GAME THEORY - MIDTERM EXAMINATION Date: September 14, 2015 Total marks: **42** Duration: 2:00 PM to 5:00 PM

Note: Answer all questions clearly using pen. Please avoid unnecessary discussions.

- 1. Ten players are playing the following game. Each player writes down, on a peice of paper, an integer in $\{1, \ldots, 100\}$, alongside his identity (name). A *target integer* is the highest integer less than or equal to $\frac{2}{3}$ of the average of all the integers submitted. The winners of the game are all the players who submitted the target integer. Winners equally share a prize of 1000 (assume prize money equals payoff).
 - Describe this as a strategic form game. (2 marks)
 - What are the strictly dominated strategies of each player. (3 marks)
 - Compute the set of (correlated) rationalizable strategies in this game. (4 marks)
 - Find a pure strategy Nash equilibrium of this game. Is this a unique pure strategy Nash equilibrium? (3 marks)
- Consider a two player zero-sum game Γ. Suppose one of the pure strategies of Player 1 is removed from the game Γ and denote by Γ' the new two player zero-sum game. Show that the Nash equilibrium payoff of Player 1 in Γ is greater than or equal to his Nash equilibrium payoff in Γ'. (5 marks)

Is this result true for any finite two player game? Either prove your answer or provide a counter example. (5 marks)

3. A Nash equilibrium s^* in a finite strategic form game $\Gamma = (N, \{S_i\}_{i \in N}, \{u_i\}_{i \in N})$ is a **strict Nash equilibrium** if for every $i \in N$, for every $s_i \in S_i$,

$$u_i(s_i^*, s_{-i}^*) > u_i(s_i, s_{-i}^*).$$

Prove that if the process of iterative elimination of strictly dominated strategies results in a unique strategy profile s^* , then s^* is a strict Nash equilibrium. (5 marks)

- 4. Consider the two player strategic form game in Table 1.
 - (a) Draw the best response maps of both the players and conclude whether certain strategies are not played in any (mixed strategy) Nash equilibrium. (6 marks)

	ℓ	r
T	(5, 1)	(0, 2)
M	(1, 3)	(4, 1)
В	(4, 1)	(2, 3)

Table 1: A strategic form game

- (b) Use the best response maps to compute all the (mixed strategy) Nash equilibria of this game. (4 marks)
- 5. Suppose there are n firms and each firm j chooses a price p_j . The demand function for firm i is given by

$$D_i(p_i, p_{-i}) = a_i - b_i p_i + g_i(\sum_{j \neq i} p_j)$$

where $b_i > 0$ for all i and for all $i, g_i : \mathbb{R}_+ \to \mathbb{R}_+$ is some increasing function of sum of prices of other players.

The payoff of a firm is its revenue - its price times the quantity demanded.

Suppose prices are chosen from a compact interval in \mathbb{R}_+ . Can you argue that this game has a Nash equilibrium in pure strategies? Clearly state any result you use to argue this existence. (5 marks)