Take any g-post∗ mechanism (f, p) defined by parameters A,P,K. Consider the

post∗ mechanism (f ′, p′) defined by parameter K. By definition of g-post∗ mechanism

(f, p), we know that K ≥ P . Now, consider the following cases:

• p′(v,B) = p(v,B) = 0 for all (v,B) if v1 ≤ K.

• p′(v,B) = p(v,B) = B for all (v,B) if v1 > K, v2 ≤ K and B < P .

• p′(v,B) = K ≥ P = p(v,B) for all (v,B) if {min(v1, v2) > K andB < K} or {v1 > K and B ≥ K}
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• p′(v,B) = K ≥ P = p(v,B) for all (v,B) if v1 > K, v2 ≤ K and P ≤ B < K.

This concludes the proof. �

Lemma 23 thus establishes that a post∗ mechanism is a partially optimal mechanism,

which concludes the proof of Theorem 2.
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C Supplementary Appendix

C.1 Intransitive preferences

Lemma 24 (Intransitive preference) For any type v = (v1, v2) with v1, v2 > 0 and v1 6=
v2 there exist three outcomes (a, t), (b, t′), (c, t′′) ∈ Z such that

(a, t) �v (b, t′) �v (c, t′′) �v (a, t),

where �v is the strict part of the relation �v.

Proof : We consider two cases where v1 < v2 and then v1 > v2. The proof is by construction

of three outcomes as stated above.

Case 1. Fix any v = (v1, v2) such that 0 < v1 < v2. Consider three outcomes

(a, t) := (
1

2
, B), (b, t′) := (1, B +

3v1

8
+
v2

8
), and (c, t′′) = (

3

4
− v1

8v2

, B +
v1

8
).

First,

v1a− t =
1

2
v1 −B = v1 −B −

v1

2
> v1 −B −

(3v1

8
+
v2

8

)
= v1b− t′,

where the inequality is true because v1 < v2. Combining this with t ≤ B gives us

(a, t) �v (b, t′).

Second,

v2b− t′ = v2 −B −
(3v1

8
+
v2

8

)
= v2 −B −

(v1

4
+
v1 + v2

8

)

> v2 −B −
(v1

4
+
v2

4

)
= v2

(3

4
− v1

8v2

)
−B − v1

8

= v2c− t′′.

where the inequality is true because v1 < v2. Combining this with the fact that t′, t′′ > B,

we have

(b, t′) �v (c, t′′).

Third,

v1c− t′′ = v1

(3

4
− v1

8v2

)
−B − v1

8
>

3

4
v1 −B −

v1

4
=

1

2
v1 −B = v1a− t,
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where the inequality is true because v1 < v2. Hence, (a, t) �v1 (c, t′′).

But since t′′ > B, we need to compare the outcomes with respect to v2. For that, notice

v2c− t′′ = v2

(3

4
− v1

8v2

)
−B − v1

8
= v2

(3

4
− v1

4v2

)
−B >

1

2
v2 −B,

where the inequality is due to v1 < v2. This implies that (c, t′′) �v (a, t).

Case 2. Fix any v = (v1, v2) such that v1 > v2. Set K = max(2,

⌈
v2
B

⌉
), where we use the

notation that dxe denotes the smallest integer greater than or equal to x. Consider three

outcomes

(a, t) := (1− 2

K
,B − v2

K
), (b, t′) := (1, B +

v2(3− v2
v1

)

2K
), and (c, t′′) := (1−

7− 3(v2
v1

)

4K
,B).

The value of K set above ensures that all the consumption bundles are feasible.

First,

(v1b− t′)− (v1a− t) =
1

K
(2v1 − v2)− 1

2K

v2

v1

(3v1 − v2) ≥ 1

K
(2v1 − v2)− 1

2K
(3v1 − v2) > 0,

where the inequalities are true because v1 > v2. Since t′ > B we have (b, t′) �v1 (a, t). We

need to check the outcomes with respect to v2. For that, notice

(v2a− t)− (v2b− t′) =
v2

v1

(3v1 − v2

2K

)
− v2

K
> 0.

The inequality is true because v1 > v2. From above discussions, we have

(a, t) �v (b, t′).

Second,

(v2b− t′)− (v2c− t′′) =
1

4K

((
7− 3

v2

v1

)
−
(
6− 2

v2

v1

))
=

1

4K
(1− v2

v1

) > 0,

where the inequality is due to v1 > v2. Also, notice that from above we derive t′ − t′′ <

v2(b− c) < v1(b− c) which implies v1b− t′ > v1c− t′′. Combining the above two results with

the fact that t′ > B, we conclude that

(b, t′) �v (c, t′′).

Third,

(v1c− t′′)− (v1a− t) =
1

K
(2v1 − v2)− 1

4K

(
7v1 − 3v2) =

1

4K
(v1 − v2) > 0.

The inequality is because v1 > v2. Noticing that t′′ ≤ B, we have (c, t′′) �v (a, t). �
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C.2 Proofs for the uniform distribution case

In this section, we give the proofs of Lemma 2 and Proposition 5.

C.2.1 Proof of Lemma 2

Proof : Suppose (K∗1 , K
∗
2) are values of (K1, K2) in the optimal post-2 mechanism. By

definition K∗1 ≤ K∗2 . Using the uniform distribution of G, we see that (K∗1 , K
∗
2) are optimal

solutions to the following optimization problem:

max
K2∈[B,1], K1∈[B,K2]

B
[
1−K1

]
+
(
1− B

K1

)
K2(1−K2)2. (33)

We consider the following optimization problem, where we fix the value of K∗1 and maximize

over all K2:

max
K2∈[0,1]

B
[
1−K∗1

]
+
(
1− B

K∗1

)
K2(1−K2)2.

Notice that the objective function is strictly concave in K2, and the unique maximum occurs

when K2 = 1
3
.

Now, assume for contradiction K∗1 < K∗2 . We consider two cases and reach a contradic-

tion in both the cases.

Case 1. Suppose K∗1 ≥ 1
3
. Then, K∗2 >

1
3
. But K2 = K∗1 and K∗1 defines a feasible post-2

mechanism, and generates more revenue. This is a contradiction.

Case 2. Suppose K∗1 <
1
3
. Since K∗2 ≥ K∗1 , we see that K2 = 1

3
and K∗1 defines a feasible

post-2 mechanism and generates more revenue. Hence, K∗2 must be equal to 1
3
. Now, fixing

the value of K2 at 1
3
, we optimize the Expression (33) with relaxed constraints on K1:

max
K1∈[0,1]

B
[
1−K1

]
+
(
1− B

K1

) 4

27
.

This objective function is strictly concave with a unique maxima at K1 = 2
3
√

3
> 1

3
. Hence,

the objective function of the Expression in (33) is higher at K1 = 1
3

= K∗2 than at (K∗1 , K
∗
2)

with K∗1 <
1
3
. Further, K1 = K2 = 1

3
is a post-2 mechanism since (K∗1 , K

∗
2) with K∗2 = 1

3
is

a post-2 mechanism. This is a contradiction.
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Using this, we can conclude that the optimal post-2 mechanism is a solution to the

following single-variable constrained optimization problem.

max
K∈[B,1]

B
(
1−K

)
+
(
K −B

)
(1−K)2. (34)

We denote J(K) := B
(
1−K

)
+
(
K −B

)
(1−K)2 for all K. Notice that

J ′(K) = 3K2 −K(2B + 4) + (B + 1)

J ′′(K) = 6K − (2B + 4).

Note that

J ′(B) = B2 − 3B + 1 =
(
B − 3−

√
5

2

)(
B − 3 +

√
5

2

)
.

Hence, J ′(B) ≤ 0 if and only if B ≥ 1
2

(
3−
√

5
)
.

Notice that J ′′(K) = 0 for K = 1
3
(B + 2). Hence, J ′(K) is decreasing in [B, 1

3
(B + 2)]

and increasing in [1
3
(B + 2), 1]. Also, J ′(1) = −B < 0. Hence, if J ′(B) ≤ 0, we must have

J ′(K) < 0 for all K ∈ (B, 1].

Proof of (1). This implies that for B ≥ 1
2

(
3−
√

5
)
, we have J ′(K) < 0 for all K ∈ (B, 1].

This implies that J is decreasing in [B, 1], and hence, the optimal solution of Optimization

(34) must have K = B. Then, the first part implies that the optimal post-2 mechanism

must have K∗1 = K∗2 = B.

Proof of (2). If B < 1
2

(
3−
√

5
)
, then J ′(B) > 0 and J ′(K) = 0 at a unique point

K =
1

3

(
B + 2−

√
(B2 +B + 1)

)
.

Denote this point of inflection as K̃. Notice that J ′(K) < 0 for all K > K̃, and, hence, J

is decreasing after K̃. Further, K̃ < 1
3
(B + 2) and J ′′(K) < 0 for all K < K̃. This means

J is strictly concave from B to 1
3
(B + 2). Combining these observations, we conclude that

K = K̃ solves the Optimization in (34). The first part implies that the optimal post-2

mechanism must have

K∗1 = K∗2 =
1

3

(
B + 2−

√
(B2 +B + 1)

)
,

if B < 1
2

(
3−
√

5
)
. �
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C.2.2 Proof of Proposition 5

Proof : To do the proof, we first compute the optimal post-1 mechanism, which is the

solution to the following optimization program:

max
K1∈[0,B]

K1(1−K1). (35)

It is clear the optimal post-1 mechanism is K1 = 1
2

if B > 1
2

and K1 = B if B ≤ 1
2
. Now,

we consider the three cases separately.

Case 1 - B > 1
2
. Optimal post-1 mechanism generates a revenue of 1

4
. By Lemma 2,

optimal post-2 mechanism generates a revenue of B(1 − B), which is less than 1
4
. Hence,

the optimal mechanism is a post-1 mechanism with K1 = 1
2
.

Case 2 - B ∈ [1
2
(3 −

√
5), 1

2
]. In this case, both the optimal post-1 mechanism and the

optimal post-2 mechanism (due to Lemma 2) generates a revenue of B(1−B). Hence, the

optimal post-1 mechanism with K1 = B is optimal.

Case 3 - B ∈ (0, 1
2
(3−
√

5)). In this case, the optimal post-1 mechanism generates a revenue

of B(1−B), which is also the revenue generates by a post-2 mechanism with K1 = K2 = B.

But the optimal post-2 is unique and has K1 = K2 = 1
3

(
B + 2 −

√
(B2 +B + 1)

)
due to

Lemma 2. Hence, the result follows. �

C.3 An alternate notion of incentive compatibility

In this section, we adapt the choice correspondence procedure defined in Manzini and Mari-

otti (2012) to propose an extension of our binary choice model. We then propose an appro-

priate notion of incentive compatibility for this model and show its relation to our notion of

incentive compatibility.

Consider a type v ≡ (v1, v2). For any subset of outcomes S ⊆ Z, define

M1(S; v1) := {(a, t) ∈ S : av1 − t ≥ a′v1 − t′ ∀ (a′, t′) ∈ S and t ≤ B}

and define

M2(S; v2) := {(a, t) ∈ S : av2 − t ≥ a′v2 − t′ ∀ (a′, t′) ∈ S}.
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Using M1(S; v1) and M2(S; v2), we can now define a choice correspondence Cv : 2Z → 2Z

with ∅ 6= Cv(S) ⊆ S for each S ⊆ Z as follows:

Cv(S) =

{
M1(S; v1) if M1(S; v1) 6= ∅
M2(S; v2) otherwise

Intuitively, first, the agent tries to choose from S using v1, and if the maximal elements

according to her preference satisfy budget constraint, then they are chosen. Otherwise, the

maximal elements according to the manager are chosen. This is a plausible extension of our

binary choice model to accommodate choice from arbitrary subsets.

If we assume that our (agent, manager) pair makes choices using such choice correspon-

dences (or some other choice correspondence “consistent”with type v), then a familiar notion

of incentive compatibility for choice correspondences can be applied. In particular, we say

that (f, p) is choice-incentive compatible if for every v,

(f(v), p(v)) ∈ Cv(Rf,p),

where Rf,p is the range of the mechanism (f, p). This definition can be extended to arbitrary

mechanisms µ : M → Z defined on message space M . Notice that our definition requires

that

(f(v), p(v)) �v (a, t) ∀ (a, t) ∈ Rf,p.

If the (agent, manager) pair makes choices using Cv for each type v, we show that choice-

incentive compatibility and incentive compatibility are independent conditions. We give two

examples below to illustrate this.

Example 1

To see this, consider a type space with three types V := {v, v′, v′′}, where

v = (1, 1.2), v′ = (0, 0), v′′ = (1, 1).

Assume B = 0.5 and consider the following mechanism (f, p) defined on this type space.

(f(v), p(v)) := (1, 0.6), (f(v′), p(v′)) := (0.81, 0.4), (f(v′′), p(v′′)) = (0.924, 0.51).

We can check that

M1(Rf,p; v1) = ∅,M1(Rf,p; v′1) = {(f(v′), p(v′))},M1(Rf,p; v′′1) = ∅
M2(Rf,p; v2) = {(f(v), p(v))},M2(Rf,p; v′2) = {(f(v′), p(v′))},M2(Rf,p; v′′2) = {(f(v′′), p(v′′))}.
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Hence, we get

Cv(Rf,p) = {(f(v), p(v))}, Cv′(Rf,p) = {(f(v′), p(v′))}, Cv′′(Rf,p) = {(f(v′′), p(v′′))}.

Hence, (f, p) is choice-incentive compatible. But it can also be checked that

(f(v), p(v)) = (1, 0.6) �v (0.81, 0.4).

Hence, (f, p) is not incentive compatible.

Example 2

Now, consider another type space V ′ = {u, u′, u′′}, where

u = (3, 2), u′ = (0, 0), and u′′ = (2.5, 2.5).

As before, assume B = 0.5. Now, consider the following mechanism (f ′, p′) defined on the

type space V ′.

(f ′(u), p′(u)) := (0.99, 0.49), (f ′(u′), p′(u′)) := (0.989, 0.487), (f ′(u′′), p′(u′′)) = (1, 0.51).

Now, the following binary relations can be verified.

(0.99, 0.49) �u (0.989, 0.487), (0.99, 0.49) �u (1, 0.51).

(0.989, 0.487) �u′ (0.99, 0.49), (0.989, 0.487) �u′ (1, 0.51).

(1, 0.51) �u′′ (0.99, 0.49), (1, 0.51) �u′′ (0.989, 0.487).

This shows that (f ′, p′) is incentive compatible. But notice that

M1(Rf ′,p′ ;u1) = ∅,M2(Rf ′,p′ ;u2) = {(0.989, 0.487)}.

Hence, (f ′(u), p′(u)) = (0.99, 0.49) /∈ Cu(Rf ′,p′). This shows that (f ′, p′) is not choice-

incentive compatible.

C.4 A sufficient condition for optimality of post∗

In this section, we will identify some restrictions on the distribution that ensures that post∗

is an optimal mechanism for the private budgets case. We summarize our assumptions below.

Definition 10 We say distribution Φ satisfies Assumption A if
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• Values and budget are distributed independently, i.e., there exists a prior G over V ≡
[0, β]× [0, β] and a prior Π over [0, β] such that Φ(v,B) = G(v)Π(B) for all (v,B).

• Marginal G1 satisfies the property that H1(x) := xG1(x) ∀ x is strictly convex.

• Finally, define K̄ as before: K̄ := arg maxr∈[0,β] r(1 − G1(r)) - this is well defined

because H1 is strictly convex. Then, the following must hold:

[1−G(K̄, β)−G(β, K̄)+G(K̄, K̄)]

∫ K̄

0

(K̄−B)dΠ(B) ≥
∫ K̄

0

B[G1(K̄)−G1(B)]dΠ(B)

If G is the uniform distribution over [0, 1] × [0, 1] and Π is uniform over [0, 1], then the

resulting distribution satisfies Assumption A.

Proposition 8 If Φ satisfies Assumption A, then a post∗ mechanism is optimal.

Proof : Fix any B in (0, β) and consider the optimal post-1 mechanism in M− derived in

Proposition 4. We use this mechanism for each B (using the expression in Proposition 2)

to define a new mechanism (f ′, v′) for the private budget case - for B ∈ {0, β}, we use the

limiting mechanisms of the post-1 mechanism suggested in Proposition 2.

(f ′(v), p′(v)) =





(1, B) if v1 > B and B < K̄

(1, K̄) if v1 > K̄ and B ≥ K̄

(0, 0) otherwise.

Of course, this mechanism is not incentive compatible in the private budget case - when

v1 > B > 0, the (agent, manager) pair has an incentive to report a budget equal to zero

get the outcome (1, 0). But notice that the expected revenue of the optimal mechanism in

the class of incentive compatible and individually rational mechanisms that are not manager

non-trivial cannot exceed the expected revenue of (f ′, p′).

Now, consider the post∗ mechanism by setting K = K̄:

(f ∗(v), p∗(v)) =





(1, K̄) if {v1 > K̄ and B ≥ K̄} or {v1, v2 > K̄ and B < K̄}
(B
K̄
, B) if v1 > K̄, v2 ≤ K̄, and B < K̄

(0, 0) otherwise

The two mechanisms are shown in Figures 8 and 9 below.

We argue that post∗ generates weakly greater expected revenue that (f ′, p′) under As-

sumption A. Hence, the optimal mechanism must be a post∗ mechanism by Theorem 2.
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K̄
v1

v2

(0, 0, 0)

p′(v,B) = K̄

B

p′(v,B) = 0

K̄

p′(v,B) = B

Figure 8: Upper bound

K̄

K̄

v1

v2

(0, 0, 0)

p∗(v,B) = K̄

B

p∗(v,B) = 0

p∗(v,B) = B

K̄

Figure 9: Lower bound

Note that (f ′, p′) and (f ∗, p∗) yield the same revenue for the following types:

(v,B) such that B ≥ K̄

(v,B) such that v1 > K̄, v2 ≤ K̄, and B < K̄

(v,B) such that v1 ≤ B, and B < K̄
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So, we ignore these types and focus on rest of the types.

• for any type (v,B) such that v1, v2 > K̄ and B < K̄, revenue from (f ∗, p∗) is K̄ whereas

revenue from (f ′, p′) is B; so the difference in revenue is K̄ −B.

• for any type (v,B) such that v1 ∈ (B, K̄] and B < K̄, revenue from (f ∗, p∗) is 0 whereas

revenue from (f ′, p′) is B; so the difference in revenue is B.

Then the condition for revenue from (f ∗, p∗) to be more than that of (f ′, p′) is:

[1−G(K̄, β)−G(β, K̄) +G(K̄, K̄)]

∫ K̄

0

(K̄ −B)dΠ(B) ≥
∫ K̄

0

B[G1(K̄)−G1(B)]dΠ(B)

This holds because of Assumption A. �
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