GAME THEORY - ASSIGNMENT 3 Due date: October 16, 2024.

1. In the game in Table 1, $a, b, c, d \in (-\frac{1}{4}, \frac{1}{4})$. Show that there is a **unique** correlated equilibrium of this game. Find this correlated equilibrium. What is the limit of this correlated equilibrium as a, b, c, d approach 0?

	X	Y
A	(1, 0)	(c, 1+d)
В	(0, 1)	(1+a,b)

Table 1: Correlated equilibria

2. Consider a two-player Bayesian game where a parameter $\theta \in \{0,3\}$ is observed by Player 1. Player 2 believes that it is equally likely that $\theta = 0$ and $\theta = 3$. For every value of θ , the strategic-form game associated with Table 2 is played.

	a	b
A	(2,2)	$(0, \theta)$
В	$(\theta, 0)$	(1, 1)

Table 2: A Bayesian game

- (a) What are the strategies of the players in this Bayesian game.
- (b) Compute two Bayesian equilibria of this game.
- 3. Consider a two-player Bayesian game shown in Table 3. Here, ϵ_1 is observed by Player 1 and ϵ_2 is observed by Player 2. Both ϵ_1 and ϵ_2 are distributed uniformly between $\left[-\frac{1}{3}, \frac{2}{3}\right]$ and this is common knowledge.

	a	b
A	$(2+\epsilon_1,2)$	(ϵ_1,ϵ_2)
B	(0, 0)	$(1,2+\epsilon_2)$

Table 3: A Bayesian game

(a) What are the strategies of the players in this Bayesian game.

(b) Compute a Bayesian equilibrium in which each Player plays each of its actions for *some* type of hers (i.e., *do not* consider a Bayesian equilibrium where for every type a player plays the same action).